Skip to main content

Computer-Aided Drug Design

  • Chapter
  • First Online:
Drug Discovery and Development

Abstract

Computer-Aided Drug Design topic deals with the application of computer hardware and software to provide solutions at every stage of drug discovery. QSAR methods help in evaluating the data emerging from pharmacology laboratories. The molecular docking methods provide atomic-level information regarding the interaction between drugs and macromolecules. The quantum medicinal chemistry methods help in evaluating the electronic structure, and provide many clues regarding the chemical and biochemical processes associated with drugs. The molecular dynamics methods are useful in modelling the induced fit effects of drug–macromolecule complexes. The virtual screening effort is complementary to many preclinical screening efforts being carried out on lead compounds. Artificial intelligence methods are penetrating the domain of drug discovery in a big way by providing many innovative tools. There is a huge requirement in the application of these pharmacoinformatics techniques at every stage of drug discovery. This includes the efforts in druggable target identification, target validation, target 3D structure prediction, medicinal chemistry, natural product chemistry, pharmacology (in vitro as well as in vivo), pharmaceutics, formulations, drug delivery, drug disposition, preclinical trials, clinical trials as well to study the drug–patient response after the release. In this chapter, many of the scientific concepts behind CADD have been introduced, the computational details of these technologies have been elaborated, and the application of these techniques in drug design have been illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murcko MA. What makes a great medicinal chemist? A personal perspective. J Med Chem. 2018;61:7419–24.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen NC. Guidebook on molecular modeling in drug design. India: Elsevier; 2014.

    Google Scholar 

  3. Cavasotto CN, editor. In silico drug discovery and design: theory, methods, challenges, and applications: CRC Press; 2017.

    Google Scholar 

  4. Silverman RB, Holladay MW. The organic chemistry of drug design and drug action: Academic Press; 2014.

    Google Scholar 

  5. Merz KM Jr, Ringe D, Reynolds CH, editors. Drug design: structure- and ligand-based approaches: Cambridge University Press; 2010.

    Google Scholar 

  6. Reddy MR, Erion MD. Free energy calculations in rational drug design: Springer; 2001.

    Google Scholar 

  7. Doble M. Drug design: basics and applications: McGraw Hill; 2011.

    Google Scholar 

  8. Roche VF, Zito SW, Lemke TL, Williams DA. Foye’s principles of medicinal chemistry: Wolters Kulwer; 2020.

    Google Scholar 

  9. Klebe G. Drug design: methodology, concepts, and mode-of-action: Springer; 2013.

    Google Scholar 

  10. Roy K, editor. In silico drug design: Academic Press; 2019.

    Google Scholar 

  11. Luciano G. Essential computer graphics techniques for modeling, animating, and rendering biomolecules and cells: a guide for the scientist and artist. CRC Press; 2019.

    Google Scholar 

  12. Bharatam PV, Patel DS, Iqbal P. Pharmacophoric features of biguanide derivatives: an electronic and structural analysis. J Med Chem. 2005;48:7615–22.

    Article  CAS  PubMed  Google Scholar 

  13. Bharatam PV, Amita. Negative hyperconjugative interactions in S-nitrosothiols: a theoretical study. Tet Lett. 2002;43:8289–91.

    Article  CAS  Google Scholar 

  14. Leach A. Molecular modelling: principles and applications. 2nd ed: Pearson Education; 2009.

    Google Scholar 

  15. Goodman JM. Chemical applications of molecular modelling: Royal Society of Chemistry; 2004.

    Google Scholar 

  16. Jaladanki C, Shaik A, Bharatam PV. Biotransformation of isoniazid by cytochromes P450: analyzing the molecular mechanism using density functional theory. Chem Res Tox. 2017;30:2060–73.

    Article  CAS  Google Scholar 

  17. Chourasiya SS, Kathuria D, Nikam SS, Ramakrishnan A, Khullar S, Mandal SK, Chakraborti AK, Bharatam PV. Azine-hydrazone tautomerism of guanylhydrazones: evidence for the preference toward the azine tautomer. J Org Chem. 2016;81:7574–83.

