Skip to main content

Thermal Conductivity Measurements via the Bolometric Effect

  • Chapter
  • First Online:
Thermal Conductivity Measurements in Atomically Thin Materials and Devices

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANOSCIENCE))

Abstract

In this chapter I will introduce the measurement of thermal conductivity using the bolometric effect. The bolometric effect is defined as the resistivity change of a material due to heating. Indeed, the bolometric effect forms the basis of many modern technological sensors and devices. For instance, most commonly used integrated circuit thermometers are based on the well calibrated resistivity change of a Pt strip. Another example is the thermal imaging sensors. A cooled array of high temperature coefficient of resistance material can sensitively detect the infrared spectrum due to the change in the electrical resistance of the active material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cakiroglu O, Mehmood N, Çiçek MM, Aikebaier A, Rasouli HR, Durgun E, Kasirga ST (2010) 2D Materials (Dec 2016), 11. https://doi.org/10.1088/2053-1583/ab8048. https://iopscience.iop.org/article/10.1088/2053-1583/ab8048

  2. Mehmood N, Rasouli HR, Çakıroğlu O, Kasırga TS (2018) Phys Rev B 97(19):195412. https://doi.org/10.1103/PhysRevB.97.195412

  3. Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, Van Der Zant HS, Steele GA (2014) 2D Materials 1(1). https://doi.org/10.1088/2053-1583/1/1/011002

  4. Kasırga TS, Sun D, Park JH, Coy JM, Fei Z, Xu X, Cobden DH (2012) Nat Nanotechnol 7(11):723. https://doi.org/10.1038/nnano.2012.176. http://www.nature.com/articles/nnano.2012.176

  5. Luo Z, Maassen J, Deng Y, Du Y, Garrelts RP, Lundstrom MS, Ye PD, Xu X (2015) Nat Commun 6(1):8572. https://doi.org/10.1038/ncomms9572. http://www.nature.com/articles/ncomms9572

  6. Zobeiri H, Wang R, Zhang Q, Zhu G, Wang X (2019) Acta Materialia 175:222. https://doi.org/10.1016/j.actamat.2019.06.011. https://linkinghub.elsevier.com/retrieve/pii/S1359645419303702

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Serkan Kasirga .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasirga, T.S. (2020). Thermal Conductivity Measurements via the Bolometric Effect. In: Thermal Conductivity Measurements in Atomically Thin Materials and Devices. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-15-5348-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5348-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5347-9

  • Online ISBN: 978-981-15-5348-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics