Skip to main content

Abstract

Cancer, also known as a malignant tumor, has become one of the top burdens of disease for few decades, and it’s also the second lethal cause globally. With extensive efforts of oncology researches and clinical trials in the modern era, scientists have developed numbers of therapeutic approaches in the treatment of cancer. In this chapter, we introduce the existing conventional cancer therapeutic methods in two categories, the traditional cancer treatments and the novel tumor therapeutic modes. The former includes surgery, radiotherapy, hormone therapy, chemotherapy, and stem cell transplant, and the latter involves immunotherapy, targeted therapy, and gene therapy. We first give a brief introduction to each therapy from their history to the definition and list several examples for illustration. Then we discuss the combination of each treatment with other cancer therapies and risks of certain remedies. Particularly, we briefly demonstrate the nanomaterials in the application of targeted therapy. Besides, we also state some current obstructions of targeted therapy that needed to be overcome. Finally, there is the introduction of complementary and alternative medicine for the use of antineoplastic therapy, which we provide some information including the overview of some traditional medicine or whole medical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sudhakar A (2009) History of Cancer, ancient and modern treatment methods. J Cancer Sci Ther 1(2):1–4

    PubMed  Google Scholar 

  2. Mukherjee S (2010) The emperor of all maladies: a biography of cancer. Scribner, New York

    Google Scholar 

  3. Urruticoechea A, Alemany R, Balart J et al (2010) Recent advances in cancer therapy: an overview. Curr Pharm Des 16(1):3–10. https://doi.org/10.2174/138161210789941847

    Article  CAS  PubMed  Google Scholar 

  4. Anand P, Kunnumakara AB, Sundaram C et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25(9):2097–2116

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  6. Stacy Simon (2019) American Cancer Society. Facts & figures 2019: US cancer death rate has dropped 27% in 25 years. https://www.cancer.org/latest-news/facts-and-figures-2019.html. Accessed 15 Apr 2019

  7. Diffen. Cancer vs. Tumor. https://www.diffen.com/difference/Cancer_vs_Tumor. Accessed 15 Apr 2019

  8. World Health Organization (2018) Cancer. https://www.who.int/cancer/en/. Accessed 15 Apr 2019

  9. Nall R (2018) Medical news today. What to know about cancer. https://www.medicalnewstoday.com/articles/323648.php. Accessed 15 Apr 2019

  10. National Cancer Institute (2015) What is cancer. https://www.cancer.gov/about-cancer/understanding/what-is-cancer. Accessed 15 Apr 2019

  11. David AR, Zimmerman MR (2010) Cancer: an old disease, a new disease or something in between? Nat Rev Cancer 10(10):728–733. https://doi.org/10.1038/nrc2914

    Article  CAS  PubMed  Google Scholar 

  12. Wust P, Hildebrandt B, Sreenivasa G et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497

    CAS  PubMed  Google Scholar 

  13. Hawkes N (2015) History of cancer treatment. https://www.raconteur.net/healthcare/history-of-cancer-treatment. Accessed 15 Apr 2019

  14. National Cancer Institute. Types of Cancer Treatment. https://www.cancer.gov/about-cancer/treatment/types. Accessed 15 Apr 2019

  15. Garrison FH (1966) Contributions to the history of medicine. W.B. Saunders Company, Philadelphia

    Google Scholar 

  16. Retief FP, Cilliers L (2001) Tumours and cancers in Graeco-Roman times. S Afr Med J 91(4):344–348

    CAS  PubMed  Google Scholar 

  17. Introduction, Celsus, On Medicine. http://penelope.uchicago.edu/Thayer/E/Roman/Texts/Celsus/Introduction∗.html. Accessed 15 Apr 2019

  18. Retief FP, Cilliers L (2011) Breast cancer in antiquity. S Afr Med J 101(8):513–515

    PubMed  Google Scholar 

  19. Evans CH (2007) John hunter and the origins of modern orthopaedic research. J Orthop Res 25(4):556–560

    PubMed  Google Scholar 

  20. Robinson DH, Toledo AH (2012) Historical development of modern anesthesia. J Investig Surg 25(3):141–149

    Google Scholar 

  21. Fox NJ (1988) Scientific theory choice and social structure: the case of Joseph Lister’s antisepsis, humoral theory and asepsis. Hist Sci 26(4):367–397

    CAS  PubMed  Google Scholar 

  22. Wyld L, Audisio RA, Poston GJ (2015) The evolution of cancer surgery and future perspectives. Nat Rev Clin Oncol 12(2):115–124. https://doi.org/10.1038/nrclinonc.2014.191

    Article  PubMed  Google Scholar 

  23. National Cancer Institute (2015) Surgery to treat cancer. https://www.cancer.gov/about-cancer/treatment/types/surgery#TS. Accessed 15 Apr 2019

  24. Canadian Cancer Society. Types of surgery. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/surgery/types-of-surgery/?region=on. Accessed 15 Apr 2019

  25. Whitlock J (2018) Verywell health. What is open surgery? Is it right for you? https://www.verywellhealth.com/open-surgery-3157124. Accessed 15 Apr 2019

  26. Medstarhealth. Endoscopic Surgery. https://www.medstarhealth.org/mhs/our-services/colon-and-rectal-surgery/treatments/endoscopic-surgery/. Accessed 15 Apr 2019

  27. Mehra H (2017) Quora. Which is better, open surgery or laparoscopic surgery? https://www.quora.com/Which-is-better-open-surgery-or-laparoscopic-surgery. Accessed 15 Apr 2019

  28. National Health Service. Overview – Laparoscopy (keyhole surgery). https://www.nhs.uk/conditions/laparoscopy/. Accessed 15 Apr 2019

  29. Unger JG (2017) Medscape. Cryotherapy. https://emedicine.medscape.com/article/1125851-overview#a1. Accessed 15 Apr 2019

  30. Rubinsky B (2000) Cryosurgery. Annu Rev Biomed Eng 2(1):157–187

    CAS  PubMed  Google Scholar 

  31. National Cancer Institute (2003) National Cancer Institute Cryosurgery in Cancer Treatment. https://www.cancer.gov/about-cancer/treatment/types/surgery/cryosurgery-fact-sheet. Accessed 15 Apr 2019

  32. Chi E (2016) Health line. Laser therapy. https://www.healthline.com/health/laser-therapy. Accessed 15 Apr 2019

  33. Standford Health care. What Is Laser Surgery? https://stanfordhealthcare.org/medical-treatments/l/laser/types/laser-surgery.html. Accessed 15 Apr 2019

  34. National Cancer Institute (2011) National Cancer Institute Lasers in Cancer Treatment. https://www.cancer.gov/about-cancer/treatment/types/surgery/lasers-fact-sheet. Accessed 15 Apr 2019

  35. Hulse RM, Kenneth HL (1980) Hyperthermia in cancer therapy. West J Med 132(3):179–185

    PubMed  PubMed Central  Google Scholar 

  36. Van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13(8):1173–1184

    PubMed  Google Scholar 

  37. Desaulniers V (2019) The truth about cancer. Hyperthermia therapy: using heat to help heal cancer. https://thetruthaboutcancer.com/hyperthermia-treatment/. Accessed 15 Apr 2019

  38. National Cancer Institute (2011) National Cancer Institute Photodynamic Therapy for Cancer. https://www.cancer.gov/about-cancer/treatment/types/surgery/photodynamic-fact-sheet. Accessed 15 Apr 2019

  39. National Health Service. Photodynamic therapy (PDT). https://www.nhs.uk/conditions/photodynamic-therapy/. Accessed 15 Apr 2019

  40. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    CAS  PubMed  Google Scholar 

  41. Capella MAM, Capella LS (2003) A light in multidrug resistance: photodynamic treatment of multidrug-resistant tumors. J Biomed Sci 10(4):361–366

    CAS  PubMed  Google Scholar 

  42. Wilson BC (2002) Photodynamic therapy for cancer: principles. Can J Gastroenterol Hepatol 16(6):393–396

    Google Scholar 

  43. Mayo Foundation for Medical Education and Research (2019) Robotic surgery. https://www.mayoclinic.org/tests-procedures/robotic-surgery/about/pac-20394974. Accessed 15 Apr 2019

  44. NYU Langone Health. What is Robotic Surgery? https://med.nyu.edu/robotic-surgery/physicians/what-robotic-surgery. Accessed 5 May 2019

  45. Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery a current perspective. Ann Surg 239(1):14–21

    PubMed  PubMed Central  Google Scholar 

  46. US. Food and Drug Administration (2019) Caution when using robotically-assisted surgical devices in women’s health including mastectomy and other cancer-related surgeries: FDA Safety. Communication. https://www.fda.gov/medical-devices/safety-communications/caution-when-using-robotically-assisted-surgical-devices-womens-health-including-mastectomy-and. Accessed 5 May 2019

  47. Wallace D, Cure medical. What is electrosurgery and how does it help cure cancer. http://www.curemedicalglobal.com/electrosurgery-help-cure-cancer/. Accessed 5 May 2019

  48. Massarweh NN, Cosgriff N, Slakey DP (2006) Electrosurgery: history, principles, and current and future uses. J Am Coll Surg 202(3):520–530

    PubMed  Google Scholar 

  49. Ratini M (2019) WebMD. What is a HIFU procedure? https://www.webmd.com/prostate-cancer/prostate-cancer-hifu-surgery#1. Accessed 5 May 2019

  50. National Health Service. Prostate Cancer. https://www.nhs.uk/conditions/prostate-cancer/. Accessed 5 May 2019

  51. DocDoc. What is High Intensity Focused Ultrasound (HIFU): overview, benefits, and expected results. https://www.docdoc.com.sg/info/procedure/high-intensity-focused-ultrasound/. Accessed 5 May 2019

  52. American Academy of Dermatology (2007) What is Mohs surgery? https://www.aad.org/public/diseases/skin-cancer/what-is-mohs-surgery. Accessed 5 May 2019

  53. Mayo Foundation for Medical Education and Research (2017) Mohs surgery. https://www.mayoclinic.org/tests-procedures/mohs-surgery/about/pac-20385222. Accessed 5 May 2019

  54. Swanson NA (1983) Mohs surgery: technique, indications, applications, and the future. Arch Dermatol 119(9):761–773

    CAS  PubMed  Google Scholar 

  55. Encyclopaedia Britannica (2017) Stereotaxic surgery. https://www.britannica.com/science/stereotaxic-surgery. Accessed 5 May 2019

  56. Mayo Foundation for Medical Education and Research (2019) Stereotactic radiosurgery. https://www.mayoclinic.org/tests-procedures/stereotactic-radiosurgery/about/pac-20384526. Accessed 5 May 2019

  57. Ebara M, Okabe S, Kita K, Sugiura N, Fukuda H, Yoshikawa M et al (2005) Percutaneous ethanol injection for small hepatocellular carcinoma: therapeutic efficacy based on 20-year observation. J Hepatol 43(3):458–464

    CAS  PubMed  Google Scholar 

  58. Cicalese L (2018) Medscape. What is the role of Percutaneous Ethanol Injection (PEI) in the treatment of Hepatocellular Carcinoma (HCC)? https://www.medscape.com/answers/197319-39253/what-is-the-role-of-percutaneous-ethanol-injection-pei-in-the-treatment-of-hepatocellular-carcinoma-hcc. Accessed 5 May 2019

  59. Ansari D, Andersson R (2012) Radiofrequency ablation or percutaneous ethanol injection for the treatment of liver tumors. World J Gastroenterol 18(10):1003. https://doi.org/10.3748/wjg.v18.i10.1003

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shiina S et al (2012) Percutaneous ethanol injection for hepatocellular carcinoma: 20-year outcome and prognostic factors. Liver Int 32(9):1434–1442

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Canadian Cancer Society. Surgery in cancer treatment. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/surgery/?region=qc. Accessed 5 May 2019

  62. American Cancer Society (2016) Chemotherapy side effects. https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/chemotherapy-side-effects.html. Accessed 5 May 2019

  63. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH (1996) Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol 14(1):7–17

    CAS  PubMed  Google Scholar 

  64. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349(3):247–257

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–2087

    CAS  PubMed  Google Scholar 

  66. Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371(11):1039–1049

    CAS  PubMed  Google Scholar 

  67. Burdett S, Pignon JP, Tierney J, Tribodet H, Stewart L, Le Pechoux C et al (2015) Adjuvant chemotherapy for resected early-stage non-small cell lung cancer. Cochrane Database Syst Rev 2(3):CD011430. https://doi.org/10.1002/14651858.CD011430

    Article  Google Scholar 

  68. Kumar L, Harish P, Malik PS, Khurana S (2018) Chemotherapy and targeted therapy in the management of cervical cancer. Curr Probl Cancer 42(2):120–128

    PubMed  Google Scholar 

  69. Bonadonna G, Valagussa P (1981) Dose-response effect of adjuvant chemotherapy in breast cancer. N Engl J Med 304(1):10–15

    CAS  PubMed  Google Scholar 

  70. Anampa J, Makower D, Sparano JA (2015) Progress in adjuvant chemotherapy for breast cancer: an overview. BMC Med 13(1):195

    PubMed  PubMed Central  Google Scholar 

  71. American Cancer Society (2018) Risks of cancer surgery. https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/surgery/risks-of-cancer-surgery.html. Accessed 5 May 2019

  72. Whitlock J (2018) Verywell health. Understanding the risks involved when having surgery. https://www.verywellhealth.com/understanding-the-risks-involved-when-having-surgery-3156959. Accessed 5 May 2019

  73. Chand M, Armstrong T, Britton G et al (2007) How and why do we measure surgical risk? J R Soc Med 100(11):508–512

    PubMed  PubMed Central  Google Scholar 

  74. Radiation Oncology Targeting Cancer. Radiation therapy. https://www.targetingcancer.com.au/radiation-therapy/brachytherapy/. Accessed 5 May 2019

  75. National Cancer Institute (2019) Radiation therapy to treat cancer. https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy. Accessed 5 May 2019

  76. Foray N (2016) Victor Despeignes, the forgotten pioneer of radiation oncology. Int J Radiat Oncol Biol Phys 96(4):717–721

    PubMed  Google Scholar 

  77. Thariat J et al (2013) Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 10(1):52

    CAS  PubMed  Google Scholar 

  78. Leszczynski K, Boyko S (1997) On the controversies surrounding the origins of radiation therapy. Radiother Oncol 42(3):213–217

    CAS  PubMed  Google Scholar 

  79. Del Regato JA (1991) Milestones in therapeutic radiology. In: The role of high energy electrons in the treatment of cancer. Karger Publishers, Basel, pp 4–9

    Google Scholar 

  80. Mould RF (1998) The discovery of radium in 1898 by Maria Sklodowska-Curie (1867-1934) and Pierre Curie (1859-1906) with commentary on their life and times. Br J Radiol. 71(852):1229–1254

    CAS  PubMed  Google Scholar 

  81. Metzenbaum M (1905) Radium: its value in the treatment of lupus, rodent ulcer, and epithelioma, with reports of cases. Int Clinics 14(4):21–31

