Skip to main content

A Differential Role of miRNAs in Regulation of Breast Cancer Stem Cells

  • Chapter
  • First Online:
Cancer Stem Cells: New Horizons in Cancer Therapies

Abstract

Breast cancer is one of the most frequently occurring cancers in women worldwide. Enormous evidences emphasized that tumorigenesis is steered by a subpopulation of tumor cells known as cancer stem cells (CSCs). These CSCs play a pivotal role in cancer cell growth and metastasis. They show resistance to therapies and are also responsible for tumor recurrence. Substantial studies revealed a crucial role of microRNAs (miRNAs) in modulation of tumorigenic potential. This chapter emphasizes mainly on those miRNAs which modulate the stemness property of breast cancer stem cells (BCSCs). miRNAs are a class small non-coding single-stranded RNAs (~20–24 nucleotides) which usually bind to 3′UTR of target mRNAs. This binding eventually inhibits protein synthesis by repressing translation and/or decaying the target mRNAs. This chapter elaborately discusses the various miRNAs (e.g., miR-200c, miR-34c, miR-214, miR-21, etc.) which not only act as either oncomirs or tumor suppressors but also regulate stemness property along with epithelial-mesenchymal transition, invasion, and metastasis. This study also enlightens the involvement of various crucial signalling pathways (e.g., Notch, Wnt, and PI3K-Akt) in miRNA-mediated regulation of BCSCs. Thus, expression profile of a specific miRNA or a set of specific miRNAs could be used as a diagnosis and/or prognosis marker for breast cancer. Moreover, targeting these specific miRNAs (e.g., miR-200c, miR-34c, miR-21, etc.) either by antagomir or mimic miRNA seems to be a promising therapeutic strategy for breast cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mens MM, Ghanbari M (2018) Cell cycle regulation of stem cells by microRNAs. Stem Cell Rev Rep 14(3):309–322

    CAS  PubMed  Google Scholar 

  2. Asadzadeh Z et al (2019) microRNAs in cancer stem cells: biology, pathways, and therapeutic opportunities. J Cell Physiol 234(7):10002–10017

    CAS  PubMed  Google Scholar 

  3. Bunting KD (2002) ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20(1):11–20

    CAS  PubMed  Google Scholar 

  4. Hirschmann-Jax C et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci 101(39):14228–14233

    CAS  PubMed  Google Scholar 

  5. Britton K et al (2012) Breast cancer, side population cells and ABCG2 expression. Cancer Lett 323(1):97–105

    CAS  PubMed  Google Scholar 

  6. Nakanishi T et al (2010) Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling. Br J Cancer 102(5):815

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100(7):3983–3988

    CAS  PubMed  Google Scholar 

  8. Meyer MJ et al (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor–negative breast cancer. Cancer Res 70(11):4624–4633

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stingl J et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439(7079):993

    CAS  PubMed  Google Scholar 

  10. Sleeman KE et al (2005) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8(1):R7

    PubMed  PubMed Central  Google Scholar 

  11. Storms RW et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci 96(16):9118–9123

    CAS  PubMed  Google Scholar 

  12. Luo M et al (2015) Breast cancer stem cells: current advances and clinical implications. In: Mammary Stem Cells. Springer, Berlin, pp 1–49

    Google Scholar 

  13. Dontu G et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cicalese A et al (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138(6):1083–1095

    CAS  PubMed  Google Scholar 

  15. Kusumbe AP, Bapat SA (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69(24):9245–9253

    CAS  PubMed  Google Scholar 

  16. D’Angelo R, Wicha M (2010) Stem cells in normal development and cancer. Prog Mol Biol Transl Sci 95:113–158. https://doi.org/10.1016/B978-0-12-385071-3.00006-X. [PubMed] [Cross Ref]

    Article  PubMed  Google Scholar 

  17. Pece S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73

    CAS  PubMed  Google Scholar 

  18. Ricardo S et al (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 64(11):937–946

    PubMed  Google Scholar 

  19. Ali HR et al (2011) Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance. Breast Cancer Res 13(6):R118

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Crabtree JS, Miele L (2018) Breast cancer stem cells. Biomedicine 6(3):77

    Google Scholar 

  21. Liu Y et al (2014) Lack of correlation of stem cell markers in breast cancer stem cells. Br J Cancer 110(8):2063

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Seo AN et al (2016) Expression of breast cancer stem cell markers as predictors of prognosis and response to trastuzumab in HER2-positive breast cancer. Br J Cancer 114(10):1109

