Skip to main content

Formation Channels of Single and Binary Stellar-Mass Black Holes

  • Living reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

These are exciting times for binary black holes (BBHs). LIGO and Virgo detections are progressively drawing a spectacular fresco of BBH masses, spins, and merger rates. In this review, we discuss the main formation channels of BBHs from stellar evolution and dynamics. Uncertainties on massive star evolution (e.g., stellar winds, rotation, overshooting, and nuclear reaction rates), core-collapse supernovae, and pair instability still hamper our comprehension of the mass spectrum and spin distribution of black holes (BHs), but substantial progress has been done in the field over the last few years. On top of this, the efficiency of mass transfer in a binary system and the physics of common envelope substantially affect the final BBH demography. Dynamical processes in dense stellar systems can trigger the formation of BHs in the mass gap and intermediate-mass BHs via hierarchical BH mergers and via multiple stellar collisions. Finally, we discuss the importance of reconstructing the cosmic evolution of BBHs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aasi J, Abbott BP, Abbott R, Abbott T, Abernathy MR, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya V, Affeldt C, Aggarwal N, Aguiar OD, Ain A, Ajith P et al (2015) Advanced ligo. Class Quan Grav 32(7):074001

    Article  ADS  Google Scholar 

  2. Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    Article  ADS  MathSciNet  Google Scholar 

  3. Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX et al (2016) Astrophysical Implications of the Binary Black-hole Merger GW150914. Astrophys J Lett 818:L22

    Article  ADS  Google Scholar 

  4. Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX et al (2016) Binary black hole mergers in the first advanced LIGO observing run. Phys Rev X 6(4):041015

    Google Scholar 

  5. Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX et al (2016) GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett 116(24):241103

    Article  ADS  Google Scholar 

  6. Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams C, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K et al (2020) GW190425: observation of a compact binary coalescence with total mass ∼ 3.4 M. Astrophys J Lett 892(1):L3

    Google Scholar 

  7. Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams C, Adhikari RX, Adya VB, Affeldt C, Agathos M et al (2019) GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys Rev X 9(3):031040

    Google Scholar 

  8. Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams C, Adhikari RX, Adya VB, Affeldt C, Agathos M et al (2019) Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced virgo. Astrophys J Lett 882(2):L24

    Article  ADS  Google Scholar 

  9. Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams C, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P et al (2020) Prospects for observing and localizing gravitational-wave transients with advanced LIGO, advanced virgo and KAGRA. Living Rev Relativ 23(1):3

    Article  ADS  Google Scholar 

  10. Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB et al (2017) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett 848:L12

    Article  ADS  Google Scholar 

  11. Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX et al (2017) Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a. Astrophys J Lett 848(2):L13

    Article  ADS  Google Scholar 

  12. Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB et al (2017) GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys Rev Lett 118(22):221101

    Google Scholar 

  13. Abbott DC (1982) The theory of radiatively driven stellar winds. II. The line acceleration. Astrophys J 259:282–301

    Article  ADS  Google Scholar 

  14. Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P et al (2020) GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. arXiv e-prints, page arXiv:2010.14527

    Google Scholar 

  15. Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams C, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aich A, Aiello L, Ain A, Ajith P, Akcay S, Allen G et al (2020) GW190412: observation of a binary-black-hole coalescence with asymmetric masses. Phys Rev D 102(4):043015

    Article  ADS  Google Scholar 

  16. Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams C, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aich A, Aiello L, Ain A, Ajith P et al (2020) GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys J Lett 896(2):L44

    Google Scholar 

  17. Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams C, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aich A, Aiello L, Ain A, Ajith P et al (2020) GW190521: a binary black hole merger with a total mass of 150 M. Phys Rev Lett 125(10):101102

    Article  ADS  Google Scholar 

  18. Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams C, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aich A, Aiello L, Ain A, Ajith P et al (2020) Properties and astrophysical implications of the 150 M binary black hole merger GW190521. Astrophys J Lett 900(1):L13

    Article  ADS  Google Scholar 

  19. Acernese F, Agathos M, Agatsuma K, Aisa D, Allemandou N, Allocca A, Amarni J, Astone P, Balestri G, Ballardin G et al (2015) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quan Grav 32(2):024001

    Article  ADS  Google Scholar 

  20. Ackley K, Amati L, Barbieri C, Bauer FE, Benetti S, Bernardini MG, Bhirombhakdi K, Botticella MT, Branchesi M, Brocato E, Bruun SH, Bulla M, Campana S, Cappellaro E, Castro-Tirado JA, Chambers KC, Chaty S, Chen TW, Ciolfi R, Coleiro A, Copperwheat CM, Covino S, Cutter R, D’Ammando F, D’Avanzo P, De Cesare G, D’Elia V, Della Valle M, Denneau L, De Pasquale M, Dhillon VS, Dyer MJ, Elias-Rosa N, Evans PA, Eyles-Ferris ARJ, Fiore A, Fraser M, Fruchter AS, Fynbo JPU, Galbany L, Gall C, Galloway DK, Getman FI, Ghirlanda G, Gillanders JH, Gomboc A, Gompertz BP, González-Fernández C, González-Gaitán S, Grado A, Greco G, Gromadzki M, Groot PJ, Gutiérrez CP, Heikkilä T, Heintz KE, Hjorth J, Hu YD, Huber ME, Inserra C, Izzo L, Japelj J, Jerkstrand A, Jin ZP, Jonker PG, Kankare E, Kann DA, Kennedy M, Kim S, Klose S, Kool EC, Kotak R, Kuncarayakti H, Lamb GP, Leloudas G, Levan AJ, Longo F, Lowe TB, Lyman JD, Magnier E, Maguire K, Maiorano E, Mandel I, Mapelli M, Mattila S, McBrien OR, Melandri A, Michałowski MJ, Milvang-Jensen B, Moran S, Nicastro L, Nicholl M, Nicuesa Guelbenzu A, Nuttal L, Oates SR, O’Brien PT, Onori F, Palazzi E, Patricelli B, Perego A, Torres MAP, Perley DA, Pian E, Pignata G, Piranomonte S, Poshyachinda S, Possenti A, Pumo ML, Quirola-Vásquez J, Ragosta F, Ramsay G, Rau A, Rest A, Reynolds TM, Rosetti SS, Rossi A, Rosswog S, Sabha NB, Sagués Carracedo A, Salafia OS, Salmon L, Salvaterra R, Savaglio S, Sbordone L, Schady P, Schipani P, Schultz ASB, Schweyer T, Smartt SJ, Smith KW, Smith M, Sollerman J, Srivastav S, Stanway ER, Starling RLC, Steeghs D, Stratta G, Stubbs CW, Tanvir NR, Testa V, Thrane E, Tonry JL, Turatto M, Ulaczyk K, van der Horst AJ, Vergani SD, Walton NA, Watson D, Wiersema K, Wiik K, Wyrzykowski Ł, Yang S, Yi S-X, Young DR (2020) Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. Astron Astrophys 643:A113

    Article  Google Scholar 

  21. Adams SM, Kochanek CS, Gerke JR, Stanek KZ, Dai X (2017) The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star. MNRAS 468(4):4968–4981

    Article  ADS  Google Scholar 

  22. Alexander KD, Berger E, Fong W, Williams PKG, Guidorzi C, Margutti R, Metzger BD, Annis J, Blanchard PK, Brout D, Brown DA, Chen H-Y, Chornock R, Cowperthwaite PS, Drout M, Eftekhari T, Frieman J, Holz DE, Nicholl M, Rest A, Sako M, Soares M-Santos, Villar VA (2017) The electromagnetic counterpart of the binary neutron star merger ligo/virgo gw170817. vi. radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta. Astrophys J Lett 848(2):L21

    Google Scholar 

  23. Antonini F, Rasio FA (2016) Merging black hole binaries in galactic nuclei: implications for advanced-LIGO detections. Astrophys J 831:187

    Article  ADS  Google Scholar 

  24. Antonini F, Toonen S, Hamers AS (2017) Binary black hole mergers from field triples: properties, rates, and the impact of stellar evolution. Astrophys J 841:77

    Article  ADS  Google Scholar 

  25. Antonini F, Gieles M (2020) Population synthesis of black hole binary mergers from star clusters. MNRAS 492(2):2936–2954

    Article  ADS  Google Scholar 

  26. Antonini F, Gieles M, Gualandris A (2019) Black hole growth through hierarchical black hole mergers in dense star clusters: implications for gravitational wave detections. MNRAS 486(4):5008–5021

    Article  ADS  Google Scholar 

  27. Antonini F, Perets HB (2012) Secular evolution of compact binaries near massive black holes: gravitational wave sources and other exotica. Astrophys J 757(1):27

    Article  ADS  Google Scholar 

  28. Arca Sedda M, Askar A, Giersz M (2018) MOCCA-survey database – I. Unravelling black hole subsystems in globular clusters. MNRAS 479(4):4652–4664

    Article  ADS  Google Scholar 

  29. Artale CM, Bouffanais Y, Mapelli M, Giacobbo N, Sabha NB, Santoliquido F, Pasquato M, Spera M (2020) An astrophysically motivated ranking criterion for low-latency electromagnetic follow-up of gravitational wave events. MNRAS 495(2):1841–1852