    Article  CAS  PubMed  Google Scholar 

  18. Kathuria D, Chourasiya SS, Wani AA, Singh M, Sahoo SC, Bharatam PV. Geometrical isomerism in Guanabenz free base: synthesis, characterization, crystal structure and theoretical studies. Cryst Growth Des. 2019;19:3183–91.

    Article  CAS  Google Scholar 

  19. Hubbard RE, Neidle S, editors. Structure-based drug discovery: an overview: Royal Society of Chemistry; 2006.

    Google Scholar 

  20. Ghosh AK, Gemma S. Structure-based design of drugs and other bioactive molecules: tools and strategies: Wiley-VCH; 2014.

    Google Scholar 

  21. Mohan CG, editor. Structural bioinformatics: applications in preclinical drug discovery process: Springer; 2019.

    Google Scholar 

  22. Jayaram B, Dhingra P, Mishra A, Kaushik R, Mukherjee G, Singh A, Shekhar S. Bhageerath H: A homology ab initio hybrid server for predicting tertiary structures of monomeric soluble proteins. BMC Bioinf. 2014;16:S7.

    Article  Google Scholar 

  23. Kathuria D, Bankar AA, Bharatam PV. What’s in a structure? The story of biguanides. J Mol Struct. 2018;1152:61–78.

    Article  CAS  Google Scholar 

  24. Patel DS, Bharatam PV. Novel⊕ N (← L)2 species with two lone pairs on nitrogen: systems isoelectronic to carbodicarbenes. Chem Comm. 2009;9:1064–6.

    Google Scholar 

  25. Gasteiger J, Engel T, editors. Chemoinformatics: a textbook: Wiley-VCH; 2003.

    Google Scholar 

  26. Engel T, Gasteiger J, editors. Chemoinformatics: basic concepts and methods: Wiley-VCH; 2018.

    Google Scholar 

  27. Leach AR, Gillet VJ. An introduction to chemoinformatics: Springer; 2007.

    Google Scholar 

  28. Bajorath J. Chemoinformatics for drug discovery. New York: John Wiley & Sons; 2013.

    Book  Google Scholar 

  29. Gaur AS, et al. Assessing therapeutic potential of molecules: molecular property diagnostic suite for tuberculosis (MPDSCTB). J Chem Sci. 2017;129:515–31.

    Article  CAS  Google Scholar 

  30. Mount DW. Bioinformatics: sequence and genome analysis: CBS Publishers, 2005.

    Google Scholar 

  31. Ramsden J. Bioinformatics: an introduction: Springer; 2015.

    Google Scholar 

  32. Ewens WJ, Grant GR. Statistical methods in bioinformatics: an introduction: Springer; 2005.

    Google Scholar 

  33. Böckenhauer HJ, Bongartz D. Algorithmic aspects of bioinformatics: Springer; 2007.

    Google Scholar 

  34. Polanski A, Kimmel M. Bioinformatics. Springer, 2007.

    Google Scholar 

  35. Sperschneider V. Bioinformatics: problem solving paradigms: Springer; 2008.

    Google Scholar 

  36. Loging WT. Bioinformatics and computational biology in drug discovery and development: Cambridge Univ Press; 2016.

    Google Scholar 

  37. Roy K, editor. Multi-target drug design using chem-bioinformatic approaches: Springer; 2018.

    Google Scholar 

  38. Larson RS, Oprea T, editors. 3rd ed. Bioinformatics and drug discovery: Humana Press, 2019.

    Google Scholar 

  39. Shamanskiy VA, Timonina VN, Popadin KY, Gunbin KV. ImtRDB: a database and software for mitochondrial imperfect interspersed repeats annotation. BMC Genomics. 2019;20:295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Babbi G, Martelli PL, Casadio R. PhenPath: a tool for characterizing biological functions underlying different phenotypes. BMC Genomics. 2019;20:548.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sundararajan Z, Knoll R, Hombach P, Becker M, Schultze JL, Ulas T. Shiny-Seq: advanced guided transcriptome analysis. BMC Res Notes. 2019;12:432.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–75.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fang J, Wu Z, Cai C, Wang Q, Tang Y, Cheng F. Quantitative and systems pharmacology. 1. In silico prediction of drug-target interaction of natural products enables new targeted cancer therapy. J Chem Inf Model. 2017;57:2657–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singhal P, Jayaram B, Dixit SB, Beveridge DL. Prokaryotic gene finding based on physicochemical characteristics of codons calculated from molecular dynamics simulations. J Biophys. 2008;94:4173–83.