    Google Scholar 

  82. Frame PW (1985) Radioactive curative devices and spas. Oak Ridger Newspaper

    Google Scholar 

  83. Holsti LR (1995) Development of clinical radiotherapy since 1896. Acta Oncol 34(8):995–1003. https://doi.org/10.3109/02841869509127225

    Article  CAS  PubMed  Google Scholar 

  84. Mitchell G (2013) The rationale for fractionation in radiotherapy. Clin J Oncol Nurs 17(4). https://doi.org/10.1188/13.CJON.412-417

  85. Thwaites DI, Tuohy JB (2006) Back to the future: the history and development of the clinical linear accelerator. Phys Med Biol 51(13):R343

    PubMed  Google Scholar 

  86. Bhattacharyya KB (2016) Godfrey Newbold Hounsfield (1919–2004): the man who revolutionized neuroimaging. Ann Indian Acad Neurol 19(4):448

    PubMed  PubMed Central  Google Scholar 

  87. Canadian Cancer Society. Radiation therapy. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/radiation-therapy/?region=qc. Accessed 5 May 2019

  88. Hill R, Healy B, Holloway L, Kuncic Z, Thwaites D, Baldock C (2014) Advances in kilovoltage x-ray beam dosimetry. Phys Med Biol 59(6):R183

    PubMed  Google Scholar 

  89. Baskar R, Lee KA, Yeo R, Yeoh K-W (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193

    PubMed  PubMed Central  Google Scholar 

  90. Canadian Cancer Society. External beam radiation therapy for cancer. https://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/radiation-therapy/external-radiation-therapy/?region=on. Accessed 5 May 2019

  91. Radiation Oncology Targeting Cancer. Intensity-Modulated Radiation Therapy (IMRT). https://www.targetingcancer.com.au/radiation-therapy/ebrt/intensity-modulated-radiation-therapy-imrt/. Accessed 5 May 2019

  92. National Cancer Institute (2018) External beam radiation therapy. https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy/external-beam. Accessed 5 May 2019

  93. Elekta (2019) Gamma knife treatment process. https://www.elekta.com/patients/gammaknife-treatment-process/. Accessed 5 May 2019

  94. Radiation Oncology Targeting Cancer. Stereotactic Body Radiation Therapy (SBRT). https://www.targetingcancer.com.au/radiation-therapy/ebrt/stereotactic-body-radiation-therapy-sbrt/. Accessed 5 May 2019

  95. Radiation Oncology Targeting Cancer. Image-Guided Radiation Therapy (IGRT). https://www.targetingcancer.com.au/radiation-therapy/ebrt/image-guided-radiation-therapy-igrt/. Accessed 5 May 2019

  96. Kjellberg RN, Abe M (1988) Stereotactic Bragg peak proton beam therapy. In: Lunsford LD (ed) Modern stereotactic neurosurgery. Topics in neurological surgery. Springer, Boston, pp 463–470. https://doi.org/10.1007/978-1-4613-1081-5_36

    Chapter  Google Scholar 

  97. Teoh M, Clark CH, Wood K, Whitaker S, Nisbet A (2011) Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol 84(1007):967–970

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bertelsen A, Hansen CR, Johansen J, Brink C (2010) Single arc volumetric modulated arc therapy of head and neck cancer. Radiother Oncol 95(2):142–148

    PubMed  Google Scholar 

  99. Van Gestel D, van Vliet-Vroegindeweij C, Van den Heuvel F, Crijns W, Coelmont A, De Ost B et al (2013) RapidArc, SmartArc and TomoHD compared with classical step and shoot and sliding window intensity modulated radiotherapy in an oropharyngeal cancer treatment plan comparison. Radiat Oncol 8(1):37

    PubMed  PubMed Central  Google Scholar 

  100. Unak P (2002) Targeted tumor radiotherapy. Braz Arch Biol Technol 45:97–110

    Article  CAS  Google Scholar 

  101. Persson L (1994) The auger electron effect in radiation dosimetry. Health Phys 67(5):471–476

    Article  CAS  PubMed  Google Scholar 

  102. Kassis AI (2003) Cancer therapy with Auger electrons: are we almost there? J Nucl Med 44(9):1479–1481

    CAS  PubMed  Google Scholar 

  103. Sastry KSR (1992) Biological effects of the auger emitter iodine-125: a review. Report no. 1 of AAPM nuclear medicine task group no. 6. Med Phys 19(6):1361–1370

    Article  CAS  PubMed  Google Scholar 

  104. American Cancer Society. Internal radiation therapy (Brachytherapy). https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/radiation/internal-radiation-therapy-brachytherapy.html. Accessed 5 May 2019

  105. Limbergen EV, Skowronek J, Pötter R (2012) The GEC ESTRO handbook of brachytherapy. https://www.wco.pl/zb/files/publication/fd9f39.pdf. Accessed 5 May 2019

  106. Mayo Foundation for Medical Education and Research (2018) Brachytherapy. https://www.mayoclinic.org/tests-procedures/brachytherapy/about/pac-20385159. Accessed 5 May 2019

  107. National Cancer Institute (2019) Brachytherapy to treat cancer. https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy/brachytherapy. Accessed 5 May 2019

  108. Thomadsen BR, Williamson JF, Rivard MJ et al (2008) Anniversary paper: past and current issues, and trends in brachytherapy physics. Med Phys 35(10):4708–4723

    Article  PubMed  Google Scholar 

  109. Sun Myint A et al (2017) Dose escalation using contact X-ray brachytherapy (Papillon) for rectal cancer: does it improve the chance of organ preservation? Br J Radiol 90(1080):20170175

    Article  PubMed  PubMed Central  Google Scholar 

  110. Myint AS (2014) Novel radiation techniques for rectal cancer. J Gastrointest Oncol 5(3):212–217. https://doi.org/10.3978/j.issn.2078-6891.2014.031

    Article  PubMed  PubMed Central  Google Scholar 

  111. Myint AS, Smith FML, Gollins S et al (2018) Dose escalation using contact X-ray brachytherapy after external beam radiotherapy as nonsurgical treatment option for rectal cancer: outcomes from a single-center experience. Int J Radiat Oncol Biol Phys 100(3):565–573. https://doi.org/10.1016/j.ijrobp.2017.10.022

    Article  Google Scholar 

  112. Dutta SW, Showalter SL, Showalter TN, Libby B, Trifiletti DM (2017) Intraoperative radiation therapy for breast cancer patients: current perspectives. Breast Cancer Targets Ther 9:257

    Article  Google Scholar 

  113. Belletti B, Vaidya JS, D’Andrea S, Entschladen F, Roncadin M, Lovat F et al (2018) Targeted intraoperative radiotherapy impairs the stimulation of breast cancer cell proliferation and invasion caused by surgical wounding. Clin Cancer Res 14(5):1325–1332

    Article  CAS  Google Scholar 

  114. Bergom C et al (2018) Deep inspiration breath hold: techniques and advantages for cardiac sparing during breast cancer irradiation. Front Oncol 8:87

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rosenzweig KE et al (2000) The deep inspiration breath-hold technique in the treatment of inoperable non–small-cell lung cancer. Int J Radiat Oncol Biol Phys 48(1):81–87

    Article  CAS  PubMed  Google Scholar 

  116. GenesisCare. Deep inspiration breath hold. https://www.genesiscare.com/uk/treatment/cancer/radiotherapy/deep-inspiration-breath-hold/. Accessed 5 May 2019

  117. Latty D et al (2015) Review of deep inspiration breath-hold techniques for the treatment of breast cancer. J Med Radiat Sci 62(1):74–81

    Article  PubMed  PubMed Central  Google Scholar 

  118. Stokkel MPM, Junak DH, Lassmann M, Dietlein M, Luster M (2010) EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging 37(11):2218–2228

    Article  PubMed  Google Scholar 

  119. Silberstein EB, Alavi A, Balon HR, Clarke SEM, Divgi C, Gelfand MJ et al (2012) The SNMMI practice guideline for therapy of thyroid disease with 131I 3.0. J Nucl Med 53(10):1633–1651

    Article  PubMed  Google Scholar 

  120. American Cancer Society (2017) Radiation for breast cancer. https://www.cancer.org/cancer/breast-cancer/treatment/radiation-for-breast-cancer.html. Accessed 5 May 2019

  121. American Cancer Society (2018) Treatment of rectal cancer, by Stage. https://www.cancer.org/cancer/colon-rectal-cancer/treating/by-stage-rectum.html. Accessed 5 May 2019

  122. National Cancer Institute (2019) Cervical Cancer Treatment (PDQ®)–Patient Version. https://www.cancer.gov/types/cervical/patient/cervical-treatment-pdq#_180. Accessed 5 May 2019

  123. American Cancer Society (2019) Treatment of bladder cancer, by stage. https://www.cancer.org/cancer/bladder-cancer/treating/by-stage.html. Accessed 5 May 2019

  124. Canadian Cancer Society. Side effects of radiation therapy. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/radiation-therapy/side-effects-of-radiation-therapy/?region=qc. Accessed 5 May 2019

  125. Johns Hopkins Medicine. Hormonal therapy. https://www.hopkinsmedicine.org/breast_center/treatments_services/medical_oncology/adjuvant_hormonal_therapy.html. Accessed 5 May 2019

  126. National Cancer Institute (2015) Hormone therapy to treat cancer. https://www.cancer.gov/about-cancer/treatment/types/hormone-therapy#THT. Accessed 5 May 2019

  127. Beatson GT (1983) Classics in oncology: on the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment, with illustrative cases. CA Cancer J Clin 33(2):108–121

    Article  Google Scholar 

  128. American Cancer Society (2014) Evolution of cancer treatments: hormone therapy. https://www.cancer.org/cancer/cancer-basics/history-of-cancer/cancer-treatment-hormone-therapy.html. Accessed 5 May 2019

  129. Beatson GT (1896) On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment, with illustrative cases. Trans Med Chir Soc Edinb 15:153

    PubMed  PubMed Central  Google Scholar 

  130. Huggins C, Hodges CV (1972) Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin 22(4):232–240

    Article  CAS  PubMed  Google Scholar 

  131. Magon N (2011) Gonadotropin releasing hormone agonists: expanding vistas. Indian J Endocrinol Metab 15(4):261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Moreau J-P, Delavault P, Blumberg J (2006) Luteinizing hormone-releasing hormone agonists in the treatment of prostate cancer: a review of their discovery, development, and place in therapy. Clin Ther 28(10):1485–1508

    Article  CAS  PubMed  Google Scholar 

  133. Novara G, Galfano A, Secco S, Ficarra V, Artibani W (2009) Impact of surgical and medical castration on serum testosterone level in prostate cancer patients. Urol Int 82(3):249–255

    Article  CAS  PubMed  Google Scholar 

  134. Vachani C (2018) Oncolink. Hormone therapy: the basics. https://www.oncolink.org/cancer-treatment/hormone-therapy/hormone-therapy-the-basics. Accessed 5 May 2019

  135. Howell A, Cuzick J, Baum M, Buzdar A, Dowset M (2005) Results of the ATAC (Arimidex, tamoxifen, alone or in combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365:60–62

    Article  CAS  PubMed  Google Scholar 

  136. Vasaitis TS, Bruno RD, Njar VCO (2011) CYP17 inhibitors for prostate cancer therapy. J Steroid Biochem Mol Biol 125(1–2):23–31

    Article  CAS  PubMed  Google Scholar 

  137. American Cancer Society (2016) Hormone therapy for prostate cancer. https://www.cancer.org/cancer/prostate-cancer/treating/hormone-therapy.html. Accessed 5 May 2019

  138. Keskin O, Yalcin S (2013) A review of the use of somatostatin analogs in oncology. Onco Targets Ther 6:471

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Maurer R, Gaehwiler BH, Buescher HH, Hill RC, Roemer D (1982) Opiate antagonistic properties of an octapeptide somatostatin analog. Proc Natl Acad Sci 79(15):4815–4817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lange CA, Yee D (2008) Progesterone and breast cancer. Womens Health 4(2):151–162

    CAS  Google Scholar 

  141. Lundgren S (1992) Progestins in breast cancer treatment: a Review. Acta Oncol 31(7):709–722

    Article  CAS  PubMed  Google Scholar 

  142. Brechon S (2012) The Maurer Foundation. Estrogen and breast cancer. https://www.maurerfoundation.org/estrogen-and-breast-cancer/. Accessed 5 May 2019

  143. Lumachi F, Santeufemia DA, Basso SMM (2015) Current medical treatment of estrogen receptor-positive breast cancer. World J Biol Chem 6(3):231

    Article  PubMed  PubMed Central  Google Scholar 

  144. OncoLink (2018) Taking Androgen Deprivation Therapy (ADT) for prostate cancer. https://www.oncolink.org/cancers/prostate/treatments/taking-androgen-deprivation-therapy-adt-for-prostate-cancer. Accessed 5 May 2019

  145. Kent EC, Hussain MHA (2003) Neoadjuvant therapy for prostate cancer: an oncologist’s perspective. Rev Urol 5(Suppl 3):S28

    PubMed  PubMed Central  Google Scholar 

  146. Trimble EL, Ungerleider RS, Abrams JA, Kaplan RS, Feigal EG, Smith MA et al (1993) Neoadjuvant therapy in cancer treatment. Cancer 72(S11):3515–3524

    Article  CAS  PubMed  Google Scholar 

  147. Johns Hopkins Medicine. Adjuvant hormonal therapy. https://www.hopkinsmedicine.org/breast_center/treatments_services/medical_oncology/adjuvant_hormonal_therapy.html. Accessed 5 May 2019

  148. Shaikh AJ, Kumar S, Raza S, Mehboob M, Ishtiaq O (2013) Adjuvant hormonal therapy in postmenopausal women with breast cancer: physician’s choices. Int J Breast Cancer. https://doi.org/10.1155/2012/849592

  149. Canadian Cancer Society. Side effects of hormonal therapy. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/chemotherapy-and-other-drug-therapies/hormonal-therapy/side-effects-of-hormonal-therapy/?region=on. Accessed 5 May 2019

  150. Tavani A, La Vecchia C (1999) The adverse effects of hormone replacement therapy. Drugs Aging 114(5):347–357

    Article  Google Scholar 

  151. National Health Service. Risks – Hormone replacement therapy (HRT). https://www.nhs.uk/conditions/hormone-replacement-therapy-hrt/risks/. Accessed 5 May 2019

  152. National Cancer Institute. Stem cell transplants in cancer treatment. https://www.cancer.gov/about-cancer/treatment/types/stem-cell-transplant. Accessed 5 May 2019

  153. Canadian Cancer Society. Stem cell transplant. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/stem-cell-transplant/?region=on. Accessed 5 May 2019

  154. American Society of Clinical Oncology (2018) What is a bone marrow transplant (Stem cell transplant)? https://www.cancer.net/navigating-cancer-care/how-cancer-treated/bone-marrowstem-cell-transplantation/what-bone-marrow-transplant-stem-cell-transplant. Accessed 5 May 2019