    Article  ADS  Google Scholar 

  30. Celeste Artale M, Mapelli M, Bouffanais Y, Giacobbo N, Pasquato M, Spera M (2020) Mass and star formation rate of the host galaxies of compact binary mergers across cosmic time. MNRAS 491(3):3419–3434

    Article  ADS  Google Scholar 

  31. Celeste Artale M, Mapelli M, Giacobbo N, Sabha NB, Spera M, Santoliquido F, Bressan A (2019) Host galaxies of merging compact objects: mass, star formation rate, metallicity, and colours. MNRAS 487(2):1675–1688

    Article  ADS  Google Scholar 

  32. Arzoumanian Z, Chernoff DF, Cordes JM (2002) The velocity distribution of isolated radio pulsars. Astrophys J 568:289–301

    Article  ADS  Google Scholar 

  33. Askar A, Arca Sedda M, Giersz M (2018) MOCCA-SURVEY database I: galactic globular clusters harbouring a black hole subsystem. MNRAS 478:1844–1854

    Article  ADS  Google Scholar 

  34. Askar A, Szkudlarek M, Gondek-Rosińska D, Giersz M, Bulik T (2017) MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464:L36–L40

    Google Scholar 

  35. Baibhav V, Berti E, Gerosa D, Mapelli M, Giacobbo N, Bouffanais Y, Di Carlo UN (2019) Gravitational-wave detection rates for compact binaries formed in isolation: LIGO/Virgo O3 and beyond. Phys Rev D 100(6):064060

    Article  ADS  Google Scholar 

  36. Banerjee S (2017) Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation. MNRAS 467:524–539

    ADS  Google Scholar 

  37. Banerjee S (2018) Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation – II. MNRAS 473:909–926

    Article  ADS  Google Scholar 

  38. Banerjee S, Baumgardt H, Kroupa P (2010) Stellar-mass black holes in star clusters: implications for gravitational wave radiation. MNRAS 402:371–380

    Article  ADS  Google Scholar 

  39. Banerjee S (2021) Stellar-mass black holes in young massive and open stellar clusters – IV. Updated stellar-evolutionary and black hole spin models and comparisons with the LIGO-Virgo O1/O2 merger-event data. MNRAS 500(3):3002–3026

    Article  ADS  Google Scholar 

  40. Barkat Z, Rakavy G, Sack N (1967) Dynamics of supernova explosion resulting from pair formation. Phys Rev Lett 18(10):379–381

    Article  ADS  Google Scholar 

  41. Barrett JW, Gaebel SM, Neijssel CJ, Vigna-Gómez A, Stevenson S, Berry CPL, Farr WM, Mandel I (2018) Accuracy of inference on the physics of binary evolution from gravitational-wave observations. MNRAS 477(4):4685–4695

    Article  ADS  Google Scholar 

  42. Bartos I, Kocsis B, Haiman Z, Márka S (2017) Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei. Astrophys J 835(2):165

    Article  ADS  Google Scholar 

  43. Belczynski K, Bulik T, Fryer CL, Ruiter A, Valsecchi F, Vink JS, Hurley JR (2010) On the maximum mass of stellar black holes. Astrophys J 714:1217–1226

    Article  ADS  Google Scholar 

  44. Belczynski K, Heger A, Gladysz W, Ruiter AJ, Woosley S, Wiktorowicz G, Chen H-Y, Bulik T, O’Shaughnessy R, Holz DE, Fryer CL, Berti E (2016) The effect of pair-instability mass loss on black-hole mergers. Astron Astrophys 594:A97

    Article  Google Scholar 

  45. Belczynski K, Holz DE, Bulik T, O’Shaughnessy R (2016) The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534:512–515

    Article  ADS  Google Scholar 

  46. Belczynski K, Kalogera V, Rasio FA, Taam RE, Zezas A, Bulik T, Maccarone TJ, Ivanova N (2008) Compact object modeling with the startrack population synthesis code. Astrophys J Suppl 174:223–260

    Article  ADS  Google Scholar 

  47. Belczynski K, Klencki J, Fields CE, Olejak A, Berti E, Meynet G, Fryer CL, Holz DE, O’Shaughnessy R, Brown DA, Bulik T, Leung SC, Nomoto K, Madau P, Hirschi R, Kaiser E, Jones S, Mondal S, Chruslinska M, Drozda P, Gerosa D, Doctor Z, Giersz M, Ekstrom S, Georgy C, Askar A, Baibhav V, Wysocki D, Natan T, Farr WM, Wiktorowicz G, Coleman Miller M, Farr B, Lasota JP (2020) Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes. Astron Astrophys 636:A104

    Article  Google Scholar 

  48. Belczynski K, Sadowski A, Rasio FA (2004) A comprehensive study of young black hole populations. Astrophys J 611:1068–1079

    Article  ADS  Google Scholar 

  49. Benacquista MJ, Downing JMB (2013) Relativistic binaries in globular clusters. Living Rev Relativ 16(1):4

    Article  ADS  MATH  Google Scholar 

  50. Beniamini P, Piran T (2016) Formation of double neutron star systems as implied by observations. MNRAS 456:4089–4099

    Article  ADS  Google Scholar 

  51. Bethe HA, Brown GE (1998) Evolution of binary compact objects that merge. Astrophys J 506:780–789

    Article  ADS  Google Scholar 

  52. Bethe HA, Wilson JR (1985) Revival of a stalled supernova shock by neutrino heating. Astrophys J 295:14–23

    Article  ADS  Google Scholar 

  53. Bird S, Cholis I, Muñoz JB, Ali-Haïmoud Y, Kamionkowski M, Kovetz ED, Raccanelli A, Riess AG (2016) Did LIGO detect dark matter? Phys Rev Lett 116(20):201301

    Article  ADS  Google Scholar 

  54. Boco L, Lapi A, Goswami S, Perrotta F, Baccigalupi C, Danese L (2019) Merging rates of compact binaries in galaxies: perspectives for gravitational wave detections. Astrophys J 881(2):157

    Article  ADS  Google Scholar 

  55. Böker T, Laine S, van der Marel RP, Sarzi M, Rix H-W, Ho LC, Shields JC (2002) A hubble space telescope census of nuclear star clusters in late-type spiral galaxies. I. Observations and image analysis. Astron J 123(3):1389–1410

    Google Scholar 

  56. Bondi H, Hoyle F (1944) On the mechanism of accretion by stars. MNRAS 104:273

    Article  ADS  Google Scholar 

  57. Bouffanais Y, Mapelli M, Gerosa D, Di Carlo UN, Giacobbo N, Berti E, Baibhav V (2019) Constraining the fraction of binary black holes formed in isolation and young star clusters with gravitational-wave data. Astrophys J 886(1):25

    Article  ADS  Google Scholar 

  58. Bouffanais Y, Mapelli M, Santoliquido F, Giacobbo N, Iorio G, Costa G (2020) Constraining accretion efficiency in massive binary stars with LIGO-Virgo black holes. arXiv e-prints, page arXiv:2010.11220

    Google Scholar 

  59. Boylan-Kolchin M, Springel V, White SDM, Jenkins A, Lemson G (2009) Resolving cosmic structure formation with the Millennium-II Simulation. MNRAS 398:1150–1164

    Article  ADS  Google Scholar 

  60. Bray JC, Eldridge JJ (2016) Neutron star kicks and their relationship to supernovae ejecta mass. MNRAS 461(4):3747–3759

    Article  ADS  Google Scholar 

  61. Bray JC, Eldridge JJ (2018) Neutron star kicks – II. Revision and further testing of the conservation of momentum ‘kick’ model. MNRAS 480(4):5657–5672

    Article  ADS  Google Scholar 

  62. Breen PG, Heggie DC (2013) Dynamical evolution of black hole subsystems in idealized star clusters. MNRAS 432(4):2779–2797

    Article  ADS  Google Scholar 

  63. Burrows A, Vartanyan D, Dolence JC, Skinner MA, Radice D (2018) Crucial physical dependencies of the core-collapse supernova mechanism. Space Sci Rev 214(1):33

    Article  ADS  Google Scholar 

  64. Campanelli M, Lousto C, Zlochower Y, Merritt D (2007) Large merger recoils and spin flips from generic black hole binaries. Astrophys J Lett 659(1):L5–L8

    Article  ADS  Google Scholar 

  65. Cao L, Lu Y, Zhao Y (2018) Host galaxy properties of mergers of stellar binary black holes and their implications for advanced LIGO gravitational wave sources. MNRAS 474:4997–5007

    Article  ADS  Google Scholar 

  66. Carr B, Kühnel F, Sandstad M (2016) Primordial black holes as dark matter. Phys Rev D 94(8):083504

    Article  ADS  Google Scholar 

  67. Carr BJ, Hawking SW (1974) Black holes in the early Universe. MNRAS 168:399–416

    Article  ADS  Google Scholar 

  68. Chandrasekhar S (1931) The maximum mass of ideal white dwarfs. Astrophys J 74:81

    Article  ADS  MATH  Google Scholar 

  69. Chandrasekhar S (1943) Dynamical friction. I. General considerations: the coefficient of dynamical friction. Astrophys J 97:255

    Google Scholar 

  70. Chen Y, Bressan A, Girardi L, Marigo P, Kong X, Lanza A (2015) PARSEC evolutionary tracks of massive stars up to 350 M at metallicities 0.0001≤Z≤0.04. MNRAS 452:1068–1080

    Article  ADS  Google Scholar 

  71. Chieffi A, Limongi M (2013) Pre-supernova evolution of rotating solar metallicity stars in the mass range 13-120 M and their explosive yields. Astrophys J 764:21

    Article  ADS  Google Scholar 

  72. Chieffi A, Limongi M (2020) The presupernova core mass-radius relation of massive stars: understanding its formation and evolution. Astrophys J 890(1):43

    Article  ADS  Google Scholar 

  73. Chornock R, Berger E, Kasen D, Cowperthwaite PS, Nicholl M, Villar VA, Alexander KD, Blanchard PK, Eftekhari T, Fong W, Margutti R et al (2017) The electromagnetic counterpart of the binary neutron star merger ligo/virgo gw170817. IV. Detection of near-infrared signatures of r -process nucleosynthesis with gemini-south. Astrophys J Lett 848(2):L19

    Google Scholar 

  74. Chruślińska M, Jeřábková T, Nelemans G, Yan Z (2020) The effect of the environment-dependent IMF on the formation and metallicities of stars over the cosmic history. Astron Astrophys 636:A10

    Article  ADS  Google Scholar 

  75. Chruslinska M, Nelemans G (2019) Metallicity of stars formed throughout the cosmic history based on the observational properties of star-forming galaxies. MNRAS 488(4):5300–5326

    Article  ADS  Google Scholar 

  76. Chruslinska M, Nelemans G, Belczynski K (2019) The influence of the distribution of cosmic star formation at different metallicities on the properties of merging double compact objects. MNRAS 482(4):5012–5017

    Article  ADS  Google Scholar 

  77. Clausen D, Piro AL, Ott CD (2015) The black hole formation probability. Astrophys J 799(2):190

    Article  ADS  Google Scholar 

  78. Colgate SA (1967) Stellar coalescence and the multiple supernova interpretation of quasi-stellar sources. Astrophys J 150:163

    Article  ADS  Google Scholar 

  79. Colgate SA, White RH (1966) The hydrodynamic behavior of supernovae explosions. Astrophys J 143:626

    Article  ADS  Google Scholar 

  80. Colpi M, Mapelli M, Possenti A (2003) Probing the presence of a single or binary black hole in the globular cluster NGC 6752 with pulsar dynamics. Astrophys J 599:1260–1271

    Article  ADS  Google Scholar 

  81. Costa G, Bressan A, Mapelli M, Marigo P, Iorio G, Spera M (2021) Formation of GW190521 from stellar evolution: the impact of the hydrogen-rich envelope, dredge-up, and 12C(α, γ)16O rate on the pair-instability black hole mass gap. MNRAS 501(3):4514–4533

    Article  ADS  Google Scholar 

  82. Coulter DA, Foley RJ, Kilpatrick CD, Drout MR, Piro AL, Shappee BJ, Siebert MR, Simon JD, Ulloa N, Kasen D, Madore BF, Murguia-Berthier A, Pan Y-C, Prochaska JX, Ramirez-Ruiz E, Rest A, Rojas-Bravo C (2017) Swope supernova survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358:1556–1558

    Article  ADS  Google Scholar 

  83. Cowperthwaite PS, Berger E, Villar VA, Metzger BD, Nicholl M, Chornock R, Blanchard PK, Fong W, Margutti R, Soares-Santos M, Alexander KD, Allam S, Annis J, Brout D, Brown DA, Butler RE, Chen H-Y, Diehl HT, Doctor Z et al (2017) The electromagnetic counterpart of the binary neutron star merger ligo/virgo gw170817. II. uv, optical, and near-infrared light curves and comparison to kilonova models. Astrophys J Lett 848(2):L17

    Google Scholar 

  84. De S, MacLeod M, Everson RW, Antoni A, Mandel I, Ramirez-Ruiz E (2020) Common envelope wind tunnel: the effects of binary mass ratio and implications for the accretion-driven growth of LIGO binary black holes. Astrophys J 897(2):130

    Article  ADS  Google Scholar 

  85. De Cia A, Ledoux C, Petitjean P, Savaglio S (2018) The cosmic evolution of dust-corrected metallicity in the neutral gas. Astron Astrophys 611:A76

    Article  Google Scholar 

  86. de Mink SE, Mandel I (2016) The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO. MNRAS 460:3545–3553

    Article  ADS  Google Scholar 

  87. deBoer RJ, Görres J, Wiescher M, Azuma RE, Best A, Brune CR, Fields CE, Jones S, Pignatari M, Sayre D, Smith K, Timmes FX, Uberseder E (2017) The 12C(α ,γ )16O reaction and its implications for stellar helium burning. Rev Mod Phys 89(3):035007

    Article  ADS  Google Scholar 

  88. Di Carlo UN, Giacobbo N, Mapelli M, Pasquato M, Spera M, Wang L, Haardt F (2019) Merging black holes in young star clusters. MNRAS 487(2):2947–2960

    Article  ADS  Google Scholar 

  89. Di Carlo UN, Mapelli M, Bouffanais Y, Giacobbo N, Santoliquido F, Bressan A, Spera M, Haardt F (2020) Binary black holes in the pair instability mass gap. MNRAS 497(1):1043–1049

    Article  ADS  Google Scholar 

  90. Di Carlo UN, Mapelli M, Giacobbo N, Spera M, Bouffanais Y, Rastello S, Santoliquido F, Pasquato M, Ballone A, Trani AA, Torniamenti S, Haardt F (2020) Binary black holes in young star clusters: the impact of metallicity. MNRAS 498(1):495–506

    Article  ADS  Google Scholar 

  91. Dominik M, Belczynski K, Fryer C, Holz DE, Berti E, Bulik T, Mandel I, O’Shaughnessy R (2013) Double compact objects. II. Cosmological merger rates. Astrophys J 779:72

    Google Scholar 

  92. Dominik M, Berti E, O’Shaughnessy R, Mandel I, Belczynski K, Fryer C, Holz DE, Bulik T, Pannarale F (2015) Double compact objects III: gravitational-wave detection rates. Astrophys J 806:263

    Article  ADS  Google Scholar 

  93. Downing JMB, Benacquista MJ, Giersz M, Spurzem R (2010) Compact binaries in star clusters – I. Black hole binaries inside globular clusters. MNRAS 407:1946–1962

    Google Scholar 

  94. Downing JMB, Benacquista MJ, Giersz M, Spurzem R (2011) Compact binaries in star clusters – II. Escapers and detection rates. MNRAS 416:133–147

    Google Scholar 

  95. Duchêne G, Kraus A (2013) Stellar multiplicity. Annu Rev Astron Astrophys 51(1):269–310

    Article  ADS  Google Scholar 

  96. Ducoin JG, Corre D, Leroy N, Le Floch E (2020) Optimizing gravitational waves follow-up using galaxies stellar mass. MNRAS 492(4):4768–4779

    Article  ADS  Google Scholar 

  97. Dvorkin I, Vangioni E, Silk J, Uzan J-P, Olive KA (2016) Metallicity-constrained merger rates of binary black holes and the stochastic gravitational wave background. MNRAS 461:3877–3885

    Article  ADS  Google Scholar 

  98. Dvorkin I, Uzan J-P, Vangioni E, Silk J (2018) Exploring stellar evolution with gravitational-wave observations. MNRAS 479(1):121–129

    Article  ADS  Google Scholar 

  99. Eggleton PP (1983) Aproximations to the radii of Roche lobes. Astrophys J 268:368–369

    Article  ADS  Google Scholar 

  100. Eggleton P (2006) Evolutionary processes in binary and multiple stars. Cambridge University Press

    Book  Google Scholar 

  101. Ekström S, Georgy C, Eggenberger P, Meynet G, Mowlavi N, Wyttenbach A, Granada A, Decressin T, Hirschi R, Frischknecht U, Charbonnel C, Maeder A (2012) Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron Astrophys 537:A146

    Google Scholar 

  102. Eldridge JJ, Stanway ER (2016) BPASS predictions for binary black hole mergers. MNRAS 462(3):3302–3313

    Article  ADS  Google Scholar 

  103. Eldridge JJ, Stanway ER, Tang PN (2019) A consistent estimate for gravitational wave and electromagnetic transient rates. MNRAS 482:870–880

    Article  ADS  Google Scholar 

  104. Eldridge JJ, Stanway ER, Xiao L, McClelland LAS, Taylor G, Ng M, Greis SML, Bray JC (2017) Binary population and spectral synthesis version 2.1: construction, observational verification, and new results. Publ Astron Soc Aust 34:e058

    Google Scholar 

  105. Ertl T, Janka HT, Woosley SE, Sukhbold T, Ugliano M (2016) A Two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism. Astrophys J 818(2):124

    Article  ADS  Google Scholar 

  106. Ertl T, Woosley SE, Sukhbold T, Janka HT (2020) The explosion of helium stars evolved with mass loss. Astrophys J 890(1):51

    Article  ADS  Google Scholar 

  107. Esposito P, Israel GL, Milisavljevic D, Mapelli M, Zampieri L, Sidoli L, Fabbiano G, Rodríguez Castillo GA (2015) Periodic signals from the circinus region: two new cataclysmic variables and the ultraluminous X-ray source candidate GC X-1. MNRAS 452(2):1112–1127

    Article  ADS  Google Scholar 

  108. Farmer R, Renzo M, de Mink SE, Fishbach M, Justham S (2020) Constraints from gravitational-wave detections of binary black hole mergers on the 12C(α, γ)16O rate. Astrophys J Lett 902(2):L36

    Article  ADS  Google Scholar 

  109. Farmer R, Renzo M, de Mink SE, Marchant P, Justham S (2019) Mind the gap: the location of the lower edge of the pair-instability supernova black hole mass gap. Astrophys J 887(1):53

    Article  ADS  Google Scholar 

  110. Farr B, Holz DE, Farr WM (2018) Using spin to understand the formation of LIGO and virgo’s black holes. Astrophys J Lett 854(1):L9

    Article  ADS  Google Scholar 

  111. Farr WM, Sravan N, Cantrell A, Kreidberg L, Bailyn CD, Mandel I, Kalogera V (2011) The mass distribution of stellar-mass black holes. Astrophys J 741:103

    Article  ADS  Google Scholar 

  112. Farr WM, Stevenson S, Coleman Miller M, Mand el I, Farr B, Vecchio A (2017) Distinguishing spin-aligned and isotropic black hole populations with gravitational waves. Nature 548(7667):426–429

    Article  ADS  Google Scholar 

  113. Fernández R, Quataert E, Kashiyama K, Coughlin ER (2018) Mass ejection in failed supernovae: variation with stellar progenitor. MNRAS 476(2):2366–2383

    Article  ADS  Google Scholar 

  114. Ferrarese L, Côté P, Dalla Bontà E, Peng EW, Merritt D, Jordán A, Blakeslee JP, Haşegan M, Mei S, Piatek S, Tonry JL, West MJ (2006) A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies. Astrophys J Lett 644(1):L21–L24

    Article  ADS  Google Scholar 

  115. Fishbach M, Holz DE (2020) Minding the gap: GW190521 as a straddling binary. Astrophys J Lett 904(2):L26

    Article  ADS  Google Scholar 

  116. Foglizzo T, Kazeroni R, Guilet J, Masset F, González M, Krueger BK, Novak J, Oertel M, Margueron J, Faure J, Martin N, Blottiau P, Peres B, Durand G (2015) The explosion mechanism of core-collapse supernovae: progress in supernova theory and experiments. Publ Astron Soc Aust 32:e009

    Article  ADS  Google Scholar 

  117. Fong W, Berger E (2013) The locations of short gamma-ray bursts as evidence for compact object binary progenitors. Astrophys J 776:18

    Article  ADS  Google Scholar 

  118. Fowler WA, Hoyle F (1964) Neutrino processes and pair formation in massive stars and supernovae. Astrophys J Suppl 9:201

    Article  ADS  Google Scholar 

  119. Fragione G, Kocsis B (2018) Black hole mergers from an evolving population of globular clusters. Phys Rev Lett 121(16):161103

    Article  ADS  Google Scholar 

  120. Fragione G, Leigh NWC, Perna R (2019) Black hole and neutron star mergers in galactic nuclei: the role of triples. MNRAS 488(2):2825–2835

    Article  ADS  Google Scholar 

  121. Fragione G, Loeb A, Rasio FA (2020) On the origin of GW190521-like events from repeated black hole mergers in star clusters. Astrophys J Lett 902(1):L26

    Article  ADS  Google Scholar 

  122. Fragione G, Silk J (2020) Repeated mergers and ejection of black holes within nuclear star clusters. MNRAS 498(4):4591–4604

    Article  ADS  Google Scholar 

  123. Fragos T, Willems B, Kalogera V, Ivanova N, Rockefeller G, Fryer CL, Young PA (2009) Understanding compact object formation and natal kicks. II. The case of XTE J1118 + 480. Astrophys J 697(2):1057–1070

    Article  ADS  Google Scholar 

  124. Fragos T, Andrews JJ, Ramirez-Ruiz E, Meynet G, Kalogera V, Taam RE, Zezas A (2019) The complete evolution of a neutron-star binary through a common envelope phase using 1D hydrodynamic simulations. Astrophys J Lett 883(2):L45

    Article  ADS  Google Scholar 

  125. Freitag M, Atakan Gürkan M, Rasio FA (2006) Runaway collisions in young star clusters – II. Numerical results. MNRAS 368(1):141–161

    Article  ADS  Google Scholar 

  126. Fryer C, Burrows A, Benz W (1998) Population syntheses for neutron star systems with intrinsic kicks. Astrophys J 496:333–351

    Article  ADS  Google Scholar 

  127. Fryer CL (1999) Mass limits for black hole formation. Astrophys J 522:413–418

    Article  ADS  Google Scholar 

  128. Fryer CL, Belczynski K, Wiktorowicz G, Dominik M, Kalogera V, Holz DE (2012) Compact remnant mass function: dependence on the explosion mechanism and metallicity. Astrophys J 749:91

    Article  ADS  Google Scholar 

  129. Fryer CL, Kalogera V (2001) Theoretical black hole mass distributions. Astrophys J 554:548–560

    Article  ADS  Google Scholar 

  130. Fujii MS, Tanikawa A, Makino J (2017) The detection rates of merging binary black holes originating from star clusters and their mass function. Publ Astron Soc Jpn 69:94

    Article  ADS  Google Scholar 

  131. Fuller J, Ma L (2019) Most black holes are born very slowly rotating. Astrophys J Lett 881(1):L1

    Article  ADS  Google Scholar 

  132. Fuller J, Piro AL, Jermyn AS (2019) Slowing the spins of stellar cores. MNRAS 485(3):3661–3680

    Article  ADS  Google Scholar 

  133. Gaburov E, Lombardi JC, Portegies Zwart S (2008) Mixing in massive stellar mergers. MNRAS 383(1):L5–L9

    Article  ADS  Google Scholar 

  134. Gaburov E, Lombardi Jr JC, Portegies Zwart S (2010) On the onset of runaway stellar collisions in dense star clusters – II. Hydrodynamics of three-body interactions. MNRAS 402:105–126

    Google Scholar 

  135. Gayathri V, Healy J, Lange J, O’Brien B, Szczepanczyk M, Bartos I, Campanelli M, Klimenko S, Lousto C, O’Shaughnessy R (2020) GW190521 as a Highly Eccentric Black Hole Merger. arXiv e-prints, page arXiv:2009.05461

    Google Scholar 

  136. Georgy C, Meynet G, Ekström S, Wade GA, Petit V, Keszthelyi Z, Hirschi R (2017) Possible pair-instability supernovae at solar metallicity from magnetic stellar progenitors. Astron Astrophys 599:L5

    Article  ADS  Google Scholar 

  137. Gerke JR, Kochanek CS, Stanek KZ (2015) The search for failed supernovae with the large binocular telescope: first candidates. MNRAS 450(3):3289–3305

    Article  ADS  Google Scholar 

  138. Gerosa D, Berti E (2017) Are merging black holes born from stellar collapse or previous mergers? Phys Rev D 95(12):124046

    Article  ADS  Google Scholar 

  139. Gerosa D, Kesden M, Berti E, O’Shaughnessy R, Sperhake U (2013) Resonant-plane locking and spin alignment in stellar-mass black-hole binaries: a diagnostic of compact-binary formation. Phys Rev D 87(10):104028

    Article  ADS  Google Scholar 

  140. Giacobbo N, Mapelli M (2018) The progenitors of compact-object binaries: impact of metallicity, common envelope and natal kicks. MNRAS 480:2011–2030

    Article  ADS  Google Scholar 

  141. Giacobbo N, Mapelli M (2019) The impact of electron-capture supernovae on merging double neutron stars. MNRAS 482:2234–2243

    Article  ADS  Google Scholar 

  142. Giacobbo N, Mapelli M, Spera M (2018) Merging black hole binaries: the effects of progenitor’s metallicity, mass-loss rate and Eddington factor. MNRAS 474:2959–2974

    Article  ADS  Google Scholar 

  143. Giacobbo N, Mapelli M (2020) Revising natal kick prescriptions in population synthesis simulations. Astrophys J 891(2):141

    Article  ADS  Google Scholar 

  144. Giersz M, Leigh N, Hypki A, Lützgendorf N, Askar A (2015) MOCCA code for star cluster simulations – IV. A new scenario for intermediate mass black hole formation in globular clusters. MNRAS 454:3150–3165

    Google Scholar 

  145. Goldstein A, Veres P, Burns E, Briggs MS, Hamburg R, Kocevski D, Wilson-Hodge CA, Preece RD, Poolakkil S, Roberts OJ, Hui CM, Connaughton V, Racusin J, von Kienlin A, Dal Canton T, Christensen N et al (2017) An ordinary short gamma-ray burst with extraordinary implications: fermi-GBM detection of GRB 170817A. Astrophys J Lett 848:L14

    Article  ADS  Google Scholar 

  146. González JA, Sperhake U, Brügmann B, Hannam M, Husa S (2007) Maximum kick from nonspinning black-hole binary inspiral. Phys Rev Lett 98(9):091101