    Article  CAS  Google Scholar 

  45. Baviskar AT, Madaan C, Preet R, Mohapatra P, Jain V, Agarwal A, Guchhait SK, Kundu CN, Banerjee UC, Bharatam PV. N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase IIα and induce apoptosis in G1/S phase. J Med Chem. 2011;54:5013–30.

    Article  CAS  PubMed  Google Scholar 

  46. Baviskar AT, Amrutkar SM, Trivedi N, Chaudhary V, Nayak V, Guchhait SK, Banerjee UC, Bharatam PV, Kundu CN. Switch in site of inhibition: a strategy for structure-based discovery of human topoisomerase IIα catalytic inhibitors. ACS Med Chem Lett. 2015;6:481–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tripathi N, Guchhait SK, Bharatam PV. Pharmacoinformatics analysis of merbarone binding site in human topoisomerase IIα. J Mol Graph Model. 2019;86:1–18.

    Article  CAS  PubMed  Google Scholar 

  48. Tripathi N, Shaikh N, Bharatam PV, Garg P. HToPred: a tool for human topoisomerase II inhibitor prediction. Mol Inform. 2019;38:e1800046.

    Article  PubMed  CAS  Google Scholar 

  49. Tripathi N, Deb R, Guchhait SK, Bharatam PV. Chapter 2. Pharmacoinformatics studies on human topoisomerase II: exploring the mechanism of enzyme inhibition. In: Kumar R, Sing S, editors. Topoisomerase inhibitors. New York: Nova Science; 2017.

    Google Scholar 

  50. Hansch C, Leo A, Hoekman DH. Exploring QSAR: hydrophobic, electronic, and steric constants: American Chemical Society; 1995.

    Google Scholar 

  51. Puzyn T, Leszczynski J, Cronin MT, editors. Recent advances in QSAR studies: methods and applications: Springer; 2012.

    Google Scholar 

  52. Kubinyi H. QSAR: Hansch analysis and related approaches: John Wiley; 2019.

    Google Scholar 

  53. Kubinyi H, Folkers G, Martin YC, editors. 3D QSAR in drug design: recent advances: Springer; 1998.

    Google Scholar 

  54. Albrecht R. Development of antibacterial agents of the nalidixic acid type. Pro Drug Res. 1977;21:9–104.

    CAS  Google Scholar 

  55. Koga H, Itoh A, Murayama S, Suzue S, Irikura T. Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J Med Chem. 1980;23:1358–63.

    Article  CAS  PubMed  Google Scholar 

  56. Klopman G, Macina OT, Levinson ME, Rosenkranz HS. Computer automated structure evaluation of quinolone antibacterial agents. Antimicrob Agents Chemother. 1987;31:1831–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc. 1988;110:5959–67.

    Article  CAS  PubMed  Google Scholar 

  58. Klebe G, Abraham U, Meitzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem. 1994;37:4130–46.

    Article  CAS  PubMed  Google Scholar 

  59. Robinson DD, Winn PJ, Lyne PD, Richards WG. Selforganizing molecular field analysis: a tool for structure-activity studies. J Med Chem. 1999;42:573–83.

    Article  CAS  PubMed  Google Scholar 

  60. Silverman BD, Platt DE. Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J Med Chem. 1996;39:2129–40.

    Article  CAS  PubMed  Google Scholar 

  61. Gohlke H, Klebe G. DrugScore meets CoMFA: adaptation of fields for molecular comparison (AFMoC) or how to tailor knowledge-based pair-potentials to a particular protein. J Med Chem. 2002;45:4153–70.