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Martin TA, Jiang WG (2014) Evaluation of the expression of stem cell markers in human breast cancer reveals a correlation with clinical progression and metastatic disease in ductal carcinoma. Oncol Rep 31(1):262–272

    CAS  PubMed  Google Scholar 

  24. Sin WC, Lim CL (2017) Breast cancer stem cells—from origins to targeted therapy. Stem Cell Investig 4:96

    PubMed  PubMed Central  Google Scholar 

  25. Brugnoli F et al (2019) CD133 in breast cancer cells: more than a stem cell marker. J Oncol 2019:1

    Google Scholar 

  26. Hwang-Verslues WW et al (2009) Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One 4(12):e8377

    PubMed  PubMed Central  Google Scholar 

  27. Wang D et al (2019) Protein C receptor is a therapeutic stem cell target in a distinct group of breast cancers. Cell Res 29(10):832–845

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  Google Scholar 

  29. Yi R, Fuchs E (2011) MicroRNAs and their roles in mammalian stem cells. J Cell Sci 124(11):1775–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    CAS  PubMed  Google Scholar 

  31. Han J et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yi R et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10(2):116

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li N et al (2017) microRNAs: important regulators of stem cells. Stem Cell Res Ther 8(1):110

    PubMed  PubMed Central  Google Scholar 

  35. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    CAS  Google Scholar 

  36. Mathieu J, Ruohola-Baker H (2013) Regulation of stem cell populations by microRNAs. In: Transcriptional and translational regulation of stem cells. Springer, Berlin, pp 329–351

    Google Scholar 

  37. Zimmerman AL, Wu S (2011) MicroRNAs, cancer and cancer stem cells. Cancer Lett 300(1):10–19

    CAS  PubMed  Google Scholar 

  38. Sharma T, Hamilton R, Mandal CC (2015) miR-214: a potential biomarker and therapeutic for different cancers. Future Oncol 11(2):349–363

    CAS  PubMed  Google Scholar 

  39. Garg M (2015) Emerging role of microRNAs in cancer stem cells: implications in cancer therapy. World J Stem Cells 7(8):1078

    PubMed  PubMed Central  Google Scholar 

  40. Floor S et al (2011) Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating–cancer stem cells: distinct, overlapping or same populations. Oncogene 30(46):4609

    CAS  PubMed  Google Scholar 

  41. Schwarzenbacher D, Balic M, Pichler M (2013) The role of microRNAs in breast cancer stem cells. Int J Mol Sci 14(7):14712–14723

    PubMed  PubMed Central  Google Scholar 

  42. Shimono Y et al (2016) MicroRNA regulation of human breast cancer stem cells. J Clin Med 5(1):2

    Google Scholar 

  43. Fan X et al (2017) MicroRNAs, a subpopulation of regulators, are involved in breast cancer progression through regulating breast cancer stem cells. Oncol Lett 14(5):5069–5076

    PubMed  PubMed Central  Google Scholar 

  44. Al-Hajj M et al (2003) Erratum: prospective identification of tumorigenic breast cancer cells (proceedings of the National Academy of Sciences of the United States of America (April 1, 2003) 7: 100 (3983-3988)). Proc Natl Acad Sci U S A 100(11):6890

    CAS  Google Scholar 

  45. Ginestier C et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lehmann C et al (2012) Established breast cancer stem cell markers do not correlate with in vivo tumorigenicity of tumor-initiating cells. Int J Oncol 41(6):1932–1942

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang S-D et al (2013) Tumor cells positive and negative for the common cancer stem cell markers are capable of initiating tumor growth and generating both progenies. PLoS One 8(1):e54579

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu F et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    CAS  PubMed  Google Scholar 

  49. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20(12):1603

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wheeler BM et al (2009) The deep evolution of metazoan microRNAs. Evol Dev 11(1):50–68

    CAS  PubMed  Google Scholar 

  51. Lim Y-Y et al (2013) Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci 126(10):2256–2266

    CAS  PubMed  Google Scholar 

  52. Xu C-X et al (2012) MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. J Biol Chem 287(42):34970–34978

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xia H, Ooi LLP, Hui KM (2012) MiR-214 targets β-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma. PLoS One 7(9):e44206

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Derfoul A et al (2011) Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis 32(11):1607–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang F et al (2015) microRNA-214 enhances the invasion ability of breast cancer cells by targeting p53. Int J Mol Med 35(5):1395–1402