    Article  ADS  MathSciNet  MATH  Google Scholar 

  147. Gou L, McClintock JE, Liu J, Narayan R, Steiner JF, Remillard RA, Orosz JA, Davis SW, Ebisawa K, Schlegel EM (2009) A determination of the spin of the black hole primary in LMC X-1. Astrophys J 701(2):1076–1090

    Article  ADS  Google Scholar 

  148. Gou L, McClintock JE, Remillard RA, Steiner JF, Reid MJ, Orosz JA, Narayan R, Hanke M, García J (2014) Confirmation via the continuum-fitting method that the spin of the black hole in cygnus X-1 is extreme. Astrophys J 790(1):29

    Article  ADS  Google Scholar 

  149. Gräfener G, Hamann W-R (2008) Mass loss from late-type WN stars and its Z-dependence. Very massive stars approaching the Eddington limit. Astron Astrophys 482:945–960

    Article  ADS  Google Scholar 

  150. Gräfener G, Vink JS, de Koter A, Langer N (2011) The Eddington factor as the key to understand the winds of the most massive stars. Evidence for a Γ-dependence of Wolf-Rayet type mass loss. Astron Astrophys 535:A56

    Google Scholar 

  151. Graham AW, Spitler LR (2009) Quantifying the coexistence of massive black holes and dense nuclear star clusters. MNRAS 397(4):2148–2162

    Article  ADS  Google Scholar 

  152. Graham MJ, Ford KES, McKernan B, Ross NP, Stern D, Burdge K, Coughlin M, Djorgovski SG, Drake AJ, Duev D, Kasliwal M, Mahabal AA, van Velzen S, Belecki J, Bellm EC, Burruss R, Cenko SB, Cunningham V, Helou G, Kulkarni SR, Masci FJ, Prince T, Reiley D, Rodriguez H, Rusholme B, Smith RM, Soumagnac MT (2020) Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event S190521g. Phys Rev Lett 124(25):251102

    Article  ADS  Google Scholar 

  153. Gratton R, Bragaglia A, Carretta E, D’Orazi V, Lucatello S, Sollima A (2019) What is a globular cluster? An observational perspective. Astron Astrophys Rev 27(1):8

    Article  ADS  Google Scholar 

  154. Graziani L, Schneider R, Marassi S, Del Pozzo W, Mapelli M, Giacobbo N (2020) Cosmic archaeology with massive stellar black hole binaries. MNRAS 495(1):L81–L85

    Article  ADS  Google Scholar 

  155. Gürkan MA, Fregeau JM, Rasio FA (2006) Massive black hole binaries from collisional runaways. Astrophys J Lett 640:L39–L42

    Article  ADS  Google Scholar 

  156. Han Z, Podsiadlowski P, Eggleton PP (1994) A possible criterion for envelope ejection in asymptotic giant branch or first giant branch stars. MNRAS 270:121–130

    Article  ADS  Google Scholar 

  157. Harris WE, Gretchen Harris LH, Alessi M (2013) A catalog of globular cluster systems: what determines the size of a galaxy’s globular cluster population? Astrophys J 772(2):82

    Article  ADS  Google Scholar 

  158. Heger A, Fryer CL, Woosley SE, Langer N, Hartmann DH (2003) How massive single stars end their life. Astrophys J 591:288–300

    Article  ADS  Google Scholar 

  159. Heger A, Woosley SE (2002) The nucleosynthetic signature of population III. Astrophys J 567(1):532–543

    Article  ADS  Google Scholar 

  160. Heggie DC (1975) Binary evolution in stellar dynamics. MNRAS 173:729–787

    Article  ADS  Google Scholar 

  161. Hessels JWT, Ransom SM, Stairs IH, Freire PCC, Kaspi VM, Camilo F (2006) A radio pulsar spinning at 716 Hz. Science 311(5769):1901–1904

    Article  ADS  Google Scholar 

  162. Hills JG (1983) The effect of low-velocity, low-mass intruders (collisionless gas) on the dynamical evolution of a binary system. Astron J 88:1269–1283

    Article  ADS  Google Scholar 

  163. Hills JG, Fullerton LW (1980) Computer simulations of close encounters between single stars and hard binaries. Astron J 85:1281–1291

    Article  ADS  Google Scholar 

  164. Hobbs G, Lorimer DR, Lyne AG, Kramer M (2005) A statistical study of 233 pulsar proper motions. MNRAS 360:974–992

    Article  ADS  Google Scholar 

  165. Holley-Bockelmann K, Gültekin K, Shoemaker D, Yunes N (2008) Gravitational wave recoil and the retention of intermediate-mass black holes. Astrophys J 686(2):829–837

    Article  ADS  Google Scholar 

  166. Horiuchi S, Nakamura K, Takiwaki T, Kotake K, Tanaka M (2014) The red supergiant and supernova rate problems: implications for core-collapse supernova physics. MNRAS 445:L99–L103

    Article  ADS  Google Scholar 

  167. Hurley JR, Tout CA, Pols OR (2002) Evolution of binary stars and the effect of tides on binary populations. MNRAS 329:897–928

    Article  ADS  Google Scholar 

  168. Inomata K, Kawasaki M, Mukaida K, Tada Y, Yanagida TT (2017) Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments. Phys Rev D 95(12):123510

    Article  ADS  Google Scholar 

  169. Ivanova N, Chaichenets S (2011) Common envelope: enthalpy consideration. Astrophys J Lett 731(2):L36

    Article  ADS  Google Scholar 

  170. Ivanova N, Justham S, Chen X, De Marco O, Fryer CL, Gaburov E, Ge H, Glebbeek E, Han Z, Li X-D, Lu G, Marsh T, Podsiadlowski P, Potter A, Soker N, Taam R, Tauris TM, van den Heuvel EPJ, Webbink RF (2013) Common envelope evolution: where we stand and how we can move forward. Astron Astrophys Rev 21:59

    Article  ADS  Google Scholar 

  171. Ivanova N, Podsiadlowski P, Spruit H (2002) Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars. MNRAS 334(4):819–832

    Article  ADS  Google Scholar 

  172. Janka H-T (2017) Neutron star kicks by the gravitational tug-boat mechanism in asymmetric supernova explosions: progenitor and explosion dependence. Astrophys J 837:84

    Article  ADS  Google Scholar 

  173. Janka H-T (2012) Explosion mechanisms of core-collapse supernovae. Annu Rev Nucl Part Sci 62(1):407–451

    Article  ADS  Google Scholar 

  174. Kalogera V, Berry CPL, Colpi M, Fairhurst S, Justham S, Mandel I, Mangiagli A, Mapelli M, Mills C, Sathyaprakash BS, Schneider R, Tauris T, Valiante R (2019) Deeper, wider, sharper: next-generation ground-based gravitational-wave observations of binary black holes. Bull Am Astron Soc 51(3):242

    Google Scholar 

  175. Keszthelyi Z, Meynet G, Georgy C, Wade GA, Petit V, David-Uraz A (2019) The effects of surface fossil magnetic fields on massive star evolution: I. Magnetic field evolution, mass-loss quenching, and magnetic braking. MNRAS 485(4):5843–5860

    Article  ADS  Google Scholar 

  176. Kimpson TO, Spera M, Mapelli M, Ziosi BM (2016) Hierarchical black hole triples in young star clusters: impact of Kozai-Lidov resonance on mergers. MNRAS 463:2443–2452

    Article  ADS  Google Scholar 

  177. Kochanek CS (2014) Failed supernovae explain the compact remnant mass function. Astrophys J 785(1):28

    Article  ADS  Google Scholar 

  178. Kochanek CS, Beacom JF, Kistler MD, Prieto JL, Stanek KZ, Thompson TA, Yüksel H (2008) A survey about nothing: monitoring a million supergiants for failed supernovae. Astrophys J 684(2):1336–1342

    Article  ADS  Google Scholar 

  179. Kozai Y (1962) Secular perturbations of asteroids with high inclination and eccentricity. Astron J 67:591

    Article  ADS  MathSciNet  Google Scholar 

  180. Kramer M, Bell JF, Manchester RN, Lyne AG, Camilo F, Stairs IH, D’Amico N, Kaspi VM, Hobbs G, Morris DJ, Crawford F, Possenti A, Joshi BC, McLaughlin MA, Lorimer DR, Faulkner AJ (2003) The Parkes multibeam pulsar survey – III. Young pulsars and the discovery and timing of 200 pulsars. MNRAS 342(4):1299–1324

    Article  ADS  Google Scholar 

  181. Kremer K, Rodriguez CL, Amaro-Seoane P, Breivik K, Chatterjee S, Katz ML, Larson SL, Rasio FA, Samsing J, Ye CS, Zevin M (2019) Post-Newtonian dynamics in dense star clusters: binary black holes in the LISA band. Phys Rev D 99(6):063003

    Article  ADS  Google Scholar 

  182. Kremer K, Spera M, Becker D, Chatterjee S, Di Carlo UN, Fragione G, Rodriguez CL, Ye CS, Rasio FA (2020) Populating the upper black hole mass gap through stellar collisions in young star clusters. Astrophys J 903(1):45

    Article  ADS  Google Scholar 

  183. Kruckow MU, Tauris TM, Langer N, Kramer M, Izzard RG (2018) Progenitors of gravitational wave mergers: binary evolution with the stellar grid-based code COMBINE. MNRAS 481:1908–1949