    Article  CAS  PubMed  Google Scholar 

  62. Khanna S, Sobhia ME, Bharatam PV. Additivity of molecular fields: CoMFA study on dual activators of PPARα and PPARγ. J Med Chem. 2005;48:3015–25.

    Article  CAS  PubMed  Google Scholar 

  63. Sundriyal S, Bharatam PV. Important pharmacophoric features of pan PPAR agonists: common chemical feature analysis and virtual screening. Eur J Med Chem. 2009;44:3488–95.

    Article  CAS  PubMed  Google Scholar 

  64. Sundriyal S, Viswanad B, Bharathy E, Ramarao P, Chakraborti AK, Bharatam PV. New PPARγ ligands based on 2-hydroxy-1,4-naphthoquinone:Computer-aided design, synthesis and receptor-binding studies. Bioorg Med Chem Lett. 2008;18:3192–5.

    Article  CAS  PubMed  Google Scholar 

  65. Sundriyal S, Viswanad B, Ramarao P, Chakraborti AK, Bharatam PV. New PPARγ ligands based on barbituric acid: virtual screening, synthesis and receptor binding studies. Bioorg Med Chem Lett. 2008;18:4959–62.

    Article  CAS  PubMed  Google Scholar 

  66. Guner OF, editor. Pharmacophore perception, development, and use in drug design: The Book Service; 2000.

    Google Scholar 

  67. Mahato S. A feature matching approach for pharmacophore modelling: concepts and applications: Scholars Press; 2016.

    Google Scholar 

  68. Langer T, Hoffmann RD, editors. Pharmacophores and pharmacophore searches: Wiley-VCH; 2006.

    Google Scholar 

  69. Guner O, Clement O, Kurogi Y. Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. Curr Med Chem. 2004;11:2991–3005.

    Article  PubMed  Google Scholar 

  70. Patel DS, Bharatam PV. New leads for selective GSK-3 inhibition: pharmacophore mapping and virtual screening studies. J Comput Aided Mol Des. 2006;20:55–66.

    Article  CAS  PubMed  Google Scholar 

  71. Vlachakis DP, editor. Molecular docking: Intech Open; 2018.

    Google Scholar 

  72. Azevedo WF Jr, editor. Docking screens for drug discovery: Humana; 2019.

    Google Scholar 

  73. Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20:E4331.

    Article  PubMed  CAS  Google Scholar 

  74. Li J, Fu A, Zhang L. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip Sci Comput Life Sci. 2019;11:320–8.

    Article  CAS  Google Scholar 

  75. Jain AN. Scoring functions for protein-ligand docking. Curr Protein Pept Sci. 2006;7:407–20.

    Article  CAS  PubMed  Google Scholar 

  76. Su M, Yang Q, Du Y, Feng G, Liu Z, Li Y, Wang R. Comparative assessment of scoring functions: the CASF-2016 update. J Chem Inf Model. 2019;59:895–913.

    Article  CAS  PubMed  Google Scholar 

  77. Von IM. The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov. 2007;6:967–74.

    Article  CAS  Google Scholar 

  78. Varghese JN, Laver WG, Colman PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 a resolution. Nature. 1983;303:35–40.

    Article  CAS  PubMed  Google Scholar 

  79. Colman PM, Varghese JN, Laver WG. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature. 1983;303:41–4.

    Article  CAS  PubMed  Google Scholar 

  80. Itzstein VM, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Phan TV, Smythe ML, White HF, Oliver SW. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature. 1993;363:418–23.

    Google Scholar 

  81. Itzstein VM. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985;28:849–57.

    Article  Google Scholar 

  82. Hayden FG, Osterhaus AD, Treanor JJ, Fleming DM, Aoki FY, Nicholson KG, Bohnen AM, Hirst HM, Keene O, Wightman K. Efficacy and safety of the neuraminidase inhibitor zanamivir in the treatment of influenza virus infections. GG167 influenza study group. N Engl J Med. 1997;337:874–80.

    Article  CAS  PubMed  Google Scholar 

  83. Winquist AG, Fukuda K, Bridges CB, Cox NJ. Neuraminidase inhibitors for treatment of influenza A and B infections. CDC. U.S. Department of health and human services. 1999;48:1–9.