    PubMed  Google Scholar 

  56. Chistiakov DA et al (2015) Human miR-221/222 in physiological and atherosclerotic vascular remodeling. Biomed Res Int 2015:1

    Google Scholar 

  57. Zhao Y et al (2015) Antisense inhibition of microRNA-21 and microRNA-221 in tumor-initiating stem-like cells modulates tumorigenesis, metastasis, and chemotherapy resistance in pancreatic cancer. Target Oncol 10(4):535–548

    PubMed  Google Scholar 

  58. Aldaz B et al (2013) Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells. PLoS One 8(10):e77098

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Song J et al (2017) Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases. Front Immunol 8:56–56

    PubMed  PubMed Central  Google Scholar 

  60. Ouzounova M et al (2013) MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics 14:139

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dambal S et al (2015) The microRNA-183 cluster: the family that plays together stays together. Nucl Acids Res 43(15):7173–7188

    CAS  PubMed  Google Scholar 

  62. Saini HK, Enright AJ, Griffiths-Jones S (2008) Annotation of mammalian primary microRNAs. BMC Genomics 9(1):564

    PubMed  PubMed Central  Google Scholar 

  63. Zhu Y et al (2011) Reduced miR-128 in breast tumor–initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res 17(22):7105–7115

    CAS  PubMed  Google Scholar 

  64. Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66(10):1631–1646

    CAS  PubMed  Google Scholar 

  65. Zhang Y, Xu B, Zhang X-p (2018) Effects of miRNAs on functions of breast cancer stem cells and treatment of breast cancer. Onco Targets Ther 11:4263

    PubMed  PubMed Central  Google Scholar 

  66. Mohammadi-Yeganeh S, Mansouri A, Paryan M (2015) Targeting of miR9/NOTCH1 interaction reduces metastatic behavior in triple-negative breast cancer. Chem Biol Drug Des 86(5):1185–1191

    CAS  PubMed  Google Scholar 

  67. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11

    CAS  PubMed  Google Scholar 

  68. Harrison H et al (2010) Breast cancer stem cells: something out of notching? Cancer Res 70(22):8973–8976

    CAS  PubMed  Google Scholar 

  69. Zhou B et al (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci 104(17):7080–7085

    CAS  PubMed  Google Scholar 

  70. Bodal VK et al (2017) Association between microrna 146a and microrna 196a2 genes polymorphism and breast cancer risk in north Indian women. Asian Pac J Cancer Prev 18(9):2345

    PubMed  PubMed Central  Google Scholar 

  71. Korpal M et al (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gregory PA et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593

    CAS  PubMed  Google Scholar 

  73. Park S-M et al (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar S, Nag A, Mandal CC (2015) A comprehensive review on miR-200c, a promising cancer biomarker with therapeutic potential. Curr Drug Targets 16(12):1381–1403

    CAS  PubMed  Google Scholar 

  75. Liu B et al (2018) miR-200c/141 regulates breast cancer stem cell heterogeneity via targeting HIPK1/β-Catenin axis. Theranostics 8(21):5801

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shimono Y et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dimri M, Kang M, Dimri GP (2016) A miR-200c/141-BMI1 autoregulatory loop regulates oncogenic activity of BMI1 in cancer cells. Oncotarget 7(24):36220

    PubMed  PubMed Central  Google Scholar 

  78. Li Q et al (2014) Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene 33(20):2589

    CAS  PubMed  Google Scholar 

  79. Nagalingam A et al (2016) Indolo-pyrido-isoquinolin based alkaloid inhibits epithelial-mesenchymal transition and stemness via activation of p53-miR34a axis. AACR, Philadelphia

    Google Scholar 

  80. Ma W et al (2015) Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget 6(12):10432

    PubMed  PubMed Central  Google Scholar 

  81. Kang L et al (2015) Micro RNA-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Sci 106(6):700–708

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang H et al (2016) The influence of miR-34a expression on stemness and cytotoxic susceptibility of breast cancer stem cells. Cancer Biol Ther 17(6):614–624

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mayoral-Varo V et al (2017) miR205 inhibits stem cell renewal in SUM159PT breast cancer cells. PLoS One 12(11):e0188637

    PubMed  PubMed Central  Google Scholar 

  84. Lu J et al (2013) Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23(2):171–185

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chao C-H et al (2014) MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest 124(7):3093–3106

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang H et al (2014) MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells 32(11):2858–2868