    Article  ADS  Google Scholar 

  184. Kruckow MU, Tauris TM, Langer N, Szécsi D, Marchant P, Podsiadlowski P (2016) Common-envelope ejection in massive binary stars. Implications for the progenitors of GW150914 and GW151226. Astron Astrophys 596:A58

    Google Scholar 

  185. Kudritzki RP, Pauldrach A, Puls J (1987) Radiation driven winds of hot luminous stars. II – Wind models for O-stars in the Magellanic Clouds. Astron Astrophys 173:293–298

    ADS  MATH  Google Scholar 

  186. Kudritzki R-P, Puls J (2000) Winds from hot stars. Annu Rev Astron Astrophys 38:613–666

    Article  ADS  Google Scholar 

  187. Kulkarni SR, Hut P, McMillan S (1993) Stellar black holes in globular clusters. Nature 364:421–423

    Article  ADS  Google Scholar 

  188. Kumamoto J, Fujii MS, Tanikawa A (2019) Gravitational-wave emission from binary black holes formed in open clusters. MNRAS 486(3):3942–3950

    Article  ADS  Google Scholar 

  189. Kumamoto J, Fujii MS, Tanikawa A (2020) Merger rate density of binary black holes formed in open clusters. MNRAS 495(4):4268–4278

    Article  ADS  Google Scholar 

  190. Kushnir D, Zaldarriaga M, Kollmeier JA, Waldman R (2016) GW150914: spin-based constraints on the merger time of the progenitor system. MNRAS 462(1):844–849

    Article  ADS  Google Scholar 

  191. Lada CJ, Lada EA (2003) Embedded clusters in molecular clouds. Annu Rev Astron Astrophys 41:57–115

    Article  ADS  Google Scholar 

  192. Lamberts A, Garrison-Kimmel S, Clausen DR, Hopkins PF (2016) When and where did GW150914 form? MNRAS 463:L31–L35

    Article  ADS  Google Scholar 

  193. Law-Smith JAP, Everson RW, Ramirez-Ruiz E, de Mink SE, van Son LAC, Götberg Y, Zellmann S, Vigna-Gómez A, Renzo M, Wu S, Schrøder SL, Foley RJ, Hutchinson-Smith T (2020) Successful common envelope ejection and binary neutron star formation in 3D hydrodynamics. arXiv e-prints, page arXiv:2011.06630

    Google Scholar 

  194. Lee HM (1995) Evolution of galactic nuclei with 10-M_ black holes. MNRAS 272(3):605–617

    Article  ADS  Google Scholar 

  195. Leitherer C, Robert C, Drissen L (1992) Deposition of mass, momentum, and energy by massive stars into the interstellar medium. Astrophys J 401:596

    Article  ADS  Google Scholar 

  196. Lidov ML (1962) The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet Space Sci 9:719–759

    Article  ADS  Google Scholar 

  197. Limongi M (2017) Supernovae from massive stars. In Alsabti AW, Murdin P (eds) Handbook of supernovae, p 513. Springer International Publishing AG

    Google Scholar 

  198. Limongi M, Chieffi A (2018) Presupernova evolution and explosive nucleosynthesis of rotating massive stars in the metallicity range -3 ≤ [Fe/H] ≤ 0. Astrophys J Suppl 237(1):13

    Article  ADS  Google Scholar 

  199. Liu J, McClintock JE, Narayan R, Davis SW, Orosz JA (2008) Precise measurement of the spin parameter of the stellar-mass black hole M33 X-7. Astrophys J Lett 679(1):L37

    Article  ADS  Google Scholar 

  200. Lousto CO, Zlochower Y (2009) Modeling gravitational recoil from precessing highly spinning unequal-mass black-hole binaries. Phys Rev D 79(6):064018

    Article  ADS  Google Scholar 

  201. Loveridge AJ, van der Sluys MV, Kalogera V (2011) Analytical expressions for the envelope binding energy of giants as a function of basic stellar parameters. Astrophys J 743:49

    Article  ADS  Google Scholar 

  202. MacLeod M, Antoni A, Murguia-Berthier A, Macias P, Ramirez-Ruiz E (2017) Common envelope wind tunnel: coefficients of drag and accretion in a simplified context for studying flows around objects embedded within stellar envelopes. Astrophys J 838(1):56

    Article  ADS  Google Scholar 

  203. MacLeod M, Loeb A (2020) Pre-common-envelope mass loss from coalescing binary systems. Astrophys J 895(1):29

    Article  ADS  Google Scholar 

  204. MacLeod M, Loeb A (2020) Runaway coalescence of pre-common-envelope stellar binaries. Astrophys J 893(2):106

    Article  ADS  Google Scholar 

  205. MacLeod M, Macias P, Ramirez-Ruiz E, Grindlay J, Batta A, Montes G (2017) Lessons from the onset of a common envelope episode: the remarkable M31 2015 luminous red nova outburst. Astrophys J 835(2):282

    Article  ADS  Google Scholar 

  206. MacLeod M, Ostriker EC, Stone JM (2018) Runaway coalescence at the onset of common envelope episodes. Astrophys J 863(1):5

    Article  ADS  Google Scholar 

  207. MacLeod M, Ramirez-Ruiz E (2015) Asymmetric accretion flows within a common envelope. Astrophys J 803(1):41

    Article  ADS  Google Scholar 

  208. MacLeod M, Ramirez-Ruiz E (2015) On the accretion-fed growth of neutron stars during common envelope. Astrophys J Lett 798(1):L19

    Article  ADS  Google Scholar 

  209. Madau P, Dickinson M (2014) Cosmic star-formation history. Annu Rev Astron Astrophys 52:415–486

    Article  ADS  Google Scholar 

  210. Madau P, Fragos T (2017) Radiation backgrounds at cosmic dawn: X-Rays from compact binaries. Astrophys J 840(1):39

    Article  ADS  Google Scholar 

  211. Maeder A (1987) Evidences for a bifurcation in massive star evolution. The ON-blue stragglers. Astron Astrophys 178:159–169

    ADS  Google Scholar 

  212. Maeder A (2009) Physics, formation and evolution of rotating stars. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  213. Maiolino R, Mannucci F (2019) De re metallica: the cosmic chemical evolution of galaxies. Astron Astrophys Rev 27(1):3

    Article  ADS  Google Scholar 

  214. Manchester RN, Hobbs GB, Teoh A, Hobbs M (2005) The Australia telescope national facility pulsar catalogue. Astron J 129(4):1993–2006

    Article  ADS  Google Scholar 

  215. Mandel I, de Mink SE (2016) Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. MNRAS 458:2634–2647

    Article  ADS  Google Scholar 

  216. Mandel I, Müller B (2020) Simple recipes for compact remnant masses and natal kicks. MNRAS 499:3214–3221

    Article  ADS  Google Scholar 

  217. Mandel I, Müller B, Riley J, de Mink SE, Vigna-Gómez A, Chattopadhyay D (2021) Binary population synthesis with probabilistic remnant mass and kick prescriptions. MNRAS 500(1):1380–1384

    Article  ADS  Google Scholar 

  218. Mapelli M (2016) Massive black hole binaries from runaway collisions: the impact of metallicity. MNRAS 459:3432–3446

    Article  ADS  Google Scholar 

  219. Mapelli M, Colpi M, Possenti A, Sigurdsson S (2005) The fingerprint of binary intermediate-mass black holes in globular clusters: suprathermal stars and angular momentum alignment. MNRAS 364(4):1315–1326

    Article  ADS  Google Scholar 

  220. Mapelli M, Colpi M, Zampieri L (2009) Low metallicity and ultra-luminous X-ray sources in the Cartwheel galaxy. MNRAS 395:L71–L75

    Article  ADS  Google Scholar 

  221. Mapelli M, Ferrara A, Rea N (2006) Constraints on Galactic intermediate mass black holes. MNRAS 368:1340–1350

    Article  ADS  Google Scholar 

  222. Mapelli M, Giacobbo N (2018) The cosmic merger rate of neutron stars and black holes. MNRAS 479:4391–4398

    Article  ADS  Google Scholar 

  223. Mapelli M, Giacobbo N, Ripamonti E, Spera M (2017) The cosmic merger rate of stellar black hole binaries from the Illustris simulation. MNRAS 472:2422–2435

    Article  ADS  Google Scholar 

  224. Mapelli M, Giacobbo N, Santoliquido F, Artale MC (2019) The properties of merging black holes and neutron stars across cosmic time. MNRAS 487:2–13

    Article  ADS  Google Scholar 

  225. Mapelli M, Giacobbo N, Toffano M, Ripamonti E, Bressan A, Spera M, Branchesi M (2018) The host galaxies of double compact objects merging in the local Universe. MNRAS 481:5324–5330

    Article  ADS  Google Scholar 

  226. Mapelli M, Moore B, Giordano L, Mayer L, Colpi M, Ripamonti E, Callegari S (2008) Intermediate-mass black holes and ultraluminous X-ray sources in the Cartwheel ring galaxy. MNRAS 383(1):230–246

    Article  ADS  Google Scholar 

  227. Mapelli M, Ripamonti E, Zampieri L, Colpi M, Bressan A (2010) Ultra-luminous X-ray sources and remnants of massive metal-poor stars. MNRAS 408:234–253