  155. Coller BS (2015) Blood at 70: its roots in the history of hematology and its birth. Blood 126(24):2548–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gorer PA (1938) The antigenic basis of tumour transplantation. J Pathol Bacteriol 47(2):231–252

    Article  Google Scholar 

  157. Jacobson LO, Marks EK, Robson MF et al (1949) Effect of spleen protection on mortality following X irradiation. J Lab Clin Med 34:58

    Google Scholar 

  158. Lorenz E, Uphoff D, Reid TR, Shelton E (1951) Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J Natl Cancer Inst 12(1):197–201

    CAS  PubMed  Google Scholar 

  159. Barnes DWH (1954) What is the recovery factor in spleen? Nucleonics 12:68–71

    Google Scholar 

  160. Barnes DW, Corp MJ, Loutit JF, Neal FE (1956) Treatment of murine leukaemia with X rays and homologous bone marrow; preliminary communication. Br Med J 2(4993):626–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mathe G, Amiel JL, Schwarzenberg L, Cattan A, Schneider M (1965) Adoptive immunotherapy of acute leukemia: experimental and clinical results. Cancer Res 1965(25):1525–1531

    Google Scholar 

  162. Bortin MM, Bach FH, Good RA (1994) 25th anniversary of the first successful allogeneic bone marrow transplants. Bone Marrow Transplant 14(2):211–212

    CAS  PubMed  Google Scholar 

  163. Lorna Benson (2013) Minnesota public radio news. John Kersey, U of M cancer research pioneer, dies. https://www.mprnews.org/story/2013/03/15/health/university-of-minnesota-cancer-research-pioneer-dies. Accessed 05 May 2019

  164. Thomas ED, Buckner CD, Clift RA, Fefer A, Johnson FL, Neiman PE et al (1979) Marrow transplantation for acute nonlymphoblastic leukemia in first remission. N Engl J Med 301(11):597–599

    Article  CAS  PubMed  Google Scholar 

  165. Blume KG, Beutler E, Bross KJ, Chillar RK, Ellington OB, Fahey JL et al (1980) Bone-marrow ablation and allogeneic marrow transplantation in acute leukemia. N Engl J Med 302(19):1041–1046

    Article  CAS  PubMed  Google Scholar 

  166. Prentice HG, Janossy G, Price-Jones L, Trejdosiewicz LK, Panjwani D, Graphakos S et al (1984) Depletion of T lymphocytes in donor marrow prevents significant graft-versus-host disease in matched allogeneic leukaemic marrow transplant recipients. Lancet 323(8375):472–476

    Article  Google Scholar 

  167. Storb R, Deeg HJ, Whitehead J, Appelbaum F, Beatty P, Bensinger W et al (1986) Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med 314(12):729–735

    Article  CAS  PubMed  Google Scholar 

  168. Hansen JA, Clift RA, Thomas ED, Buckner CD, Storb R, Giblett ER (1980) Transplantation of marrow from an unrelated donor to a patient with acute leukemia. N Engl J Med 303(10):565–567

    Article  CAS  PubMed  Google Scholar 

  169. Petersdorf EW (2010) The world marrow donor association: twenty years of international collaboration for the support of unrelated donor and cord blood hematopoietic cell transplantation. Bone Marrow Transplant 45(5):807–810. https://doi.org/10.1038/bmt.2010.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hansen JA, Gooley TA, Martin PJ, Appelbaum F, Chauncey TR, Clift RA et al (1998) Bone marrow transplants from unrelated donors for patients with chronic myeloid leukemia. N Engl J Med 338(14):962–968

    Article  CAS  PubMed  Google Scholar 

  171. Storb R, Yu C, Wagner JL, Deeg HJ, Nash RA, Kiem H-P et al (1997) Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 89(8):3048–3054

    Article  CAS  PubMed  Google Scholar 

  172. Cancer Research UK. Granulocyte colony stimulating factor (G-CSF). https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/cancer-drugs/drugs/g-csf. Accessed 5 May 2019

  173. Memorial Sloan Kettering Cancer Center. Autologous transplantation. https://www.mskcc.org/cancer-care/diagnosis-treatment/cancer-treatments/blood-stem-cell-transplantation/autologous. Accessed 5 May 2019

  174. Leukemia Foudation (2015) Autologous stem cell transplants. https://www.leukaemia.org.au/disease-information/transplants/autologous-transplants/. Accessed 5 May 2019

  175. Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F et al (2007) A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 356(11):1110–1120

    CAS  PubMed  Google Scholar 

  176. Memorial Sloan Kettering Cancer Center. Allogeneic transplantation. https://www.mskcc.org/cancer-care/diagnosis-treatment/cancer-treatments/blood-stem-cell-transplantation/allogeneic. Accessed 5 May 2019

  177. Leukemia Foundation (2018) What is an allogeneic stem cell transplant? https://www.leukaemia.org.au/disease-information/transplants/allogeneic-transplants/. Accessed 5 May 2019

  178. National Marrow Donor Program. HLA basics. https://bethematch.org/transplant-basics/matching-patients-with-donors/how-donors-and-patients-are-matched/hla-basics/. Accessed 5 May 2019

  179. Stavropoulos-Giokas C, Dinou A, Papassavas A (2012) The role of HLA in cord blood transplantation. Bone Marrow Res 2012:9

    Google Scholar 

  180. Bennett B (2015) Symbiotic relationships: saviour siblings, family rights and biomedicine. Aust J Fam Law 19(3):195–212

    Google Scholar 

  181. Spriggs M, Savulescu J (2002) Saviour siblings. J Med Ethics 28:289

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Simaria AS, Farid S, Hassan S (2013) American pharmaceutical review. Cost-effectiveness of single-use technologies for commercial cell therapy manufacture. https://www.americanpharmaceuticalreview.com/Featured-Articles/134042-Cost-effectiveness-of-Single-Use-Technologies-for-Commercial-Cell-Therapy-Manufacture/. Accessed 5 May 2019

  183. Park YB, Ha CW, Lee CH, Yoon YC, Park YG (2017) Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cell Transl Med 6(2):613–621

    CAS  Google Scholar 

  184. Agrawal P (2015) Stem cell therapy in drug discovery and development. J Pharmacovigilance 3:e140

    Google Scholar 

  185. Johns Hopkins Medicine (2019) Types of bone marrow transplants. https://www.hopkinsmedicine.org/kimmel_cancer_center/centers/bone_marrow_transplant/types_transplants.html. Accessed 5 May 2019

  186. Kolb HJ (2018) Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112(12):4371–4383

    Google Scholar 

  187. Ballen KK, Gluckman E, Broxmeyer HE (2013) Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122(4):491–498

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Cord blood and transplants. https://bethematch.org/transplant-basics/cord-blood-and-transplants/. Accessed 5 May 2019

  189. Kurtzberg J (2009) Update on umbilical cord blood transplantation. Curr Opin Pediatr 21(1):22–29

    PubMed  PubMed Central  Google Scholar 

  190. Eapen M, Rubinstein P, Zhang MJ, Stevens C, Kurtzberg J, Scaradavou A et al (2007) Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 369(9577):1947–1954

    PubMed  Google Scholar 

  191. Ballen K, Ahn KW, Chen M, Abdel-Azim H, Ahmed I, Aljurf M et al (2016) Infection rates among acute leukemia patients receiving alternative donor hematopoietic cell transplantation. Biol Blood Marrow Transplant 22(9):1636–1645

    PubMed  PubMed Central  Google Scholar 

  192. Leukaemia Foundation. Haploidentical stem cell transplant. https://www.leukaemia.org.au/disease-information/transplants/haploidentical-transplant/. Accessed 5 May 2019

  193. National Marrow Donor Program. Haploidentical transplant. https://bethematch.org/patients-and-families/about-transplant/what-is-a-bone-marrow-transplant/haploidentical-transplant/. Accessed 5 May 2019

  194. Canadian Cancer Society. After the stem cell transplant. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/stem-cell-transplant/after-stem-cell-transplant/?region=on. Accessed 5 May 2019

  195. Canadian Cancer Society. Side effects of a stem cell transplant. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/stem-cell-transplant/side-effects-of-stem-cell-transplant/?region=on. Accessed 5 May 2019

  196. Canadian Cancer Society. Chemotherapy. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/chemotherapy-and-other-drug-therapies/chemotherapy/?region=on. Accessed 5 May 2019

  197. Memorial Sloan Kettering Cancer Center. Chemotherapy. https://www.mskcc.org/cancer-care/diagnosis-treatment/cancer-treatments/chemotherapy. Accessed 5 May 2019

  198. Cunha FI (1949) The Ebers papyrus. Am J Surg 77(1):134–136

    CAS  PubMed  Google Scholar 

  199. Atta HM (1999) Edwin Smith Surgical Papyrus: the oldest known surgical treatise. Am Surg 65(12):1190–1192

    CAS  PubMed  Google Scholar 

  200. Papac RJ (2001) Origins of cancer therapy. Yale J Biol Med 74(6):391–398

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Riddle JM (1985) Ancient and medieval chemotherapy for cancer. Isis 76(283):319–330

    CAS  PubMed  Google Scholar 

  202. McGrew RE, McGrew MP (1985) Encyclopedia of medical history. McGraw-Hill, New York

    Book  Google Scholar 

  203. DeVita VT, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643–8653

    Article  CAS  PubMed  Google Scholar 

  204. Morrison WB (2010) Cancer chemotherapy: an annotated history. J Vet Intern Med 24(6):1249–1262

    Article  CAS  PubMed  Google Scholar 

  205. Antman KH (2001) Introduction: the history of arsenic trioxide in cancer therapy. Oncologist 6(Supplement 2):1–2

    Article  CAS  PubMed  Google Scholar 

  206. DeVita VT, JaEC (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643–8653. https://doi.org/10.1158/0008-5472.CAN-07-6611

    Article  CAS  PubMed  Google Scholar 

  207. Siegel JH, McDermott WV, Steele GD, Wilmore DW, Hirsch EF, Jenkins RL et al (1990) In memoriam: George HA Clowes, Jr, MD, 1915-1988. Arch Surg 125(4):491–492

    Article  Google Scholar 

  208. Zubrod CG, Schepartz S, Leiter J, Endicott KM, Carrese LM, Baker CG (1996) The chemotherapy program of the National Cancer Institute: history, analysis and plans. Cancer Chemother Rep 50(7):349–540

    Google Scholar 

  209. Zubrod CG, Schepartz SA, Carter SK (1977) Historical background of the National Cancer Institute’s drug development thrust. Natl Cancer Inst Monogr 45:7–11

    Google Scholar 

  210. Gilman A (1946) Therapeutic applications of chemical warfare agents. Fed Proc 5:285–292

    CAS  PubMed  Google Scholar 

  211. Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A, McLennan MT (1946) Nitrogen mustard therapy: use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Dir Assoc 132(3):126–132

    Article  CAS  Google Scholar 

  212. Farber S, Diamond LK, Mercer RD, Sylvester RF Jr, Wolff JA (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N Engl J Med 238(23):787–793

    Article  CAS  PubMed  Google Scholar 

  213. Li MC, Hertz R, Bergenstal DM (1958) Therapy of choriocarcinoma and related trophoblastic tumors with folic acid and purine antagonists. N Engl J Med 259(2):66–74

    Article  CAS  PubMed  Google Scholar 

  214. Norton L, Simon R, Brereton HD, Bogden AE (1976) Predicting the course of Gompertzian growth. Nature 264(5586):542

    Article  CAS  PubMed  Google Scholar 

  215. DeVita VT Jr (1984) On special initiatives, critics, and the National Cancer Program. Cancer Treat Rep 68(1):1

    PubMed  Google Scholar 

  216. Cancer Research UK (2017) What is chemotherapy? https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/chemotherapy/what-chemotherapy-is. Accessed 5 May 2019

  217. Teshome M, Hunt KK (2014) Neoadjuvant therapy in the treatment of breast cancer. Surg Oncol Clin 23(3):505–523

    Article  Google Scholar 

  218. Herskovic A, Martz K, Al-Sarraf M et al (1992) Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med 326(24):1593–1598. https://doi.org/10.1056/NEJM199206113262403

    Article  CAS  PubMed  Google Scholar 

  219. Goldie JH (1987) Scientific basis for adjuvant and primary (neoadjuvant) chemotherapy. Semin Oncol 14(1):1–7

    CAS  PubMed  Google Scholar 

  220. Swift L, Golsteyn R (2014) Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci 15(3):3403–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Woolley PV (1998) Mechanisms of resistance to alkylating agents. Cytotechnology 27(1–3):165

    Google Scholar 

  222. Malhotra V, Perry MC (2003) Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol Ther 2(4 Suppl 1):S2–S4

    PubMed  Google Scholar 

  223. Corrie PG (2008) Cytotoxic chemotherapy: clinical aspects. Medicine 36(1):24–28

    Article  Google Scholar 

  224. Takimoto CH, Calvo E (2008) In: Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ (eds) Principles of oncologic pharmacotherapy: in cancer management, a multidisciplinary approach. PRR, Melville, New York

    Google Scholar 

  225. Shiraishi A, Sakumi K, Sekiguchi M (2000) Increased susceptibility to chemotherapeutic alkylating agents of mice deficient in DNA repair methyltransferase. Carcinogenesis 21(10):1879–1883

    Article  CAS  PubMed  Google Scholar 

  226. Yue Q-X, Liu X, Guo D-A (2010) Microtubule-binding natural products for cancer therapy. Planta Med 76(11):1037–1043

    Article  CAS  PubMed  Google Scholar 

  227. Rowinsky EK, Donehower RC (1991) The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther 52(1):35–84

    Article  CAS  PubMed  Google Scholar 

  228. Moudi M, Go R, Yien CYS et al (2013) Vinca alkaloids. Int J Prev Med 4(11):1231–1235

    PubMed  PubMed Central  Google Scholar 

  229. Qian Liu Y, Yang L, Tian X (2007) Podophyllotoxin: current perspectives. Curr Bioact Compd 3(1):37–66

    Article  Google Scholar 

  230. Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK et al (1994) Total synthesis of taxol. Nature 367(6464):630

    Article  CAS  PubMed  Google Scholar 

  231. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9(10):790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) The role of topoisomerases in DNA replication. In: Molecular Cell Biology, 4th edn. WH Freeman, New York

    Google Scholar 

  233. Pommier Y (2009) DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev 109(7):2894–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Goodsell DS (2002) The molecular perspective: DNA topoisomerases. Stem Cells 20(5):470–471. https://doi.org/10.1634/stemcells.20-5-470

    Article  CAS  PubMed  Google Scholar 

  235. Drugs (2017) Irinotecan hydrochloride. https://www.drugs.com/monograph/irinotecan-hydrochloride.html. Accessed 5 May 2019

  236. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9(5):338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Drugs (2018) Etoposide. https://www.drugs.com/monograph/etoposide.html. Accessed 5 May 2019