    Google Scholar 

  84. Fan X, Zhang FH, Al-Safi RI, Zeng LF, Shabaik Y, Debnath B, Sanchez TW, Odde S, Neamati N, Long YQ. Design of HIV-1 integrase inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75: a scaffold hopping approach using salicylate and catechol groups. Bioorg Med Chem. 2011;19:4935–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, Gabryelski L, Schleif W, Blau C, Miller MD. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 2000;287:646–50.

    Article  CAS  PubMed  Google Scholar 

  86. Zhuang L, Wai JS, Embrey MW, Fisher TE, Egbertson MS, Payne LS, Guare JP, Vacca JP, Hazuda DJ, Felock PJ, Wolfe AL, Stillmock KA, Witmer MV, Moyer G, Schleif WA, Gabryelski LJ, Leonard YM, Lynch JJ, Michelson SR, Young SD. Design and synthesis of 8-hydroxy-[1,6]naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells. J Med Chem. 2003;46:453–6.

    Article  CAS  PubMed  Google Scholar 

  87. Schneider G. De novo molecular design. Weinheim: Wiley-VCH Verlag Gmb H & Co. KGaA; 2013.

    Book  Google Scholar 

  88. Christner C, Wyrwa R, Marsch S, Küllertz G, Thiericke R, Grabley S, Schumann D, Fischer G. Synthesis and cytotoxic evaluation of cycloheximide derivatives as potential inhibitors of FKBP12 with neuroregenerative properties. J Med Chem. 1999;42:3615–22.

    Article  CAS  PubMed  Google Scholar 

  89. Dragovich PS, Barker JE, French J, Imbacuan M, Kalish VJ, Kissinger CR, Knighton DR, Lewis CT, Moomaw EW, Parge HE, Pelletier LA, Prins TJ, Showalter RE, Tatlock JH, Tucker KD, Villafranca JE. Structure-based design of novel, urea-containing FKBP12 inhibitors. J Med Chem. 1996;39:1872–84.

    Article  CAS  PubMed  Google Scholar 

  90. Gopalakrishnan R, Kozany C, Gaali S, Kress C, Hoogeland B, Bracher A, Hausch F. Evaluation of synthetic FK506 analogues as ligands for the FK506-binding proteins 51 and 52. J Med Chem. 2012;55:4114–22.

    Google Scholar 

  91. Wu YQ, Wilkinson DE, Limburg D, Li JH, Sauer H, Ross D, Liang S, Spicer D, Valentine H, Fuller M, Guo H, Howorth P, Soni R, Chen Y, Steiner JP, Hamilton GS. Synthesis of ketone analogues of prolyl and pipecolyl ester FKBP12 ligands. J Med Chem. 2002;45:3558–68.

    Article  CAS  PubMed  Google Scholar 

  92. Alvarez J, Shoichet B. Virtual screening in drug discovery: CRC Press; 2005.

    Google Scholar 

  93. Kontoyianni M. Docking and virtual screening in drug discovery: Springer; 2017.

    Google Scholar 

  94. Sotriffer, editor. Virtual screening: principles, challenges, and practical guidelines: Wiley-VCH; 2011.

    Google Scholar 

  95. Adane L, Patel DS, Bharatam PV. Shape and chemical feature-based 3D-pharmacophore model generation and virtual screening: identification of potential leads for P. falciparum DHFR enzyme inhibition. Chem Biol Drug Des. 2010;75:115–26.

    Article  CAS  PubMed  Google Scholar 

  96. Arfeen M, Bhagat S, Patel R, Prasad S, Roy I, Chakraborti AK, Bharatam PV. Design, synthesis and biological evaluation of 5-benzylidene-2-iminothiazolidin-4-ones as selective GSK-3β inhibitors. Eur J Med Chem. 2016;121:727–36.

    Article  CAS  PubMed  Google Scholar 

  97. Arfeen M, Bharatam PV. Design of glycogen synthase kinase-3 inhibitors: an overview on recent advancements. Curr Pharm Des. 2013;19:4755–75.