    Article  ADS  Google Scholar 

  228. Mapelli M, Zampieri L, Ripamonti E, Bressan A (2013) Dynamics of stellar black holes in young star clusters with different metallicities – I. Implications for X-ray binaries. MNRAS 429:2298–2314

    Google Scholar 

  229. Mapelli M, Santoliquido F, Bouffanais Y, Arca Sedda M, Giacobbo N, Celeste Artale M, Ballone A (2020) Hierarchical mergers in young, globular and nuclear star clusters: black hole masses and merger rates. arXiv e-prints, page arXiv:2007.15022

    Google Scholar 

  230. Mapelli M, Spera M, Montanari E, Limongi M, Chieffi A, Giacobbo N, Bressan A, Bouffanais Y (2020) Impact of the rotation and compactness of progenitors on the mass of black holes. Astrophys J 888(2):76

    Article  ADS  Google Scholar 

  231. Marassi S, Graziani L, Ginolfi M, Schneider R, Mapelli M, Spera M, Alparone M (2019) Evolution of dwarf galaxies hosting GW150914-like events. MNRAS 484(3):3219–3232

    Article  ADS  Google Scholar 

  232. Marchant P, Langer N, Podsiadlowski P, Tauris TM, Moriya TJ (2016) A new route towards merging massive black holes. Astron Astrophys 588:A50

    Article  ADS  Google Scholar 

  233. Marchant P, Moriya TJ (2020) The impact of stellar rotation on the black hole mass-gap from pair-instability supernovae. Astron Astrophys 640:L18

    Article  ADS  Google Scholar 

  234. Marchant P, Renzo M, Farmer R, Pappas KMW, Taam RE, de Mink SE, Kalogera V (2019) Pulsational pair-instability supernovae in very close binaries. Astrophys J 882(1):36

    Article  ADS  Google Scholar 

  235. Margutti R, Berger E, Fong W, Guidorzi C, Alexander KD, Metzger BD, Blanchard PK, Cowperthwaite PS, Chornock R, Eftekhari T, Nicholl M, Villar VA, Williams PKG, Annis J, Brown DA, Chen H, Doctor Z, Frieman JA, Holz DE, Sako M, Soares-Santos M (2017) The electromagnetic counterpart of the binary neutron star merger ligo/virgo gw170817. v. rising x-ray emission from an off-axis jet. Astrophys J Lett 848(2):L20

    Google Scholar 

  236. McKernan B, Ford KES, Kocsis B, Lyra W, Winter LM (2014) Intermediate-mass black holes in AGN discs – II. Model predictions and observational constraints. MNRAS 441(1):900–909

    Article  ADS  Google Scholar 

  237. McKernan B, Ford KES, Lyra W, Perets HB (2012) Intermediate mass black holes in AGN discs – I. Production and growth. MNRAS 425(1):460–469

    Article  ADS  Google Scholar 

  238. McKernan B, Saavik Ford KE, Bellovary J, Leigh NWC, Haiman Z, Kocsis B, Lyra W, Mac Low MM, Metzger B, O’Dowd M, Endlich S, Rosen DJ (2018) Constraining stellar-mass black hole mergers in AGN disks detectable with LIGO. Astrophys J 866(1):66

    Article  ADS  Google Scholar 

  239. Mennekens N, Vanbeveren D (2014) Massive double compact object mergers: gravitational wave sources and r-process element production sites. Astron Astrophys 564:A134

    Article  ADS  Google Scholar 

  240. Miller MC, Hamilton DP (2002) Production of intermediate-mass black holes in globular clusters. MNRAS 330:232–240

    Article  ADS  Google Scholar 

  241. Coleman Miller M, Davies MB (2012) An upper limit to the velocity dispersion of relaxed stellar systems without massive black holes. Astrophys J 755(1):81

    Article  ADS  Google Scholar 

  242. Coleman Miller M, Miller JM (2015) The masses and spins of neutron stars and stellar-mass black holes. Phys Rep 548:1–34

    Article  ADS  MathSciNet  Google Scholar 

  243. Miller-Jones JCA, Bahramian A, Orosz JA, Mandel I, Gou L, Maccarone TJ, Neijssel CJ, Zhao X, Ziółkowski J, Reid MJ, Uttley P, Zheng X, Byun D-Y, Dodson R, Grinberg V, Jung T, Kim J-S, Marcote B, Markoff S, Rioja MJ, Rushton AP, Russell DM, Sivakoff GR, Tetarenko AJ, Tudose V, Wilms J (2021) Cygnus X-1 contains a 21-solar mass black hole – implications for massive star winds. arXiv e-prints, page arXiv:2102.09091

    Google Scholar 

  244. Mirabel F (2017) The formation of stellar black holes. New Astron 78:1–15

    Article  Google Scholar 

  245. Mirabel IF, Dhawan V, Mignani RP, Rodrigues I, Guglielmetti F (2001) A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood. Nature 413(6852):139–141

    Article  ADS  Google Scholar 

  246. Moe M, Di Stefano R (2017) Mind your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) distributions of binary stars. Astrophys J Suppl 230(2):15

    Article  ADS  Google Scholar 

  247. Morscher M, Pattabiraman B, Rodriguez C, Rasio FA, Umbreit S (2015) The dynamical evolution of stellar black holes in globular clusters. Astrophys J 800(1):9

    Article  ADS  Google Scholar 

  248. Müller B, Janka H-T, Heger A (2012) New two-dimensional models of supernova explosions by the neutrino-heating mechanism: evidence for different instability regimes in collapsing stellar cores. Astrophys J 761(1):72

    Article  ADS  Google Scholar 

  249. Müller B, Janka H-T, Marek A (2012) A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. II. Relativistic explosion models of core-collapse supernovae. Astrophys J 756(1):84

    Google Scholar 

  250. Neijssel CJ, Vigna-Gómez A, Stevenson S, Barrett JW, Gaebel SM, Broekgaarden FS, de Mink SE, Szécsi D, Vinciguerra S, Mandel I (2019) The effect of the metallicity-specific star formation history on double compact object mergers. MNRAS 490(3):3740–3759

    Article  ADS  Google Scholar 

  251. Nelson D, Pillepich A, Genel S, Vogelsberger M, Springel V, Torrey P, Rodriguez-Gomez V, Sijacki D, Snyder GF, Griffen B, Marinacci F, Blecha L, Sales L, Xu D, Hernquist L (2015) The illustris simulation: public data release. Astron Comput 13:12–37

    Article  ADS  Google Scholar 

  252. Neumayer N, Seth A, Böker T (2020) Nuclear star clusters. Astron Astrophys Rev 28(1):4

    Article  ADS  Google Scholar 

  253. Nicholl M, Berger E, Kasen D, Metzger BD, Elias J, Briceo C, Alexander KD, Blanchard PK, Chornock R, Cowperthwaite PS, Eftekhari T, Fong W, Margutti R, Villar VA, Williams PKG et al (2017) The electromagnetic counterpart of the binary neutron star merger ligo/virgo gw170817. III. Optical and uv spectra of a blue kilonova from fast polar ejecta. Astrophys J Lett 848(2):L18

    Google Scholar 

  254. Nitz AH, Capano CD (2021) GW190521 may be an intermediate-mass ratio inspiral. Astrophys J Lett 907(1):L9

    Article  ADS  Google Scholar 

  255. Nitz AH, Dent T, Davies GS, Harry I (2020) A search for gravitational waves from binary mergers with a single observatory. Astrophys J 897(2):169

    Article  ADS  Google Scholar 

  256. O’Connor E, Ott CD (2011) Black hole formation in failing core-collapse supernovae. Astrophys J 730(2):70

    Article  ADS  Google Scholar 

  257. Ohlmann ST, Röpke FK, Pakmor R, Springel V (2016) Hydrodynamic moving-mesh simulations of the common envelope phase in binary stellar systems. Astrophys J Lett 816(1):L9

    Article  ADS  Google Scholar 

  258. Orosz JA (2003) Inventory of black hole binaries. In: van der Hucht K, Herrero A, Esteban C (eds) A massive star odyssey: from main sequence to supernova, volume 212 of IAU Symposium, p 365

    Google Scholar 

  259. O’Shaughnessy R, Bellovary JM, Brooks A, Shen S, Governato F, Christensen CR (2017) The effects of host galaxy properties on merging compact binaries detectable by LIGO. MNRAS 464:2831–2839

    Article  ADS  Google Scholar 

  260. Özel F, Psaltis D, Narayan R, McClintock JE (2010) The black hole mass distribution in the galaxy. Astrophys J 725:1918–1927

    Article  ADS  Google Scholar 

  261. Passy J-C, De Marco O, Fryer CL, Herwig F, Diehl S, Oishi JS, Mac Low M-M, Bryan GL, Rockefeller G (2012) Simulating the common envelope phase of a red giant using smoothed-particle hydrodynamics and uniform-grid codes. Astrophys J 744(1):52

    Article  ADS  Google Scholar 

  262. Patton RA, Sukhbold T (2020) Towards a realistic explosion landscape for binary population synthesis. MNRAS 499:2803–2816