  238. Collins A (1990) Topoisomerase II can relax; novobiocin is a mitochondrial poison after all. BioEssays 12(10):493–494

    Article  CAS  PubMed  Google Scholar 

  239. Clifford B, Beljin M, Stark GR, Taylor WR (2003) G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res 63(14):4074–4081

    CAS  PubMed  Google Scholar 

  240. Felix CA (1998) Secondary leukemias induced by topoisomerase-targeted drugs. Biochim Biophys Acta Gene Struc Expr 1400(1–3):233–255

    Article  CAS  Google Scholar 

  241. Doggrell SA, Davis E, Hart J, Johnston G, Hinton T, Mullaney I (2014) Cytotoxic antibiotics. https://sites.google.com/site/pharmacologyinonesemester/24-an-introduction-to-anticancer-drugs/24-3-drugs-used-in-cancer/24-3. Accessed 5 May 2019

  242. Hortobagyi GN (1997) Anthracyclines in the treatment of cancer. An overview. Drugs 54:1–7

    Article  CAS  PubMed  Google Scholar 

  243. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229

    Article  CAS  PubMed  Google Scholar 

  244. Sobell HM (1985) Actinomycin and DNA transcription. Proc Natl Acad Sci 82(16):5328–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Dorr RT (1992) Bleomycin pharmacology: mechanism of action and resistance, and clinical pharmacokinetics. Semin Oncol 19:3–8

    CAS  PubMed  Google Scholar 

  246. Verweij J, Pinedo HM (1990) Mitomycin C: mechanism of action, usefulness and limitations. Anti-Cancer Drugs 1(1):5–13

    Article  CAS  PubMed  Google Scholar 

  247. Babiker HM, McBride A, Newton M, Boehmer LM, Drucker AG, Gowan M et al (2018) Cardiotoxic effects of chemotherapy: a review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system. Crit Rev Oncol Hematol 126:186–200

    Article  PubMed  Google Scholar 

  248. Parker WB (2009) Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 109(7):2880–2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Peters GJ, Van der Wilt CL, Van Moorsel CJA, Kroep JR, Bergman AM, Ackland SP (2000) Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol Ther 87(2–3):227–253

    Article  CAS  PubMed  Google Scholar 

  250. Lind MJ (2008) Principles of cytotoxic chemotherapy. Medicine 36(1):19–23

    Article  Google Scholar 

  251. Higdon J, Drake VJ, Delage B, McNulty H (2014) Oregon State University. Folate. https://lpi.oregonstate.edu/mic/vitamins/folate. Accessed 05 May 2019

  252. Wagstaff AJ, Ibbotson T, Goa KL (2003) Capecitabine: a review of its pharmacology and therapeutic efficacy in the management of advanced breast cancer. Drugs 63(2):217–236

    Article  CAS  PubMed  Google Scholar 

  253. Koç A, Wheeler LJ, Mathews CK, Merrill GF (2004) Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem 279(1):223–230

    Article  PubMed  CAS  Google Scholar 

  254. Yarbro JW (1992) Mechanism of action of hydroxyurea. Semin Oncol 19:1–10

    CAS  PubMed  Google Scholar 

  255. Encyclopaedia Britannica (2017) Antimetabolite. https://www.britannica.com/science/antimetabolite. Accessed 05 May 2019

  256. Barakat K, Gajewski M, Tuszynski JA (2012) DNA repair inhibitors: the next major step to improve cancer therapy. Curr Top Med Chem 12(12):1376–1390

    Article  CAS  PubMed  Google Scholar 

  257. Sánchez-Pérez I (2006) DNA repair inhibitors in cancer treatment. Clin Transl Oncol 8(9):642–646

    Article  PubMed  Google Scholar 

  258. Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair 6(8):1079–1099

    Article  CAS  PubMed  Google Scholar 

  259. Yildiz DA, Ozkan T, Yukselten Y, Sesli NT, Ozkanca S, Gunduz M et al (2016) Lomeguatrib, a O6-Methylguanine-DNA-methyltransferase (MGMT) inhibitor, induces DNA damage induced apoptosis by targeting double-strand DNA repair in multiple myeloma. Blood 128(22):2103

    Article  Google Scholar 

  260. Reinhard J, Eichhorn U, Wiessler M, Kaina B (2001) Inactivation of O(6)-methylguanine-DNA methyltransferase by glucose-conjugated inhibitors. Int J Cancer 93(3):373–379

    Article  CAS  PubMed  Google Scholar 

  261. Ozkan M, Akbudak IH, Deniz K, Dikilitas M, Dogu GG, Berk V et al (2010) Prognostic value of excision repair cross-complementing gene 1 expression for cisplatin-based chemotherapy in advanced gastric cancer. Asian Pac J Cancer Prev 11(1):181–185

    PubMed  Google Scholar 

  262. Canitrot Y, Cazaux C, Frechet M, Bouayadi K, Lesca C, Salles B et al (1998) Overexpression of DNA polymerase β in cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs. Proc Natl Acad Sci U S A 95(21):12586–12590. https://doi.org/10.1073/pnas.95.21.12586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Husain I, Morton BS, Beard WA, Singhal RK, Prasad R, Wilson SH et al (1995) Specific inhibition of DNA polymerase β by its 14 kDa domain: role of single-and double-stranded DNA binding and 5′-phosphate recognition. Nucleic Acids Res 23(9):1597–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Barakat KH, Gajewski MM, Tuszynski JA (2012) DNA polymerase beta (pol β) inhibitors: a comprehensive overview. Drug Discov Today 17(15–16):913–920. https://doi.org/10.1016/j.drudis.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  265. Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106(2):302–323

    Article  CAS  PubMed  Google Scholar 

  266. Fishel R, Kolodner RD (1995) Identification of mismatch repair genes and their role in the development of cancer. Curr Opin Genet Dev 5(3):382–395

    Article  CAS  PubMed  Google Scholar 

  267. Martin SA, Lord CJ, Ashworth A (2010) Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res 16(21):5107–5113. https://doi.org/10.1158/1078-0432.CCR-10-0821

    Article  CAS  PubMed  Google Scholar 

  268. Takahashi M, Koi M, Balaguer F, Boland CR, Goel A (2011) MSH3 mediates sensitization of colorectal cancer cells to cisplatin, Oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor. J Biol Chem 286(14):12157–12165. https://doi.org/10.1074/jbc.M110.198804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Pardo BG-GB, Aguilera A (2009) DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci 66(6):1039–1056. https://doi.org/10.1007/s00018-009-8740-3

    Article  CAS  PubMed  Google Scholar 

  270. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Bolderson E, Richard DJ, Zhou B-BS, Khanna KK (2009) Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 15(20):6314–6320. https://doi.org/10.1158/1078-0432.CCR-09-0096

    Article  CAS  PubMed  Google Scholar 

  272. Nijman SMB (2011) Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett 585(1):1–6. https://doi.org/10.1016/j.febslet.2010.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Chernikova SB, Game JC, Brown JM (2012) Inhibiting homologous recombination for cancer therapy. Cancer Biol Ther 13(2):61–68. https://doi.org/10.4161/cbt.13.2.18872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Oliveira NG, Castro M, Rodrigues AS, Gil OM, Toscano-Rico JM, Rueff J (2002) DNA-PK inhibitor wortmannin enhances DNA damage induced by bleomycin in V79 Chinese hamster cells. Teratog Carcinog Mutagen 22(5):343–351

    Article  CAS  PubMed  Google Scholar 

  275. Willmore E, de Caux S, Sunter NJ, Tilby MJ, Jackson GH, Austin CA et al (2004) A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood 103(12):4659–4665

    Article  CAS  PubMed  Google Scholar 

  276. Chen X, Zhong S, Zhu X, Dziegielewska B, Ellenberger T, Wilson GM et al (2008) Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair. Cancer Res 68(9):3169–3177. https://doi.org/10.1158/0008-5472.CAN-07-6636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Srivastava M, Nambiar M, Sharma S, Karki SS, Goldsmith G, Hegde M et al (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151(7):1474–1487. https://doi.org/10.1016/j.cell.2012.11.054

    Article  CAS  PubMed  Google Scholar 

  278. Srivastava M, Raghavan SC (2015) DNA double-strand break repair inhibitors as cancer therapeutics. Chem Biol 22(1):17–29. https://doi.org/10.1016/j.chembiol.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  279. Deakyne JS, Huang F, Negri J, Tolliday N, Cocklin S, Mazin AV (2013) Analysis of the activities of RAD54, a SWI2/SNF2 protein, using a specific small-molecule inhibitor. J Biol Chem 288(44):31567–31580. https://doi.org/10.1074/jbc.M113.502195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Dupré A, Boyer-Chatenet L, Sattler RM, Modi AP, Lee J-H, Nicolette ML et al (2008) A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nat Chem Biol 4(2):119–125. https://doi.org/10.1038/nchembio.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Zhao B, Bower MJ, McDevitt PJ, Zhao H, Davis ST, Johanson KO et al (2002) Structural basis for Chk1 inhibition by UCN-01. J Biol Chem 277(48):46609–46615

    Article  CAS  PubMed  Google Scholar 

  282. National Cancer Institute (2015) Chemotherapy to treat cancer. https://www.cancer.gov/about-cancer/treatment/types/chemotherapy. Accessed 05 May 2019

  283. Ellis M (2014) Medical news today. Palliative chemotherapy: harms and benefits weighed in new study. https://www.medicalnewstoday.com/articles/273526.php. Accessed 05 May 2019

  284. Canadian Cancer Society. Side effects of chemotherapy. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/chemotherapy-and-other-drug-therapies/chemotherapy/side-effects-of-chemotherapy/?region=on. Accessed 05 May 2019

  285. National Cancer Institute (2018) Immunotherapy to treat cancer. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy#1. Accessed 05 May 2019

  286. Canadian Cancer Society. Immunotherapy. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/chemotherapy-and-other-drug-therapies/immunotherapy/?region=on. Accessed 05 May 2019

  287. American Society of Clinical Oncology (2019) Understanding immunotherapy. https://www.cancer.net/navigating-cancer-care/how-cancer-treated/immunotherapy-and-vaccines/understanding-immunotherapy. Accessed 05 May 2019

  288. Dance A (2017) Science. Cancer immunotherapy comes of age. https://www.sciencemag.org/features/2017/03/cancer-immunotherapy-comes-age. Accessed 05 May 2019

  289. Decker WK, da Silva RF, Sanabria MH, Angelo LS, Guimarães F, Burt BM et al (2017) Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol 8:829. https://doi.org/10.3389/fimmu.2017.00829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Targeted Oncology (2014) A brief history of immunotherapy. https://www.targetedonc.com/publications/special-reports/2014/immunotherapy-issue3/a-brief-history-of-immunotherapy. Accessed 05 May 2019

  291. Coley WB (1991) The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res 262:3–11

    Google Scholar 

  292. Shklar G, Schwartz JL, Trickler DP et al (1990) Prevention of experimental cancer and immunostimulation by vitamin E (immunosurveillance). J Oral Pathol Med 19(2):60–64

    Article  CAS  PubMed  Google Scholar 

  293. Decker WK, Safdar A (2009) Bioimmunoadjuvants for the treatment of neoplastic and infectious disease: Coley’s legacy revisited. Cytokine Growth Factor Rev 20(4):271–281. https://doi.org/10.1016/j.cytogfr.2009.07.004

    Article  PubMed  Google Scholar 

  294. Burnet M (1957) Cancer—a biological approach: III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J 1(5023):841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Friend C (1956) The isolation of a virus causing a malignant disease of the hematopoietic system in adult Swiss mice. Proc Am Assoc Cancer Res 2:106

    Google Scholar 

  296. Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18(6):769–778

    CAS  PubMed  Google Scholar 

  297. Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121(1):1–14. https://doi.org/10.1111/j.1365-2567.2007.02587.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147(927):258–267. https://doi.org/10.1098/rspb.1957.0048

    Article  CAS  PubMed  Google Scholar 

  299. Old LJ, Clarke DA, Benacerraf B (1959) Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature 184(4682):291–292

    PubMed  Google Scholar 

  300. Graham JB, Graham RM (1959) The effect of vaccine on cancer patients. Surg Gynecol Obstet 109(2):131–138

    CAS  PubMed  Google Scholar 

  301. Miller J, Mitchell GF, Weiss NS (1967) Cellular basis of the immunological defects in thymectomized mice. Nature 214(5092):992–997

    CAS  PubMed  Google Scholar 

  302. Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice: I. Morphology, quantitation, tissue distribution. J Exp Med 137(5):1142–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Zinkernagel RM, Doherty PC (1974) Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248:701–702

    CAS  PubMed  Google Scholar 

  304. Kiessling R, Klein E, Pross H, Wigzell H (1975) “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5(2):117–121

    CAS  PubMed  Google Scholar 

  305. Rodriguez V, Bodey GP, Freireich EJ et al (1978) Randomized trial of protected environment – prophylactic antibiotics in 145 adults with acute leukemia. Medicine 57(3):253–266

    CAS  PubMed  Google Scholar 

  306. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182(2):459–465

    CAS  PubMed  Google Scholar 

  307. Grillo-Lopez A, White C, Dallaire B, Varns C, Shen C, Wei A, Leonard J et al (2000) Rituximab the first monoclonal antibody approved for the treatment of lymphoma. Curr Pharm Biotechnol 1(1):1–9

    CAS  PubMed  Google Scholar 

  308. Syn NL, Teng MWL, Mok TSK, Soo RA (2017) De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 18(12):e731–e741. https://doi.org/10.1016/S1470-2045(17)30607-1

    Article  PubMed  Google Scholar 

  309. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165):1432–1433. https://doi.org/10.1126/science.342.6165.1432

    Article  CAS  PubMed  Google Scholar 

  310. Allison J, Tasuku H (2018) British society for immunology. Nobel prize 2018: cancer immunotherapy collection. https://www.immunology.org/news/nobel-prize-2018-cancer-immunotherapy-collection. Accessed 05 May 2019

  311. Sushma M (2018) Explained: the cancer therapy that got two immunologists a Nobel. https://www.downtoearth.org.in/news/health/explained-the-cancer-therapy-that-got-two-immunologists-a-nobel-61773. Accessed 05 May 2019

  312. Encyclopaedia Britannica (2018) Monoclonal antibodies. https://www.britannica.com/science/monoclonal-antibody. Accessed 05 May 2019

  313. Cancer Research UK (2019) Rituximab (Mabthera, Rixathon, Truxima). https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/cancer-drugs/drugs/rituximab. Accessed 05 May 2019

  314. Chen XCH (2016) Monoclonal antibodies for Cancer therapy approved by FDA. MOJ Immunol 4(2):00120. https://doi.org/10.15406/moji.2016.04.00120

    Article  Google Scholar 

  315. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684

    Article  CAS  PubMed  Google Scholar 

  316. Richard S, Selle F, Lotz J-P, Khalil A, Gligorov J, Soares DG (2016) Pertuzumab and trastuzumab: the rationale way to synergy. An Acad Bras Cienc 88:565–577. https://doi.org/10.1590/0001-3765201620150178