    Article  CAS  PubMed  Google Scholar 

  98. Patel DS, Bharatam PV. Selectivity criterion for pyrazolo[3,4-b]pyrid[az]ine derivatives as GSK-3 inhibitors: CoMFA and molecular docking studies. Eur J Med Chem. 2008;43:949–57.

    Google Scholar 

  99. Dessalew N, Bharatam PV. Structure based de novo design of novel glycogen synthase kinase 3 inhibitors. Bioorg Med Chem. 2007;15:3728–36.

    Article  CAS  PubMed  Google Scholar 

  100. Koshland DE Jr. Key-lock theory and the induced fit theory. Angew Chem Int Ed Engl. 1994;33:2375–8.

    Article  Google Scholar 

  101. Xu M, Lill MA. Induced fit docking and the use of QM/MM methods in docking. Drug Discov Today Technol. 2013;10:411–8.

    Article  Google Scholar 

  102. Weikl TR, Paul F. Conformational selection in protein binding and function. Protein Sci. 2014;23:1508–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gervasio FL, Spiwok V. Biomolecular simulations in structure-based drug discovery: Wiley-VCH Verlag GmbH & Co. KGaA; 2018.

    Google Scholar 

  104. Sotriffer CA. Molecular dynamics simulations in drug design: Springer; 2006.

    Google Scholar 

  105. Bhagat S, Arfeen M, Adane L, Singh S, Singh PP, Chakraborti AK, Bharatam PV. Guanylthiouea derivatives as potential antimalarial agents: synthesis, in vivo and molecular modeling studies. Eur J Med Chem. 2017;135:339–48.

    Article  CAS  PubMed  Google Scholar 

  106. Arfeen M, Patel R, Khan T, Bharatam PV. Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: understanding the factors contributing to selectivity. J Biomol Struct Dyn. 2015;33:2578–93.

    Article  CAS  PubMed  Google Scholar 

  107. Abbat S, Jain V, Bharatam PV. Origins of the specificity of inhibitor P218 toward wild-type and mutant PfDHFR: a molecular dynamics analysis. J Biomol Struct Dyn. 2015;33:1913–28.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Y, Rajapakse JC. Machine learning in bioinformatics: Wiley; 2008.

    Google Scholar 

  109. Zupan J, Gasteiger J. Neural networks in chemistry and drug design: an introduction: Wiley-VCH; 1999.

    Google Scholar 

  110. Speck-Planche A, editor. Multi-scale approaches in drug discovery: from empirical knowledge to in silico experiments and back: Elsevier; 2017.

    Google Scholar 

  111. Ghose AK, Herbertz T, Salvino JM, Mallamo JP. Knowledge-based chemoinformatic approaches to drug discovery. Drug Discov Today. 2006;11:1107–14.

    Article  CAS  PubMed  Google Scholar 

  112. Velec HFG, Gohlke H, Klebe G. DrugScoreCSD knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affnity prediction. J Med Chem. 2005;48:6296–303.

    Article  CAS  PubMed  Google Scholar 

  113. Huang SY, Zou X. An iterative knowledge-based scoring function for protein-protein recognition. Proteins. 2008;72:557–79.

    Article  CAS  PubMed  Google Scholar 

  114. Devillers J. Genetic algorithms in molecular modeling: Academic Press; 1996.

    Google Scholar 

  115. Douguet D, Thoreau E, Grassy G. A genetic algorithm for the automated generation of small organic molecules: drug design using an evolutionary algorithm. J Comput Aided Mol Des. 2000;14:449–66.

    Article  CAS  PubMed  Google Scholar 

  116. Pérez-Castillo Y, Lazar C, Taminau J, Froeyen M, Cabrera-Perez MA, Nowé A. GA(M)E-QSAR: a novel, fully automatic genetic-algorithm-(Meta)-ensembles approach for binary classification in ligand-based drug design. J Chem Inf Model. 2012;529:2366–86.