    CAS  PubMed  Google Scholar 

  87. Liu Y et al (2011) MicroRNAs modulate the Wnt signaling pathway through targeting its inhibitors. Biochem Biophys Res Commun 408(2):259–264

    CAS  PubMed  Google Scholar 

  88. Kapinas K et al (2010) miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285(33):25221–25231

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu F et al (2012) MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J Biol Chem 287(1):465–473

    CAS  PubMed  Google Scholar 

  90. Liu S et al (2012) MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet 8(6):e1002751

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang Z et al (2014) miR-99a directly targets the mTOR signalling pathway in breast cancer side population cells. Cell Prolif 47(6):587–595

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sun X et al (2012) Role of let-7 in maintaining characteristics of breast cancer stem cells. Chin J Cell Mol Immunol 28(8):789–792

    CAS  Google Scholar 

  93. Lin Y et al (2015) MicroRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1. Sci Rep 5:9995

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang X et al (2010) Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 70(18):7176–7186

    CAS  PubMed  PubMed Central  Google Scholar 

  95. El Helou R et al (2017) miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling. Cell Rep 18(9):2256–2268

    PubMed  Google Scholar 

  96. Qian P et al (2012) Loss of SNAIL regulated miR-128-2 on chromosome 3p22. 3 targets multiple stem cell factors to promote transformation of mammary epithelial cells. Cancer Res 72(22):6036–6050

    CAS  PubMed  Google Scholar 

  97. Wang Y et al (2011) Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30(12):1470

    CAS  PubMed  Google Scholar 

  98. Wellner U et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11(12):1487

    CAS  PubMed  Google Scholar 

  99. Leung WK et al (2015) Wnt/β-catenin activates MiR-183/96/182 expression in hepatocellular carcinoma that promotes cell invasion. Cancer Lett 362(1):97–105

    CAS  PubMed  Google Scholar 

  100. Isobe T et al (2014) miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. Elife 3:e01977

    PubMed Central  Google Scholar 

  101. Cao M et al (2014) MicroRNA-495 induces breast cancer cell migration by targeting JAM-A. Protein Cell 5(11):862–872

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hwang-Verslues WW et al (2011) miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene 30(21):2463–2474

    CAS  PubMed  Google Scholar 

  103. Wang Y, Lui WY (2012) Transforming growth factor-beta1 attenuates junctional adhesion molecule-A and contributes to breast cancer cell invasion. Eur J Cancer 48(18):3475–3487

    CAS  PubMed  Google Scholar 

  104. Ke J et al (2015) Role of microRNA221 in regulating normal mammary epithelial hierarchy and breast cancer stem-like cells. Oncotarget 6(6):3709

    PubMed  PubMed Central  Google Scholar 

  105. Nandy SB et al (2015) MicroRNA-125a influences breast cancer stem cells by targeting leukemia inhibitory factor receptor which regulates the Hippo signaling pathway. Oncotarget 6(19):17366

    PubMed  PubMed Central  Google Scholar 

  106. Wang X et al (2013) Krüppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a. Am J Cancer Res 3(4):356

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Han M et al (2012) Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One 7(6):e39520–e39520

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Stinson S et al (2011) miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci Signal 4(186):pt5

    CAS  PubMed  Google Scholar 

  109. Smith AL et al (2012) The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 31(50):5162

    CAS  PubMed  PubMed Central  Google Scholar 

  110. de Smet MD, Meenken CJ, van den Horn GJ (1999) Fomivirsen - a phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul Immunol Inflamm 7(3–4):189–198

    PubMed  Google Scholar 

  111. Zhang Y, Wang Z, Gemeinhart RA (2013) Progress in microRNA delivery. J Control Release 172(3):962–974

    CAS  PubMed  PubMed Central  Google Scholar 

  112. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133

    Google Scholar 

  113. Ohno S-I et al (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191

    CAS  PubMed  Google Scholar 

  114. Yin J et al (2013) A Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells. PLoS One 8(9):e73268

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Tanei T et al (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15(12):4234–4241

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandyopadhayaya, S., Mandal, C.C. (2020). A Differential Role of miRNAs in Regulation of Breast Cancer Stem Cells. In: Pathak, S., Banerjee, A. (eds) Cancer Stem Cells: New Horizons in Cancer Therapies. Springer, Singapore. https://doi.org/10.1007/978-981-15-5120-8_5

Download citation

Publish with us

Policies and ethics