    Article  CAS  PubMed  Google Scholar 

  317. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl. 3):4–10

    Article  CAS  PubMed  Google Scholar 

  318. Roviello G, Sobhani N, Generali D (2017) Bevacizumab in small cell lung cancer. Ann Transl Med 5(17):361. https://doi.org/10.21037/atm.2017.06.44

    Article  PubMed  PubMed Central  Google Scholar 

  319. Pavlidis ET, Pavlidis TE (2013) Role of bevacizumab in colorectal cancer growth and its adverse effects: a review. World J Gastroenterol 19(31):5051–5060. https://doi.org/10.3748/wjg.v19.i31.5051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Wenger KJ, Wagner M, You SJ, Franz K, Harter PN, Burger MC et al (2017) Bevacizumab as a last-line treatment for glioblastoma following failure of radiotherapy, temozolomide and lomustine. Oncol Lett 14(1):1141–1146. https://doi.org/10.3892/ol.2017.6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Hsu JY, Wakelee HA (2009) Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy. BioDrugs 23(5):289–304. https://doi.org/10.2165/11317600-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  322. di Noia V, D’Argento E, Pilotto S, Grizzi G, Caccese M, Iacovelli R, Tortora G, Bria E (2018) Necitumumab in the treatment of non-small-cell lung cancer: clinical controversies. Expert Opin Biol Ther 18(9):937–945. https://doi.org/10.1080/14712598.2018.1508445

    Article  CAS  PubMed  Google Scholar 

  323. Wong SF (2005) Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin Ther 27(6):684–694

    Article  CAS  PubMed  Google Scholar 

  324. Memorial Sloan Kettering Cancer Center. Checkpoint inhibitors. https://www.mskcc.org/cancer-care/diagnosis-treatment/cancer-treatments/immunotherapy/checkpoint-inhibitors. Accessed 05 May 2019

  325. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Cameron F, Whiteside G, Perry C (2011) Ipilimumab: first global approval. Drugs 71(8):1093–1104

    Article  PubMed  Google Scholar 

  327. Selby K (2019) Tremelimumab. https://www.asbestos.com/treatment/immunotherapy/tremelimumab/. Accessed 05 May 2019

  328. Wang X, Teng F, Kong L, Yu J (2016) PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther 9:5023–5039. https://doi.org/10.2147/OTT.S105862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS et al (2004) Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A 101(49):17174–17179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Urciuoli B (2018) FDA approves Opdivo for small cell lung cancer treatment. https://www.curetoday.com/articles/fda-approves-opdivo-for-small-cell-lung-cancer-treatment. Accessed 05 May 2019

  331. Bristol-Myers Squibb (2018) China national drug administration approves country’s first immuno-oncology agent, Opdivo (Nivolumab injection), for previously treated non-small cell lung cancer (NSCLC). https://news.bms.com/press-release/corporatefinancial-news/china-national-drug-administration-approves-countrys-first-imm. Accessed 05 May 2019

  332. Chemocare. Pembrolizumab. http://chemocare.com/chemotherapy/drug-info/Pembrolizumab.aspx. Accessed 05 May 2019

  333. National Institutes of Health (2019) Study of efficacy and safety of novel spartalizumab combinations in patients with previously treated unresectable or metastatic melanoma (PLATforM). https://clinicaltrials.gov/ct2/show/NCT03484923. Accessed 05 May 2019

  334. Shen X, Zhao B (2018) Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: meta-analysis. Br Med J 362:k3529. https://doi.org/10.1136/bmj.k3529

    Article  Google Scholar 

  335. Lambert JM (2005) Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol 5(5):543–549

    Article  CAS  PubMed  Google Scholar 

  336. Goldmacher VS, Blättler WA, Lambert JM, Chari RVJ (2002) Immunotoxins and antibody-drug conjugates for cancer treatment. In: Biomedical aspects of drug targeting. Springer, Boston, pp 291–309. https://doi.org/10.1007/978-1-4757-4627-3_15

    Chapter  Google Scholar 

  337. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363(19):1812–1821. https://doi.org/10.1056/NEJMoa1002965

    Article  CAS  PubMed  Google Scholar 

  338. Baron J, Wang ES (2018) Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev Clin Pharmacol 11(6):549–559. https://doi.org/10.1080/17512433.2018.1478725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Phillips GDL, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E et al (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody–cytotoxic drug conjugate. Cancer Res 68(22):9280–9290. https://doi.org/10.1158/0008-5472.CAN-08-1776

    Article  CAS  Google Scholar 

  340. Larson SM, Carrasquillo JA, Cheung N-KV, Press OW (2015) Radioimmunotherapy of human tumours. Nat Rev Cancer 15(6):347–360. https://doi.org/10.1038/nrc3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE, Wunderlich JR et al (2008) Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother 31(8):742–751. https://doi.org/10.1097/CJI.0b013e31818403d5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. N Engl J Med 319(25):1676–1680

    Article  CAS  PubMed  Google Scholar 

  343. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308. https://doi.org/10.1038/nrc2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Houot R, Schultz LM, Marabelle A, Kohrt H (2015) T-cell–based immunotherapy: adoptive cell transfer and checkpoint inhibition. Cancer Immunol Res 3(10):1115–1122. https://doi.org/10.1158/2326-6066.CIR-15-0190

    Article  CAS  PubMed  Google Scholar 

  345. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924. https://doi.org/10.1200/JCO.2010.32.2537

    Article  PubMed  PubMed Central  Google Scholar 

  347. Morgan RA, Chinnasamy N, Abate-Daga DD, Gros A, Robbins PF, Zheng Z et al (2013) Cancer regression and neurologic toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36(2):133–151. https://doi.org/10.1097/CJI.0b013e3182829903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. American Cancer Society (2016) Non-specific cancer immunotherapies and adjuvants. https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/nonspecific-immunotherapies.html. Accessed 06 May 2019

  349. Altundag K, Altundag O, Elkiran ET, Cengiz M, Ozisik Y (2004) Addition of granulocyte-colony stimulating factor (G-CSF) to adjuvant treatment may increase survival in patients with operable breast cancer: interaction of G-CSF with dormant micrometastatic breast cancer cells. Med Hypotheses 63(1):56–58

    Article  CAS  PubMed  Google Scholar 

  350. Cetean S, Căinap C, Constantin A-M, Căinap S, Gherman A, Oprean L et al (2015) The importance of the granulocyte-colony stimulating factor in oncology. Clujul Med 88(4):468–472. https://doi.org/10.15386/cjmed-531

    Article  PubMed  PubMed Central  Google Scholar 

  351. American Cancer Society (2016) Cancer vaccines. https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/cancer-vaccines.html. Accessed 06 May 2019

  352. Takes RP, Wierzbicka M, D’Souza G, Jackowska J, Silver CE, Rodrigo JP et al (2015) HPV vaccination to prevent oropharyngeal carcinoma: what can be learned from anogenital vaccination programs? Oral Oncol 51(12):1057–1060. https://doi.org/10.1016/j.oraloncology.2015.10.011

    Article  PubMed  Google Scholar 

  353. Verma R, Khanna P (2013) Human papilloma virus vaccines: need to be introduced in India. Hum Vaccin Immunother 9(1):97–99. https://doi.org/10.4161/hv.22063

    Article  CAS  PubMed  Google Scholar 

  354. Perz JF, Armstrong GL, Farrington LA, Hutin YJF, Bell BP (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45(4):529–538

    Article  PubMed  Google Scholar 

  355. Schuster SJ, Neelapu SS, Gause BL, Muggia FM, Gockerman JP, Sotomayor EM et al (2009) Idiotype vaccine therapy (BiovaxID) in follicular lymphoma in first complete remission: phase III clinical trial results. J Clin Oncol 27(18S):2–2

    Article  Google Scholar 

  356. Cheever MA, Higano CS (2011) PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17(11):3520–3526. https://doi.org/10.1158/1078-0432.CCR-10-3126

    Article  PubMed  Google Scholar 

  357. Rentsch CA, Birkhäuser FD, Biot C, Gsponer JR, Bisiaux A, Wetterauer C et al (2014) Bacillus Calmette-Guérin strain differences have an impact on clinical outcome in bladder cancer immunotherapy. Eur Urol 66(4):677–688. https://doi.org/10.1016/j.eururo.2014.02.061

    Article  PubMed  Google Scholar 

  358. Fukuhara H, Ino Y, Todo T (2016) Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci 107(10):1373–1379. https://doi.org/10.1111/cas.13027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  CAS  PubMed  Google Scholar 

  360. Palucka K, Banchereau J (2013) Dendritic-cell-based therapeutic cancer vaccines. Immunity 39(1):38–48. https://doi.org/10.1016/j.immuni.2013.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, Smyth MJ et al (2010) Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia 24(1):22–32. https://doi.org/10.1038/leu.2009.236

    Article  CAS  PubMed  Google Scholar 

  362. Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G (1991) Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173(3):699–703

    Article  CAS  PubMed  Google Scholar 

  363. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91(9):4082–4085

    Article  PubMed  PubMed Central  Google Scholar 

  364. Haslett PAJ, Corral LG, Albert M, Kaplan G (1998) Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med 187(11):1885–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Hardy H, Harris J, Lyon E, Beal J, Foey A (2013) Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 5(6):1869–1912. https://doi.org/10.3390/nu5061869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Aleem E (2013) β-Glucans and their applications in cancer therapy: focus on human studies. Anti Cancer Agents Med Chem 13(5):709–719

    Article  CAS  Google Scholar 

  367. Ma H-D, Deng Y-R, Tian Z, Lian Z-X (2013) Traditional Chinese medicine and immune regulation. Clin Rev Allergy Immunol 44(3):229–241. https://doi.org/10.1007/s12016-012-8332-0

    Article  PubMed  Google Scholar 

  368. Cancer Council Victoria. Immunotherapy. https://www.cancervic.org.au/cancer-information/treatments/treatments-types/immunotherapy. Accessed 06 May 2019

  369. Cancer Research Institute. Immunotherapy by cancer type. https://www.cancerresearch.org/immunotherapy/cancer-types. Accessed 06 May 2019

  370. Porter L, American Society of Clinical Oncology (2018) What you need to know about immunotherapy side effects. https://www.cancer.net/blog/2018-02/what-you-need-know-about-immunotherapy-side-effects. Accessed 06 May 2019

  371. Cancer Council Victoria. Targeted therapy. https://www.cancervic.org.au/cancer-information/treatments/treatments-types/targeted-therapy. Accessed 06 May 2019

  372. American Society of Clinical Oncology (2019) Understanding targeted therapy. https://www.cancer.net/navigating-cancer-care/how-cancer-treated/personalized-and-targeted-therapies/understanding-targeted-therapy. Accessed 06 May 2019

  373. National Cancer Institute (2018) Targeted therapy to treat cancer. https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies#2. Accessed 06 May 2019

  374. Canadian Cancer Society. Targeted therapy. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/chemotherapy-and-other-drug-therapies/targeted-therapy/?region=on. Accessed 06 May 2019

  375. Joo WD, Visintin I, Mor G (2013) Targeted cancer therapy–are the days of systemic chemotherapy numbered? Maturitas 76(4):308–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Lee SL (2012) Radioactive iodine therapy. Curr Opin Endocrinol Diabetes Obes 19(5):420–428. https://doi.org/10.1097/MED.0b013e328357fa0c

    Article  CAS  PubMed  Google Scholar 

  377. Jordan VC (1993) A current view of tamoxifen for the treatment and prevention of breast cancer. Br J Pharmacol 110(2):507–517. https://doi.org/10.1111/j.1476-5381.1993.tb13840.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Fausel C (2007) Targeted chronic myeloid leukemia therapy: seeking a cure. Am J Health Syst Pharm 64(24):S9–S15

    Article  CAS  PubMed  Google Scholar 

  379. Yan L, Rosen N, Arteaga C (2011) Targeted cancer therapies. Chin J Cancer 30(1):1–4

    Article  PubMed  PubMed Central  Google Scholar 

  380. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  CAS  PubMed  Google Scholar 

  381. Bae KH, Chung HJ, Park TG (2011) Nanomaterials for cancer therapy and imaging. Mol Cells 31(4):295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Prabhu RH, Patravale VB, Joshi MD (2015) Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine 10:1001–1018. https://doi.org/10.2147/IJN.S56932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Zhou L, Huang Y, Li J, Wang Z (2010) The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol 27(2):255–261. https://doi.org/10.1007/s12032-009-9201-4

    Article  CAS  PubMed  Google Scholar 

  384. Zaytseva YY, Valentino JD, Gulhati P, Evers BM (2012) mTOR inhibitors in cancer therapy. Cancer Lett 319(1):1–7. https://doi.org/10.1016/j.canlet.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  385. McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241(3):564–589

    Article  PubMed  Google Scholar 

  386. Cabebe E, Wakelee H (2006) Sunitinib: a newly approved small-molecule inhibitor of angiogenesis. Drugs Today (Barc) 42(6):387–398

    Article  CAS  Google Scholar 

  387. Adams J, Kauffman M (2004) Development of the proteasome inhibitor Velcade™ (Bortezomib). Cancer Investig 22(2):304–311

    Article  CAS  Google Scholar 

  388. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G et al (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21(1):60–65

    Article  CAS  PubMed  Google Scholar 

  389. Baudino TA (2015) Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 12(1):3–20

    Article  CAS  PubMed  Google Scholar 

  390. Wang J, Taylor A, Showeil R, Trivedi P, Horimoto Y, Bagwan I et al (2014) Expression profiling and significance of VEGF-A, VEGFR2, VEGFR3 and related proteins in endometrial carcinoma. Cytokine 68(2):94–100. https://doi.org/10.1016/j.cyto.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  391. Keating GM (2014) Bevacizumab: a review of its use in advanced cancer. Drugs 74(16):1891–1925. https://doi.org/10.1007/s40265-014-0302-9

    Article  CAS  PubMed  Google Scholar 

  392. Wilke H, Muro K, Van Cutsem E, Oh S-C, Bodoky G, Shimada Y et al (2014) Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 15(11):1224–1235. https://doi.org/10.1016/S1470-2045(14)70420-6

    Article  CAS  PubMed  Google Scholar 

  393. Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R et al (2007) ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 117(8):2051–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Mitri Z, Constantine T, O’Regan R (2012) The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract 2012:743193. https://doi.org/10.1155/2012/743193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Dubois EA, Cohen AF (2009) Panitumumab. Br J Clin Pharmacol 68(4):482–483. https://doi.org/10.1111/j.1365-2125.2009.03492.x

    Article  PubMed  PubMed Central  Google Scholar 

  396. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355. https://doi.org/10.1126/science.aar4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Scheuermann RH, Racila E (1995) CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma 18(5–6):385–397