    Article  CAS  Google Scholar 

  117. Sun G, Fan T, Sun X, Hao Y, Cui X, Zhao L, Ren T, Zhou Y, Zhong R, Peng Y. In silico prediction of O6-methylguanine-DNA methyltransferase inhibitory potency of base analogs with QSAR and machine learning methods. Molecules. 2018;23:2892.

    Article  PubMed Central  CAS  Google Scholar 

  118. Santos-Garcia L, de Mecenas FM, Musilek K, Kuca K, Ramalho T, da Cunha E. QSAR study of N-myristoyltransferase inhibitors of antimalarial agents. Molecules. 2018;23:2348.

    Article  PubMed Central  CAS  Google Scholar 

  119. Bazl R, Ganjali MR, Derakhshankhah H, Saboury AA, Amanlou M, Norouzi P. Prediction of tyrosinase inhibition for drug design using the genetic algorithm–multiple linear regressions. Med Chem Res. 2013;22:5453–65.

    Article  CAS  Google Scholar 

  120. Ambrose GO, Afees OJ, Kalu UJ, Oshireku AW, Todimu AD, Oluwasegun OE, Olatoye T, Rebecca FR, Precious A. QSAR model generation of phthalazinones as poly (ADP-ribose) polymerase inhibitors by the genetic algorithm and multiple linear regression (GA-MLR) method: a ligand-based approach for Cancer drug design. J Proteomics Bioinform. 2018;11:10.

    Article  Google Scholar 

  121. Terfloth L, Gasteiger J. Neural networks and genetic algorithms in drug design. Drug Discov Today. 2001;6:102–8.

    Article  Google Scholar 

  122. Garg P, Verma J. In silico prediction of blood brain barrier permeability: an artificial neural network model. J Chem Inf Model. 2006;46:289–97.

    Article  CAS  PubMed  Google Scholar 

  123. Varnek A, Baskin I. Machine learning methods for property prediction in cheminformatics: Quo Vadis? J Chem Inf Model. 2012;52:1413–37.

    Article  CAS  PubMed  Google Scholar 

  124. Lo YC, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23:1538–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lima AN, Philot EA, Trossini GHG, Scott LPB, Maltarollo VG, Honorio KM. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov. 2016;11:225–39.

    Article  CAS  PubMed  Google Scholar 

  126. Khamis MA, Gomaa W, Ahmed WF. Machine learning in computational docking. Artif Intell Med. 2015;63:135–52.

    Article  PubMed  Google Scholar 

  127. Wójcikowski M, Ballester PJ, Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep. 2017;7:46710.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Li H, Leung KS, Wong MH, Ballester PJ. Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol Inform. 2015;34:115–26.

    Article  PubMed  CAS  Google Scholar 

  129. Ekins S. The next era: deep learning in pharmaceutical research. Pharm Res. 2016;33:2594–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Panteleev J, Gao H, Jia L. Recent applications of machine learning in medicinal chemistry. Bioorg Med Chem Lett. 2018;28:2807–15.

    Article  CAS  PubMed  Google Scholar 

  131. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23:1241–50.

    Article  PubMed  Google Scholar 

  132. Bajorath J. Data analytics and deep learning in medicinal chemistry. Future Med Chem. 2018;10:1541–3.

    Article  CAS  PubMed  Google Scholar 

  133. Jing Y, Bian Y, Hu Z, Wang L, Xie XQS. Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J. 2018;20:58.

    Article  PubMed  CAS  Google Scholar 

  134. Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Inf. 2016;35:3–14.

    Article  CAS  Google Scholar 

  135. Gawehn E, Hiss JA, Brown JB, Schneider G. Advancing drug discovery via GPU-based deep learning. Expert Opin Drug Discov. 2018;13:579–82.

    Article  PubMed  Google Scholar 

  136. Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22:1680–5.

    Article  PubMed  Google Scholar 

  137. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model. 2015;55:263–74.

    Article  CAS  PubMed  Google Scholar 

  138. Ghasemi F, Mehridehnavi A, Pérez-Garrido A, Pérez-Sánchez H. Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug Discov Today. 2018;23:1784–90.