    Article  CAS  PubMed  Google Scholar 

  398. Nagorsen D, Kufer P, Baeuerle PA, Bargou R (2012) Blinatumomab: a historical perspective. Pharmacol Ther 136(3):334–342. https://doi.org/10.1016/j.pharmthera.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  399. U.S. Food and Drug Administration (2017) FDA grants regular approval to blinatumomab and expands indication to include Philadelphia chromosome-positive B cell. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-blinatumomab-and-expands-indication-include-philadelphia-chromosome. Accessed 05 May 2019

  400. Payandeh Z, Bahrami AA, Hoseinpoor R, Mortazavi Y, Rajabibazl M, Rahimpour A et al (2019) The applications of anti-CD20 antibodies to treat various B cells disorders. Biomed Pharmacother 109:2415–2426. https://doi.org/10.1016/j.biopha

    Article  CAS  PubMed  Google Scholar 

  401. Lim SH, Beers SA, French RR, Johnson PWM, Glennie MJ, Cragg MS (2010) Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 95(1):135–143. https://doi.org/10.3324/haematol.2008.001628

    Article  CAS  PubMed  Google Scholar 

  402. Van Der Weyden CA, Pileri SA, Feldman AL, Whisstock J, Prince HM (2017) Understanding CD30 biology and therapeutic targeting: a historical perspective providing insight into future directions. Blood Cancer J 7(9):e603. https://doi.org/10.1038/bcj.2017.85

    Article  PubMed  PubMed Central  Google Scholar 

  403. Faramarz Naeim PNR, Song SX, Grody WW (2013) Principles of immunophenotyping. In: Atlas of Hematopathology, 2nd edn. Academic, London, pp 25–46

    Google Scholar 

  404. Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W et al (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13(1):47–58

    CAS  PubMed  Google Scholar 

  405. Jen EY, Ko C-W, Lee JE, Del Valle PL, Aydanian A, Jewell C et al (2018) FDA approval: gemtuzumab ozogamicin for the treatment of adults with newly diagnosed CD33-positive acute myeloid leukemia. Clin Cancer Res 24(14):3242–3246. https://doi.org/10.1158/1078-0432

    Article  CAS  PubMed  Google Scholar 

  406. Hamblin TJ (2003) CD38: what is it there for? Blood 102(6):1939–1940

    CAS  Google Scholar 

  407. Burgler S (2015) Role of CD38 expression in diagnosis and pathogenesis of chronic lymphocytic leukemia and its potential as therapeutic target. Crit Rev Immunol 35(5):417–432

    PubMed  Google Scholar 

  408. Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M et al (2015) Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med 373(13):1207–1219. https://doi.org/10.1056/NEJMoa1506348

    Article  CAS  PubMed  Google Scholar 

  409. Piccaluga PP, Agostinelli C, Righi S, Zinzani PL, Pileri SA (2007) Expression of CD52 in peripheral T-cell lymphoma. Haematologica 92(4):566–567

    PubMed  Google Scholar 

  410. Malaer JD, Mathew PA (2017) CS1 (SLAMF7, CD319) is an effective immunotherapeutic target for multiple myeloma. Am J Cancer Res 7(8):1637–1641

    CAS  PubMed  PubMed Central  Google Scholar 

  411. Chen WC, Kanate AS, Craig M, Petros WP, Hazlehurst LA (2017) Emerging combination therapies for the management of multiple myeloma: the role of elotuzumab. Cancer Manag Res 9:307–314. https://doi.org/10.2147/CMAR.S117477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. Wierzbicki A, Gil M, Ciesielski M, Fenstermaker RA, Kaneko Y, Rokita H et al (2008) Immunization with a mimotope of GD2 ganglioside induces CD8+ T cells that recognize cell adhesion molecules on tumor cells. J Immunol 181(9):6644–6653

    Article  CAS  PubMed  Google Scholar 

  413. Keyel ME, Reynolds CP (2019) Spotlight on dinutuximab in the treatment of high-risk neuroblastoma: development and place in therapy. Biologics 13:1–12. https://doi.org/10.2147/BTT.S114530

    Article  CAS  PubMed  Google Scholar 

  414. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    CAS  PubMed  Google Scholar 

  415. Salvador-Morales C, Gao W, Ghatalia P, Murshed F, Aizu W, Langer R et al (2009) Multifunctional nanoparticles for prostate cancer therapy. Expert Rev Anticancer Ther 9(2):211–221. https://doi.org/10.1586/14737140.9.2.211

    Article  CAS  PubMed  Google Scholar 

  416. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760. https://doi.org/10.1038/nnano.2007.387

    Article  CAS  PubMed  Google Scholar 

  417. Hubbell JA (2003) Enhancing drug function. Science 300(5619):595–596. https://doi.org/10.1126/science.1083625

    Article  CAS  PubMed  Google Scholar 

  418. Bartlett DW, Davis ME (2007) Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug Chem 18(2):456–468. https://doi.org/10.1021/bc0603539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Bisht G, Rayamajhi S (2016) ZnO nanoparticles: a promising anticancer agent. Nano 3:9. https://doi.org/10.5772/63437

    Article  Google Scholar 

  420. Lee Y, Lee H, Kim YB, Kim J, Hyeon T, Park H, Messersmith PB, Park TG (2008) Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv Mater 20(21):4154–4157. https://doi.org/10.1002/adma.200800756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. Bae KH, Lee K, Kim C, Park TG (2011) Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials 32(1):176–184. https://doi.org/10.1016/j.biomaterials

    Article  CAS  PubMed  Google Scholar 

  422. Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805(1):105–117. https://doi.org/10.1016/j.bbcan.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  423. Samuel N, Hudson TJ (2013) Translating genomics to the clinic: implications of cancer heterogeneity. Clin Chem 59(1):127–137. https://doi.org/10.1373/clinchem

    Article  CAS  PubMed  Google Scholar 

  424. Gray JW, Collins C, Henderson IC, Isola J, Kallioniemi A, Kallioniemi OP et al (1994) Molecular cytogenetics of human breast cancer. Cold Spring Harb Symp Quant Biol 59:645–652

    CAS  PubMed  Google Scholar 

  425. Örndal C, Rydholm A, Willén H, Mitelman F, Mandahl N (1994) Cytogenetic intratumor heterogeneity in soft tissue tumors. Cancer Genet Cytogenet 78(2):127–137

    PubMed  Google Scholar 

  426. Gorunova L, Höglund M, Andrén-Sandberg Å, Dawiskiba S, Jin Y, Mitelman F et al (1998) Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosomes Cancer 23(2):81–99

    CAS  PubMed  Google Scholar 

  427. Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L (2008) Breast tumors contain distinct CD44+/CD24-and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10(1):R10. https://doi.org/10.1186/bcr1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Rutella S, Bonanno G, Procoli A, Mariotti A, Corallo M, Prisco MG et al (2009) Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res 15(13):4299–4311. https://doi.org/10.1158/1078-0432

    Article  CAS  PubMed  Google Scholar 

  429. Lou H, Dean M (2007) Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 26(9):1357–1360

    CAS  PubMed  Google Scholar 

  430. Ebben JD, Treisman DM, Zorniak M, Kutty RG, Clark PA, Kuo JS (2010) The cancer stem cell paradigm: a new understanding of tumor development and treatment. Expert Opin Ther Targets 14(6):621–632. https://doi.org/10.1517/14712598.2010.485186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Kong D, Li Y, Wang Z, Sarkar F (2013) Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers (Basel) 3(1):716–729. https://doi.org/10.3390/cancers30100716

    Article  Google Scholar 

  432. Craveiro V, Yang-Hartwich Y, Holmberg JC, Sumi NJ, Pizzonia J, Griffin B et al (2013) Phenotypic modifications in ovarian cancer stem cells following paclitaxel treatment. Cancer Med 2(6):751–762. https://doi.org/10.1002/cam4.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. National Institutes of Health, ClinicalTrials.gov is a database of privately and publicly funded clinical studies conducted around the world. https://www.clinicaltrials.gov/. Accessed 05 May 2019

  434. Mattina J, Carlisle B, Hachem Y, Fergusson D, Kimmelman J (2017) Inefficiencies and patient burdens in the development of the targeted cancer drug sorafenib: a systematic review. PLoS Biol 15(2):e2000487. https://doi.org/10.1371/journal.pbio.2000487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. American Cancer Society (2016) Side effects of targeted cancer therapy drugs. https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/targeted-therapy/side-effects.html. Accessed 05 May 2019

  436. Rogers S, Pfuderer P (1968) Use of viruses as carriers of added genetic information. Nature 219:749–751. https://doi.org/10.1038/219749a0

    Article  CAS  PubMed  Google Scholar 

  437. Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science 175:949–955. https://doi.org/10.1126/science.175.4025.949

    Article  CAS  PubMed  Google Scholar 

  438. Rogers S (1973) Induction of arginase activity with the Shope papilloma virus in tissue culture cells from an argininemic patient. J Exp Med 137:1091–1096. https://doi.org/10.1084/jem.137.4.1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Terheggen HG, Lowenthal A, Lavinha F et al (1975) Unsuccessful trial of gene replacement in arginase deficiency. Z Kinderheilkd 119:1–3

    Article  CAS  PubMed  Google Scholar 

  440. Cepko CL, Roberts BE, Mulligan RC (1984) Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 37:1053–1062. https://doi.org/10.1016/0092-8674(84)90440-9

    Article  CAS  PubMed  Google Scholar 

  441. Wirth T, Ylä-Herttuala S (2014) Gene therapy used in Cancer treatment. Biomedicine 2:149–162. https://doi.org/10.3390/biomedicines2020149

    Article  Google Scholar 

  442. Blaese RM, Culver KW, Miller AD et al (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270:475–480. https://doi.org/10.1126/science.270.5235.475

    Article  CAS  PubMed  Google Scholar 

  443. Sheridan C (2011) Gene therapy finds its niche. Nat Biotechnol 29:121–128. https://doi.org/10.1038/nbt.1769

    Article  CAS  PubMed  Google Scholar 

  444. Amer MH (2014) Gene therapy for cancer: present status and future perspective. Mol Cell Ther 2:27. https://doi.org/10.1186/2052-8426-2-27

    Article  PubMed  PubMed Central  Google Scholar 

  445. Philippidis. A 25 up-and-coming gene therapies of 2019. https://www.genengnews.com/a-lists/25-up-and-coming-gene-therapies-of-2019/. Accessed 12 Sept 2019

  446. Ginn SL, Amaya AK, Alexander IE et al (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20:e3015. https://doi.org/10.1002/jgm.3015

    Article  PubMed  Google Scholar 

  447. Lodish H, Berk A, Zipursky SL et al (2000) Viruses: structure, function, and uses. W. H. Freeman, New York

    Google Scholar 

  448. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358. https://doi.org/10.1038/nrg1066

    Article  CAS  PubMed  Google Scholar 

  449. Zabner J, Fasbender AJ, Moninger T et al (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 270:18997–19007. https://doi.org/10.1074/jbc.270.32.18997

    Article  CAS  PubMed  Google Scholar 

  450. Yang W, Sun T, Cao J, Liu F (2010) Survivin downregulation by siRNA/cationic liposome complex radiosensitises human hepatoma cells in vitro and in vivo. Int J Radiat Biol 86:445–457. https://doi.org/10.3109/09553001003668006

    Article  CAS  PubMed  Google Scholar 

  451. Baban CK, Cronin M, O’Hanlon D et al (2010) Bacteria as vectors for gene therapy of cancer. Bioengineered Bugs 1:385–394. https://doi.org/10.4161/bbug.1.6.13146

    Article  PubMed  PubMed Central  Google Scholar 

  452. Pathak A, Patnaik S, Gupta KC (2009) Recent trends in non-viral vector-mediated gene delivery. Biotechnol J 4:1559–1572. https://doi.org/10.1002/biot.200900161

    Article  CAS  PubMed  Google Scholar 

  453. Das SK, Menezes ME, Bhatia S et al (2015) Gene therapies for Cancer: strategies, challenges and successes. J Cell Physiol 230:259–271. https://doi.org/10.1002/jcp.24791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  454. Boon T (1996) Human tumor antigens recognized by T lymphocytes. J Exp Med 183:725–729. https://doi.org/10.1084/jem.183.3.725

    Article  CAS  PubMed  Google Scholar 

  455. Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129. https://doi.org/10.1126/science.1129003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  456. Robbins PF, Morgan RA, Feldman SA et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. JCO 29:917–924. https://doi.org/10.1200/JCO.2010.32.2537

    Article  Google Scholar 

  457. Sharpe M, Mount N (2015) Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 8:337–350. https://doi.org/10.1242/dmm.018036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  458. Kochenderfer JN, Rosenberg SA (2013) Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 10:267–276. https://doi.org/10.1038/nrclinonc.2013.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  459. Kochenderfer JN, Dudley ME, Feldman SA et al (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119:2709–2720. https://doi.org/10.1182/blood-2011-10-384388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  460. Boudreau JE, Bonehill A, Thielemans K, Wan Y (2011) Engineering dendritic cells to enhance Cancer immunotherapy. Mol Ther 19:841–853. https://doi.org/10.1038/mt.2011.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  461. Butterfield LH, Comin-Anduix B, Vujanovic L et al (2008) Adenovirus MART-1–engineered autologous dendritic cell vaccine for metastatic melanoma. J Immunother 31:294–309. https://doi.org/10.1097/CJI.0b013e31816a8910

    Article  PubMed  PubMed Central  Google Scholar 

  462. Marshall JL, Gulley JL, Arlen PM et al (2005) Phase I study of sequential vaccinations with Fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage Colony-stimulating factor, in patients with carcinoembryonic antigen–expressing carcinomas. JCO 23:720–731. https://doi.org/10.1200/JCO.2005.10.206

    Article  CAS  Google Scholar 

  463. Norell H, Poschke I, Charo J et al (2010) Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Transl Med 8:53. https://doi.org/10.1186/1479-5876-8-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Sun E, Han R, Lu B (2018) Gene therapy of renal cancer using recombinant adeno-associated virus encoding human endostatin. Oncol Lett. https://doi.org/10.3892/ol.2018.9036

  465. YESCARTA (axicabtagene ciloleucel) | FDA. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel. Accessed 21 Sept 2019

  466. KYMRIAH (tisagenlecleucel) | FDA. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel. Accessed 21 Sept 2019

  467. Rehman H, Silk AW, Kane MP, Kaufman HL (2016) Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 4:53. https://doi.org/10.1186/s40425-016-0158-5

    Article  PubMed  PubMed Central  Google Scholar 

  468. IMLYGIC (talimogene laherparepvec) | FDA. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/imlygic-talimogene-laherparepvec. Accessed 21 Sept 2019

  469. Malekshah OM, Chen X, Nomani A et al (2016) Enzyme/prodrug Systems for Cancer Gene Therapy. Curr Pharmacol Rep 2:299–308. https://doi.org/10.1007/s40495-016-0073-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  470. Freeman SM, Abboud CN, Whartenby KA et al (1993) The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 53:5274

    CAS  PubMed  Google Scholar 

  471. Zarogoulidis P, Darwiche K (2013) Suicide gene therapy for Cancer – current strategies. J Genet Syndr Gene Ther 04:pii: 16849. https://doi.org/10.4172/2157-7412.1000139

    Article  CAS  Google Scholar 

  472. Chen H, Beardsley GP, Coen DM (2014) Mechanism of ganciclovir-induced chain termination revealed by resistant viral polymerase mutants with reduced exonuclease activity. Proc Natl Acad Sci U S A 111:17462–17467. https://doi.org/10.1073/pnas.1405981111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  473. Kaliberov SA, Market JM, Gillespie GY et al (2007) Mutation of Escherichia coli cytosine deaminase significantly enhances molecular chemotherapy of human glioma. Gene Ther 14:1111–1119. https://doi.org/10.1038/sj.gt.3302965

    Article  CAS  PubMed  Google Scholar 

  474. Kaliberova LN, Della Manna DL, Krendelchtchikova V et al (2008) Molecular chemotherapy of pancreatic cancer using novel mutant bacterial cytosine deaminase gene. Mol Cancer Ther 7:2845–2854. https://doi.org/10.1158/1535-7163.MCT-08-0347

    Article  CAS  PubMed  Google Scholar 

  475. Deng LY (2011) Antitumor activity of mutant bacterial cytosine deaminase gene for colon cancer. WJG 17:2958. https://doi.org/10.3748/wjg.v17.i24.2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  476. Immonen A, Vapalahti M, Tyynelä K et al (2004) AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 10:967–972. https://doi.org/10.1016/j.ymthe.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  477. Aguilar LK, Shirley LA, Chung VM et al (2015) Gene-mediated cytotoxic immunotherapy as adjuvant to surgery or chemoradiation for pancreatic adenocarcinoma. Cancer Immunol Immunother 64:727–736. https://doi.org/10.1007/s00262-015-1679-3

    Article  CAS  PubMed  Google Scholar 

  478. Li BJ (2007) Vascular damage and anti-angiogenic effects of tumor vessel-targeted adenovirus-mediated herpes simplex virus thymidine kinase gene. WJG 13:4006. https://doi.org/10.3748/wjg.v13.i29.4006

    Article  PubMed  PubMed Central  Google Scholar 

  479. Karjoo Z, Chen X, Hatefi A (2016) Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev 99:113–128. https://doi.org/10.1016/j.addr.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  480. Search Orphan Drug Designations and Approvals. https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=145801. Accessed 21 Sept 2019

  481. Nemunaitis J, Tong AW, Nemunaitis M et al (2010) A phase I study of telomerase-specific replication competent oncolytic adenovirus (Telomelysin) for various solid tumors. Mol Ther 18:429–434. https://doi.org/10.1038/mt.2009.262

    Article  CAS  PubMed  Google Scholar 

  482. Clark DP, Pazdernik NJ (2016) Cancer. In: Biotechnology. Elsevier, New Jersey, pp 593–626

    Google Scholar 

  483. Levine AJ, Hu W, Feng Z (2008) Tumor suppressor genes. In: The molecular basis of cancer. Elsevier, New Jersey, pp 31–38

    Google Scholar 

  484. Cancer Genes | CancerQuest. https://www.cancerquest.org/cancer-biology/cancer-genes#table. Accessed 22 Sept 2019

  485. Oncogene related genes – GeneCards Search Results. https://www.genecards.org/Search/Keyword?queryString=oncogene. Accessed 22 Sept 2019

  486. Tumor suppressor gene related genes – GeneCards Search Results. https://www.genecards.org/Search/Keyword?queryString=tumor%20suppressor%20gene. Accessed 22 Sept 2019

  487. Lange A, Lo H-W (2018) Inhibiting TRK proteins in clinical cancer therapy. Cancers 10:105. https://doi.org/10.3390/cancers10040105

    Article  CAS  PubMed Central  Google Scholar 

  488. Xu K, Rajagopal S, Klebba I et al (2010) The role of fibroblast Tiam1 in tumor cell invasion and metastasis. Oncogene 29:6533–6542. https://doi.org/10.1038/onc.2010.385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  489. Minard ME, Kim L-S, Price JE, Gallick GE (2004) The role of the guanine nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion and tumor progression. Breast Cancer Res Treat 84:21–32. https://doi.org/10.1023/B:BREA.0000018421.31632.e6

    Article  CAS  PubMed  Google Scholar 

  490. Pene-Dumitrescu T, Smithgall TE (2010) Expression of a Src family kinase in chronic myelogenous leukemia cells induces resistance to Imatinib in a kinase-dependent manner. J Biol Chem 285:21446–21457. https://doi.org/10.1074/jbc.M109.090043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  491. Saito S, Miyaji-Yamaguchi M, Nagata K (2004) Aberrant intracellular localization of SET-CAN fusion protein, associated with a leukemia, disorganizes nuclear export. Int J Cancer 111:501–507. https://doi.org/10.1002/ijc.20296

    Article  CAS  PubMed  Google Scholar 

  492. Jun HJ, Johnson H, Bronson RT et al (2012) The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Res 72:3764–3774. https://doi.org/10.1158/0008-5472.CAN-11-3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  493. Heider TR, Lyman S, Schoonhoven R, Behrns KE (2007) Ski promotes tumor growth through abrogation of transforming growth factor-beta signaling in pancreatic cancer. Ann Surg 246:61–68. https://doi.org/10.1097/SLA.0b013e318070cafa

    Article  PubMed  PubMed Central  Google Scholar 

  494. Rice KL, de Thé H (2014) The acute promyelocytic leukaemia success story: curing leukaemia through targeted therapies. J Intern Med 276:61–70. https://doi.org/10.1111/joim.12208

    Article  CAS  PubMed  Google Scholar 

  495. Weekes D, Kashima TG, Zandueta C et al (2016) Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1. Oncogene 35:2852–2861. https://doi.org/10.1038/onc.2015.344

    Article  CAS  PubMed  Google Scholar 

  496. Muhammad N, Bhattacharya S, Steele R et al (2017) Involvement of c-Fos in the promotion of cancer stem-like cell properties in head and neck squamous cell carcinoma. Clin Cancer Res 23:3120–3128. https://doi.org/10.1158/1078-0432.CCR-16-2811

    Article  CAS  PubMed  Google Scholar 

  497. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM (2013) Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer 13:559–571. https://doi.org/10.1038/nrc3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  498. Roskoski R (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79:34–74. https://doi.org/10.1016/j.phrs.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  499. Ozaki T, Nakagawara A (2011) Role of p53 in cell death and human cancers. Cancers 3:994–1013. https://doi.org/10.3390/cancers3010994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  500. Milella M, Falcone I, Conciatori F et al (2015) PTEN: multiple functions in human malignant tumors. Front Oncol 5. https://doi.org/10.3389/fonc.2015.00024

  501. Mehta MS, Vazquez A, Kulkarni DA et al (2011) Polymorphic variants in TSC1 and TSC2 and their association with breast cancer phenotypes. Breast Cancer Res Treat 125:861–868. https://doi.org/10.1007/s10549-010-1062-1

    Article  CAS  PubMed  Google Scholar 

  502. McCarthy AJ, Chetty R (2018) Smad4/DPC4. J Clin Pathol 71:661–664. https://doi.org/10.1136/jclinpath-2018-205095

    Article  PubMed  Google Scholar 

  503. Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. JCO 22:4991–5004. https://doi.org/10.1200/JCO.2004.05.061

    Article  CAS  Google Scholar 

  504. Johannessen CM, Reczek EE, James MF et al (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. PNAS 102:8573–8578. https://doi.org/10.1073/pnas.0503224102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  505. Kiuru M, Busam KJ (2017) The NF1 gene in tumor syndromes and melanoma. Lab Investig 97:146–157. https://doi.org/10.1038/labinvest.2016.142

    Article  CAS  PubMed  Google Scholar 

  506. Dias N, Stein CA (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1:347–355

    CAS  PubMed  Google Scholar 

  507. Putney SD, Brown J, Cucco C et al (1999) Enhanced anti-tumor effects with microencapsulated c-myc antisense oligonucleotide. Antisense Nucleic Acid Drug Dev 9:451–458. https://doi.org/10.1089/oli.1.1999.9.451

    Article  CAS  PubMed  Google Scholar 

  508. Moreno PMD, Pêgo AP (2014) Therapeutic antisense oligonucleotides against cancer: hurdling to the clinic. Front Chem 2:87. https://doi.org/10.3389/fchem.2014.00087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  509. Irie A, Kijima H, Ohkawa T et al (1997) Anti-oncogene ribozymes for cancer gene therapy. Adv Pharmacol 40:207–257, Elsevier

    Google Scholar 

  510. Scherer L, Rossi JJ (2005) Cancer therapeutic applications of ribozymes and RNAi. In: Curiel DT, Douglas JT (eds) Cancer gene therapy. Humana Press, Totowa, pp 51–63

    Google Scholar 

  511. Fei Q, Zhang H, Fu L et al (2008) Experimental cancer gene therapy by multiple anti-survivin hammerhead ribozymes. Acta Biochim Biophys Sin 40:466–477. https://doi.org/10.1111/j.1745-7270.2008.00430.x

    Article  CAS  PubMed  Google Scholar 

  512. Cai DW, Mukhopadhyay T, Roth JA (1995) Suppression of lung cancer cell growth by ribozyme-mediated modification of p53 pre-mRNA. Cancer Gene Ther 2:199–205

    CAS  PubMed  Google Scholar 

  513. Lee S-W, Jeong J-S (2014) Use of tumor-targeting trans-splicing ribozyme for cancer treatment. In: Lafontaine D, Dubé A (eds) Therapeutic applications of ribozymes and riboswitches. Humana Press, Totowa, pp 83–95

    Google Scholar 

  514. Yan R, Qian X, Xin X et al (2002) Experimental study of anti-VEGF hairpin ribozyme gene inhibiting expression of VEGF and proliferation of ovarian cancer cells. Chin J Cancer 21:39–44

    Google Scholar 

  515. Mansoori B, Sandoghchian Shotorbani S, Baradaran B (2014) RNA interference and its role in cancer therapy. In: Advanced pharmaceutical bulletin, pp 2251–7308; eISSN. https://doi.org/10.5681/apb.2014.046

    Chapter  Google Scholar 

  516. Agrawal N, Dasaradhi PVN, Mohmmed A et al (2003) RNA interference: biology, mechanism, and applications. MMBR 67:657–685. https://doi.org/10.1128/MMBR.67.4.657-685.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  517. Cullen BR (2005) RNAi the natural way. Nat Genet 37:1163–1165. https://doi.org/10.1038/ng1105-1163

    Article  CAS  PubMed  Google Scholar 

  518. Rao DD, Vorhies JS, Senzer N, Nemunaitis J (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759. https://doi.org/10.1016/j.addr.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  519. Beheshti Zavareh R, Sukhai MA, Hurren R et al (2012) Suppression of cancer progression by MGAT1 shRNA knockdown. PLoS One 7:e43721. https://doi.org/10.1371/journal.pone.0043721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  520. Nemunaitis J, Barve M, Orr D et al (2014) Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG™) in advanced cancer of the liver. Oncology 87:21–29. https://doi.org/10.1159/000360993

    Article  CAS  PubMed  Google Scholar 

  521. Oh J, Barve M, Matthews CM et al (2016) Phase II study of vigil® DNA engineered immunotherapy as maintenance in advanced stage ovarian cancer. Gynecol Oncol 143:504–510. https://doi.org/10.1016/j.ygyno.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  522. Ichim TE, Li M, Qian H et al (2004) RNA interference: a potent tool for gene-specific therapeutics. Am J Transplant 4:1227–1236. https://doi.org/10.1111/j.1600-6143.2004.00530.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  523. Chakraborty C, Sharma AR, Sharma G et al (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143. https://doi.org/10.1016/j.omtn.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  524. Tabernero J, Shapiro GI, LoRusso PM et al (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in Cancer patients with liver involvement. Cancer Discov 3:406–417. https://doi.org/10.1158/2159-8290.CD-12-0429

    Article  CAS  PubMed  Google Scholar 

  525. Zuckerman JE, Gritli I, Tolcher A et al (2014) Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. PNAS 111:11449–11454. https://doi.org/10.1073/pnas.1411393111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  526. Aleku M, Schulz P, Keil O et al (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits Cancer progression. Cancer Res 68:9788–9798. https://doi.org/10.1158/0008-5472.CAN-08-2428

    Article  CAS  PubMed  Google Scholar 

  527. Salva E, Ekentok C, Özbas Turan S, Akbuga J (2016) Non-viral siRNA and shRNA delivery systems in cancer therapy. In: Abdurakhmonov IY (ed) RNA interference. InTech, London

    Google Scholar 

  528. Morris LGT, Chan TA (2015) Therapeutic targeting of tumor suppressor genes: therapeutic targeting of tumors. Cancer 121:1357–1368. https://doi.org/10.1002/cncr.29140

    Article  CAS  PubMed  Google Scholar 

  529. Kazanets A, Shorstova T, Hilmi K et al (2016) Epigenetic silencing of tumor suppressor genes: paradigms, puzzles, and potential. Biochim Biophys Acta (BBA) – Rev Cancer 1865:275–288. https://doi.org/10.1016/j.bbcan.2016.04.001

    Article  CAS  Google Scholar 

  530. Liu Y, Hu X, Han C et al (2015) Targeting tumor suppressor genes for cancer therapy. BioEssays 37:1277–1286. https://doi.org/10.1002/bies.201500093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  531. Ries S, Korn WM (2002) ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br J Cancer 86:5–11. https://doi.org/10.1038/sj.bjc.6600006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  532. Zhang WW, Li L, Li D et al (2018) The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum Gene Ther 29:160–179. https://doi.org/10.1089/hum.2017.218

    Article  CAS  PubMed  Google Scholar 

  533. Wade M, Wahl GM (2009) Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res 7:1–11. https://doi.org/10.1158/1541-7786.MCR-08-0423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  534. Nag S, Zhang X, Srivenugopal KS et al (2014) Targeting MDM2-p53 interaction for Cancer therapy: are we there yet? Curr Med Chem 21:553–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  535. Burgess A, Chia KM, Haupt S et al (2016) Clinical overview of MDM2/X-targeted therapies. Front Oncol 6:–7. https://doi.org/10.3389/fonc.2016.00007

  536. Zak K, Pecak A, Rys B et al (2013) Mdm2 and MdmX inhibitors for the treatment of cancer: a patent review (2011-present). Expert Opin Ther Pat 23:425–448. https://doi.org/10.1517/13543776.2013.765405

    Article  CAS  PubMed  Google Scholar 

  537. Brown CJ, Cheok CF, Verma CS, Lane DP (2011) Reactivation of p53: from peptides to small molecules. Trends Pharmacol Sci 32:53–62. https://doi.org/10.1016/j.tips.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  538. Zandi R, Selivanova G, Christensen CL et al (2011) PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53. Clin Cancer Res 17:2830–2841. https://doi.org/10.1158/1078-0432.CCR-10-3168