    Article  CAS  PubMed  Google Scholar 

  139. Mayr A, Klambauer G, Unterthiner T, Hochreither S. Deep Tox: toxicity prediction using deep learning. Front Environ Sci. 2016;3:80.

    Article  Google Scholar 

  140. Nam Y, Kim M, Chang HS, Shin H. Drug repurposing with network reinforcement. BMC Bioinf. 2019;20:383.

    Article  Google Scholar 

  141. Laghuvarapu S, Pathak Y, Priyakumar UD. BAND NN: a deep learning framework for energy prediction and geometry optimization of organic small molecules. J Comput Chem. 2020;41:790–799.

    Google Scholar 

  142. Smith JS, Nebgen BT, Zubatyuk R, Lubbers N, Devereux C, Barros K, Tretiak S, Isayev O, Roitberg AE. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nat Commun. 2019;10:2903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Rodríguez-Perez R, Bajorath J. Multitask machine learning for classifying highly and weakly potent kinase inhibitors. ACS Omega. 2019;4:4367–75.

    Article  CAS  Google Scholar 

  144. Maltarollo VG, Kronenberger T, Espinoza GZ, Oliveira PR, Honorio KM. Advances with support vector machines for novel drug discovery. Expert Opin Drug Discov. 2019;14:23–33.

    Article  CAS  PubMed  Google Scholar 

  145. Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model. 2011;51:408–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hessler G, Baringhaus KH. Artificial intelligence in drug design. Molecules. 2018;23:2520.

    Article  PubMed Central  CAS  Google Scholar 

  147. Mahé P, Vert JP. Virtual screening with support vector machines and structure kernels. Comb Chem High Throughput Screening. 2009;12:409–23.

    Article  Google Scholar 

  148. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43:1947–58.

    Article  CAS  PubMed  Google Scholar 

  149. Rogers D, Brown RD, Hahn M. Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen. 2005;10:682–6.

    Article  CAS  PubMed  Google Scholar 

  150. Luo H, Fokoue-Nkoutche A, Singh N, Yang L, Hu J, Zhang P. Molecular docking for prediction and interpretation of adverse drug reactions. Comb Chem High Throughput Screen. 2018;21:314–22.

    Article  CAS  PubMed  Google Scholar 

  151. Wu Y, Wang G. Machine learning based toxicity prediction: from chemical structural description to transcriptome analysis. Int J Mol Sci. 2018;19:2358.

    Article  PubMed Central  CAS  Google Scholar 

  152. Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation machine learning for biological networks. Cell. 2018;173:1581–92.

    Article  CAS  PubMed  Google Scholar 

  153. Chen B, Harrison RF, Papadatos G, Willett P, Wood DJ, Lewell XQ, Greenidge P, Stiefl N. Evaluation of machine-learning methods for ligand-based virtual screening. J Comput Aided Mol Des. 2007;21:53–62.

    Article  PubMed  CAS  Google Scholar 

  154. Schneider G, Clark DE. Automated de novo drug design: are we nearly there yet? Angew Chem Int Ed. 2019;58:2–14.

    Article  CAS  Google Scholar 

  155. Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V, Mamoshina P, Bozdaganyan M, Aliper A, Zhavoronkov A, Kadurin A. Entangled conditional adversarial autoencoder for de novo drug discovery. Mol Pharm. 2018;15:4398–405.

    Article  CAS  PubMed  Google Scholar 

  156. Grisoni F, Neuhaus CS, Gabernet G, Müller AT, Hiss JA, Schneider G. Designing anticancer peptides by constructive machine learning. Chem Med Chem. 2018;13:1300–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks all his students (MS as well as Ph.D. students over the past 20 years) who helped in shaping the ideas covered in this article. Most of the text is based on the lectures delivered by the author to his students and based on the interactions he had with them. This article was developed to address the pharmacy students, who are willing to learn the topic as freshers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad V. Bharatam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharatam, P.V. (2021). Computer-Aided Drug Design. In: Poduri, R. (eds) Drug Discovery and Development. Springer, Singapore. https://doi.org/10.1007/978-981-15-5534-3_6

Download citation

Publish with us

Policies and ethics