    Article  CAS  PubMed  Google Scholar 

  539. Zhao R, Choi BY, Lee M-H et al (2016) Implications of genetic and epigenetic alterations of CDKN2A (p16 INK4a ) in Cancer. EBioMedicine 8:30–39. https://doi.org/10.1016/j.ebiom.2016.04.017

    Article  PubMed  PubMed Central  Google Scholar 

  540. Tanemura A, Terando AM, Sim M-S et al (2009) CpG Island methylator phenotype predicts progression of malignant melanoma. Clin Cancer Res 15:1801–1807. https://doi.org/10.1158/1078-0432.CCR-08-1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  541. Pechalrieu D, Etievant C, Arimondo PB (2017) DNA methyltransferase inhibitors in cancer: from pharmacology to translational studies. Biochem Pharmacol 129:1–13. https://doi.org/10.1016/j.bcp.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  542. Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 18. https://doi.org/10.3390/ijms18071414

  543. Hatch SB, Yapp C, Montenegro RC et al (2017) Assessing histone demethylase inhibitors in cells: lessons learned. Epigenetics Chromatin 10:9. https://doi.org/10.1186/s13072-017-0116-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  544. Pérez-Salvia M, Esteller M (2016) Bromodomain inhibitors and cancer therapy: from structures to applications. Epigenetics 12:323–339. https://doi.org/10.1080/15592294.2016.1265710

    Article  PubMed  PubMed Central  Google Scholar 

  545. Sibbald B (2001) Death but one unintended consequence of gene-therapy trial. CMAJ 164:1612

    CAS  PubMed  PubMed Central  Google Scholar 

  546. Wirth T, Hedman M, Mäkinen K et al (2006) Safety profile of plasmid/liposomes and virus vectors in clinical gene therapy. Curr Drug Saf 1:253–257

    CAS  PubMed  Google Scholar 

  547. National Health Service (2018) Complementary and alternative medicine. https://www.nhs.uk/conditions/complementary-and-alternative-medicine/. Accessed 05 May 2019

  548. National Cancer Institute (2015) Complementary and alternative medicine. https://www.cancer.gov/about-cancer/treatment/cam. Accessed 05 May 2019

  549. Ernst E, Cohen MH, Stone J (2004) Ethical problems arising in evidence based complementary and alternative medicine. J Med Ethics 30(2):156–159. https://doi.org/10.1136/jme.2003.007021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  550. Gureje O, Nortje G, Makanjuola V, Oladeji BD, Seedat S, Jenkins R (2015) The role of global traditional and complementary systems of medicine in the treatment of mental health disorders. Lancet Psychiatry 2(2):168–177. https://doi.org/10.1016/S2215-0366(15)00013-9

    Article  PubMed  PubMed Central  Google Scholar 

  551. National Center for Complementary and Integrative Health (2017) Introduction. https://nccih.nih.gov/about/strategic-plans/2016/introduction. Accessed 05 May 2019

  552. National Center for Complementary and Alternative Medicine (2009) What is CAM? https://web.archive.org/web/20090505211246/http://nccam.nih.gov/health/whatiscam/overview.htm. Accessed 05 May 2019

  553. Kim YJ (2017) The current studies of education for a traditional and complementary medicine in Malaysia. J Evid Based Complement Altern Med 22(4):531–537. https://doi.org/10.1177/2156587217726882

    Article  Google Scholar 

  554. McQuade JL, Meng Z, Chen Z, Wei Q, Zhang Y, Bei W et al (2012) Utilization of and attitudes towards traditional Chinese medicine therapies in a Chinese cancer hospital: a survey of patients and physicians. Evid Based Complement Alternat Med 2012:11

    Article  Google Scholar 

  555. Berman BM (2001) Complementary medicine and medical education: teaching complementary medicine offers a way of making teaching more holistic. Br Med J 322(7279):121–122. https://doi.org/10.1136/bmj.322.7279.121

    Article  CAS  Google Scholar 

  556. Robinson N (2006) Integrated traditional Chinese medicine. Complement Ther Clin Pract 12(2):132–140

    Article  PubMed  Google Scholar 

  557. Chopra A, Doiphode VV (2002) Ayurvedic medicine. Core concept, therapeutic principles, and current relevance. Med Clin North Am 86(1):75–89

    Article  PubMed  Google Scholar 

  558. National Center for Complementary and Integrative Health (2018) Complementary, alternative, or integrative health: what’s in a name? https://nccih.nih.gov/health/integrative-health?nav=gsa. Accessed 05 May 2019

  559. Quan H, Lai D, Johnson D, Verhoef M, Musto R (2008) Complementary and alternative medicine use among Chinese and white Canadians. Can Fam Physician 54(11):1563–1569

    PubMed  PubMed Central  Google Scholar 

  560. WebMD (2018) Whole medical systems: an overview. https://www.webmd.com/balance/guide/understanding-alternative-medicine#1. Accessed 05 May 2019

  561. Baars EW, Hamre HJ (2017) Whole medical systems versus the system of conventional biomedicine: a critical, narrative review of similarities, differences, and factors that promote the integration process. Evid Based Complement Alternat Med 2017:4904930. https://doi.org/10.1155/2017/4904930

    Article  PubMed  PubMed Central  Google Scholar 

  562. The Guardian (2012) Integrating the methods of traditional Chinese medicine in modern healthcare. https://www.theguardian.com/world/2012/jul/10/chinese-medicine-modern-science-cooperation. Accessed 05 May 2019

  563. Aichun G (1999) Huangdi Neijing Suwen Jiao Zhu Yu Yi (Yellow Emperor’s Inner Classic: Plain Questions – Critically Compared, Annotated and Translated). Tianjin Kexue Jishu Chubanshe. Tianjin Science and Technology Press, Tianjin

    Google Scholar 

  564. Novella S (2012) What is traditional Chinese medicine? https://sciencebasedmedicine.org/what-is-traditional-chinese-medicine/. Accessed 05 May 2019

  565. Liu J, Wang S, Zhang Y et al (2015) Traditional Chinese medicine and cancer: history, present situation, and development. Thorac Cancer 6(5):561–569. https://doi.org/10.1111/1759-7714.12270

    Article  PubMed  PubMed Central  Google Scholar 

  566. Subhuti D Kampo medicine: the practice of Chinese Herbal Medicine in Japan. Institute for Traditional Medicine. http://www.itmonline.org/arts/kampo.htm. Accessed 05 May 2019

  567. Matsuomoto M, Inoue K, Kajii E (1999) Integrating traditional medicine in Japan: the case of Kampo medicines. Complement Ther Med 4(7):254–255

    Article  Google Scholar 

  568. Motoo Y, Seki T, Tsutani K (2011) Traditional Japanese medicine, Kampo: its history and current status. Chin J Integr Med 17(2):85–87. https://doi.org/10.1007/s11655-011-0653-y

    Article  PubMed  Google Scholar 

  569. Yamakawa J, Motoo Y, Moriya J, Ogawa M, Uenishi H, Akazawa S et al (2013) Role of Kampo medicine in integrative cancer therapy. Evid Based Complement Alternat Med 2013:570848. https://doi.org/10.1155/2013/570848

    Article  PubMed  PubMed Central  Google Scholar 

  570. National Center for Complementary and Integrative Health (2019) Ayurvedic medicine: in depth. https://nccih.nih.gov/health/ayurveda/introduction.htm. Accessed 05 May 2019

  571. Shah S (2019) Ayurveda: the conventional Indian Medicine System and its Global practice. Int J Innov Sci Technol 4(1):13–33. https://doi.org/10.22270/ijist.v4i1.36

    Article  Google Scholar 

  572. Pandey MM, Rastogi S, Rawat AKS (2013) Indian traditional Ayurvedic system of medicine and nutritional supplementation. Evid Based Complement Alternat Med 2013:376327. https://doi.org/10.1155/2013/376327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  573. Microsoft® Encarta® Online Encyclopedia (2009) Ayurveda. https://web.archive.org/web/20091028105549/http://encarta.msn.com/encyclopedia_761596196/Ayurveda.html. Accessed 05 May 2019

  574. Jain R, Kosta S, Tiwari A (2010) Ayurveda and cancer. Pharm Res 2(6):393–394. https://doi.org/10.4103/0974-8490.75463

    Article  Google Scholar 

  575. Rahman SZ (2001) Unani medicine in India: its origin and fundamental concepts. In: History of science, philosophy and culture in Indian civilization, vol 4 part 2. Centre for Studies in Civilizations, New Delhi, pp 298–325

    Google Scholar 

  576. Heyadri M, Hashempur MH, Ayati MH, Quintern D, Nimrouzi M, Mosavat SH (2015) The use of Chinese herbal drugs in Islamic medicine. J Integr Med 13(6):363–367

    Article  PubMed  Google Scholar 

  577. Lone AH, Ahmad T, Anwar M, Habib S, Sofi G, Imam H (2011) Leech therapy- a holistic approach of treatment in Unani (Greeko-Arab) medicine. Anc Sci Life 31(1):31

    PubMed  PubMed Central  Google Scholar 

  578. Qamar U, Aman U, Khalid MS, Rais UR (2015) Unani medicine for cancer care: an evidence-based review. IJAHM 5(3):1811–1825. https://doi.org/10.31142/ijahm

    Article  Google Scholar 

  579. Sig AK, Guney M, Guclu AU, Ozmen E (2017) Medicinal leech therapy—an overall perspective. Integr Med Res 6(4):337–343. https://doi.org/10.1016/j.imr.2017.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  580. National Psoriasis Foundation, Whole Medical Systems. https://www.psoriasis.org/about-psoriasis/treatments/alternative/whole-systems. Accessed 05 May 2019

  581. Smith K (2012) Homeopathy is unscientific and unethical. Bioethics 26(9):508–512. https://doi.org/10.1111/j.1467-8519.2011.01956.x

    Article  Google Scholar 

  582. Homeopathy Research Institute, Homeopathy use around the world. https://www.hri-research.org/resources/essentialevidence/use-of-homeopathy-across-the-world/. Accessed 05 May 2019

  583. Ernst E (2007) Homeopathy for cancer? Curr Oncol 14(4):128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  584. Atwood KC (2003) Naturopathy: a critical appraisal. MedGenMed 5(4):39

    PubMed  Google Scholar 

  585. Wahlberg A (2007) A quackery with a difference—new medical pluralism and the problem of ‘dangerous practitioners’ in the United Kingdom. Soc Sci Med 65(11):2307–2316

    Article  PubMed  Google Scholar 

  586. Ernst E (2001) Rise in popularity of complementary and alternative medicine: reasons and consequences for vaccination. Vaccine 20:S90–S93

    Article  PubMed  Google Scholar 

  587. Smith K. Naturopathic cancer treatment: integrative adjunctive cancer care. https://www.drsmithnd.com/naturopathic-cancer-treatment. Accessed 05 May 2019

  588. Hermes BM (2016) Naturopathic cancer care – is it safe, and does it work? https://www.qualitycancertreatment.com/blog/naturopathictreatment. Accessed 05 May 2019

  589. Kienle GS, Albonico HU, Baars E, Hamre HJ, Zimmermann P, Kiene H (2013) Anthroposophic medicine: an integrative medical system originating in Europe. Glob Adv Health Med 2(6):20–31. https://doi.org/10.7453/gahmj.2012.087

    Article  PubMed  PubMed Central  Google Scholar 

  590. Ernst E (2006) Mistletoe as a treatment for cancer. Br Med J 333:1282. https://doi.org/10.1136/bmj.39055.493958.80

    Article  Google Scholar 

  591. Olson JS (2002) Bathsheba’s breast: women, cancer, and history. Press, JHU

    Google Scholar 

  592. National Cancer Institute (2019) Questions and answers about mistletoe. https://www.cancer.gov/about-cancer/treatment/cam/patient/mistletoe-pdq#section/_2. Accessed 05 May 2019

  593. NHS Specialist Pharmacy Service (2015) What is the evidence for subcutaneous mistletoe extract in the treatment of cancer? https://www.sps.nhs.uk/articles/what-is-the-evidence-for-subcutaneous-mistletoe-extract-in-the-treatment-of-cancer/. Accessed 05 May 2019

  594. Wheeler C (2010) What is mind-body medicine? https://www.psychologytoday.com/us/blog/head-toe-happiness/201006/what-is-mind-body-medicine. Accessed 05 May 2019

  595. National Center for Complementary and Alternative Medicine (2009) Mind-body medicine: an overview available. https://web.archive.org/web/20090506053001/http://nccam.nih.gov/health/whatiscam/mind-body/mindbody.htm. Accessed 05 May 2019

  596. Ernst E, Pittler MH, Wider B, Boddy K (2007) Mind-body therapies: are the trial data getting stronger? Altern Ther Health Med 13(5):62–64

    PubMed  Google Scholar 

  597. Rutledge JC, Hyson DA, Garduno D, Cort DA, Paumer L, Kappagoda CT (1999) Lifestyle modification program in management of patients with coronary artery disease: the clinical experience in a tertiary care hospital. J Cardpulm Rehabil 19(4):226–234

    Article  CAS  Google Scholar 

  598. Mundy EA, DuHamel KN, Montgomery GH (2003) The efficacy of behavioral interventions for cancer treatment-related side effects. Semin Clin Neuropsychiatry 8(4):253–275

    PubMed  Google Scholar 

  599. Chaoul A, Milbury K, Sood AK, Prinsloo S, Cohen L (2014) Mind-body practices in cancer care. Curr Oncol Rep 16(12):417. https://doi.org/10.1007/s11912-014-0417-x

    Article  PubMed  PubMed Central  Google Scholar 

  600. Niggemann B, Grüber C (2003) Side-effects of complementary and alternative medicine. Allergy 58(8):707–716

    CAS  PubMed  Google Scholar 

  601. Cassileth BR, Deng G (2004) Complementary and alternative therapies for cancer. Oncologist 9(1):80–89. https://doi.org/10.1634/theoncologist.9-1-80

    Article  PubMed  Google Scholar 

  602. Hughes D (2010) Alternative remedies ‘dangerous’ for kids says report. https://www.bbc.com/news/health-12060507. Accessed 05 May 2019

  603. Ajazuddin, Saraf S (2012) Legal regulations of complementary and alternative medicines in different countries. Pharmacogn Rev 6(12):154. https://doi.org/10.4103/0973-7847.99950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  604. National Center for Complementary and Integrative Health (2019) NCCIH 2016 strategic plan. https://nccih.nih.gov/about/strategic-plans/2016. Accessed 05 May 2019

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, Y.Z., Yang, L.J., Lo, H.H., Law, B.Y.K., Wong, V.K.W. (2020). Tumor Therapeutic Modes. In: Huang, R., Wang, Y. (eds) New Nanomaterials and Techniques for Tumor-targeted Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-5159-8_6

Download citation

Publish with us

Policies and ethics