    Article  ADS  Google Scholar 

  263. Paxton B, Bildsten L, Dotter A, Herwig F, Lesaffre P, Timmes F (2011) Modules for experiments in stellar astrophysics (MESA). Astrophys J Suppl 192(1):3

    Article  ADS  Google Scholar 

  264. Paxton B, Cantiello M, Arras P, Bildsten L, Brown EF, Dotter A, Mankovich C, Montgomery MH, Stello D, Timmes FX, Townsend R (2013) Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys J Suppl 208(1):4

    Article  ADS  Google Scholar 

  265. Paxton B, Marchant P, Schwab J, Bauer EB, Bildsten L, Cantiello M, Dessart L, Farmer R, Hu H, Langer N, Townsend RHD, Townsley DM, Timmes FX (2015) Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. Astrophys J Suppl 220(1):15

    Article  ADS  Google Scholar 

  266. Pejcha O, Thompson TA (2015) The landscape of the neutrino mechanism of core-collapse supernovae: neutron star and black hole mass functions, explosion energies, and nickel yields. Astrophys J 801(2):90

    Article  ADS  Google Scholar 

  267. Peters PC (1964) Gravitational radiation and the motion of two point masses. Phys Rev 136:1224–1232

    Article  ADS  Google Scholar 

  268. Petit V, Keszthelyi Z, MacInnis R, Cohen DH, Townsend RHD, Wade GA, Thomas SL, Owocki SP, Puls J, ud-Doula A (2017) Magnetic massive stars as progenitors of ‘heavy’ stellar-mass black holes. MNRAS 466(1):1052–1060

    Google Scholar 

  269. Pian E, D’Avanzo P, Benetti S, Branchesi M, Brocato E, Campana S, Cappellaro E, Covino S, D’Elia V, Fynbo JPU, Getman F, Ghirlanda G, Ghisellini G et al (2017) Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551:67–70

    Article  ADS  Google Scholar 

  270. Podsiadlowski P, Rappaport S, Han Z (2003) On the formation and evolution of black hole binaries. MNRAS 341(2):385–404

    Article  ADS  Google Scholar 

  271. Portegies Zwart SF, Baumgardt H, Hut P, Makino J, McMillan SLW (2004) Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428:724–726

    Article  ADS  Google Scholar 

  272. Portegies Zwart SF, Makino J, McMillan SLW, Hut P (1999) Star cluster ecology. III. Runaway collisions in young compact star clusters. Astron Astrophys 348:117–126

    ADS  Google Scholar 

  273. Portegies Zwart SF, McMillan SLW (2000) Black hole mergers in the universe. Astrophys J Lett 528:L17–L20

    Article  ADS  Google Scholar 

  274. Portegies Zwart SF, McMillan SLW (2002) The runaway growth of intermediate-mass black holes in dense star clusters. Astrophys J 576:899–907

    Article  ADS  Google Scholar 

  275. Portegies Zwart SF, McMillan SLW, Gieles M (2010) Young massive star clusters. Annu Rev Astron Astrophys 48:431–493

    Article  ADS  Google Scholar 

  276. Portegies Zwart SF, Verbunt F (1996) Population synthesis of high-mass binaries. Astron Astrophys 309:179–196

    ADS  Google Scholar 

  277. Punturo M, Abernathy M, Acernese F, Allen B, Andersson N, Arun K, Barone F, Barr B, Barsuglia M, Beker M, Beveridge N, Birindelli S, Bose S, Bosi L, Braccini S, Bradaschia C, Bulik T, Calloni E, Cella G, Chassande Mottin E et al (2010) The Einstein telescope: a third-generation gravitational wave observatory. Class Quan Grav 27(19):194002

    Article  ADS  Google Scholar 

  278. Qin Y, Fragos T, Meynet G, Andrews J, Sørensen M, Song HF (2018) The spin of the second-born black hole in coalescing binary black holes. Astron Astrophys 616:A28

    Article  ADS  Google Scholar 

  279. Quinlan GD (1996) The dynamical evolution of massive black hole binaries I. Hardening in a fixed stellar background. New Astron 1(1):35–56

    Article  ADS  Google Scholar 

  280. Raghavan D, McAlister HA, Henry TJ, Latham DW, Marcy GW, Mason BD, Gies DR, White RJ, ten Brummelaar TA (2010) A survey of stellar families: multiplicity of solar-type stars. Astrophys J Suppl 190(1):1–42

    Article  ADS  Google Scholar 

  281. Rakavy G, Shaviv G (1967) Instabilities in highly evolved stellar models. Astrophys J 148:803

    Article  ADS  Google Scholar 

  282. Rastello S, Mapelli M, Di Carlo UN, Giacobbo N, Santoliquido F, Spera M, Ballone A, Iorio G (2020) Dynamics of black hole-neutron star binaries in young star clusters. MNRAS 497(2):1563–1570

    Article  ADS  Google Scholar 

  283. Renzo M, Farmer RJ, Justham S, de Mink SE, Götberg Y, Marchant P (2020) Sensitivity of the lower edge of the pair-instability black hole mass gap to the treatment of time-dependent convection. MNRAS 493(3):4333–4341

    Article  ADS  Google Scholar 

  284. Repetto S, Davies MB, Sigurdsson S (2012) Investigating stellar-mass black hole kicks. MNRAS 425:2799–2809

    Article  ADS  Google Scholar 

  285. Repetto S, Igoshev AP, Nelemans G (2017) The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks. MNRAS 467:298–310

    ADS  Google Scholar 

  286. Ricker PM, Taam RE (2008) The interaction of stellar objects within a common envelope. Astrophys J Lett 672(1):L41

    Article  ADS  Google Scholar 

  287. Ricker PM, Taam RE (2012) An AMR study of the common-envelope phase of binary evolution. Astrophys J 746(1):74

    Article  ADS  Google Scholar 

  288. Rizzuto FP, Naab T, Spurzem R, Giersz M, Ostriker JP, Stone NC, Wang L, Berczik P, Rampp M (2021) Intermediate mass black hole formation in compact young massive star clusters. MNRAS 501(4):5257–5273

    Article  ADS  Google Scholar 

  289. Rodriguez CL, Amaro-Seoane P, Chatterjee S, Kremer K, Rasio FA, Samsing J, Ye CS, Zevin M (2018) Post-Newtonian dynamics in dense star clusters: formation, masses, and merger rates of highly-eccentric black hole binaries. Phys Rev D 98(12):123005

    Article  ADS  Google Scholar 

  290. Rodriguez CL, Chatterjee S, Rasio FA (2016) Binary black hole mergers from globular clusters: masses, merger rates, and the impact of stellar evolution. Phys Rev D 93(8):084029

    Article  ADS  Google Scholar 

  291. Rodriguez CL, Morscher M, Pattabiraman B, Chatterjee S, Haster C-J, Rasio FA (2015) Binary black hole mergers from globular clusters: implications for advanced LIGO. Phys Rev Lett 115(5):051101

    Article  ADS  Google Scholar 

  292. Rodriguez CL, Zevin M, Amaro-Seoane P, Chatterjee S, Kremer K, Rasio FA, Ye CS (2019) Black holes: the next generation—repeated mergers in dense star clusters and their gravitational-wave properties. Phys Rev D 100(4):043027

    Article  ADS  Google Scholar 

  293. Romero-Shaw I, Lasky PD, Thrane E, Calderón Bustillo J (2020) GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal. Astrophys J Lett 903(1):L5

    Article  ADS  Google Scholar 

  294. Samsing J (2018) Eccentric black hole mergers forming in globular clusters. Phys Rev D 97(10):103014

    Article  ADS  Google Scholar 

  295. Samsing J, MacLeod M, Ramirez-Ruiz E (2017) Formation of tidal captures and gravitational wave inspirals in binary-single interactions. Astrophys J 846:36

    Article  ADS  Google Scholar 

  296. Samsing J, MacLeod M, Ramirez-Ruiz E (2014) The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters. Astrophys J 784(1):71

    Article  ADS  Google Scholar 

  297. Sana H, Le Bouquin JB, Lacour S, Berger JP, Duvert G, Gauchet L, Norris B, Olofsson J, Pickel D, Zins G, Absil O, A. de Koter, Kratter K, Schnurr O, Zinnecker H (2014) Southern massive stars at high angular resolution: observational campaign and companion detection. Astrophys J Suppl 215(1):15

    Article  ADS  Google Scholar 

  298. Sander AAC, Hamann WR, Todt H, Hainich R, Shenar T, Ramachandran V, Oskinova LM (2019) The Galactic WC and WO stars. The impact of revised distances from Gaia DR2 and their role as massive black hole progenitors. Astron Astrophys 621:A92

    Google Scholar 

  299. Sanders RH (1970) The effects of stellar collisions in dense stellar systems. Astrophys J 162:791

    Article  ADS  Google Scholar 

  300. Santoliquido F, Mapelli M, Bouffanais Y, Giacobbo N, Di Carlo UN, Rastello S, Celeste Artale M, Ballone A (2020) The cosmic merger rate density evolution of compact binaries formed in young star clusters and in isolated binaries. Astrophys J 898(2):152

    Article  ADS  Google Scholar 

  301. Santoliquido F, Mapelli M, Giacobbo N, Bouffanais Y, Artale CM (2021) The cosmic merger rate density of compact objects: impact of star formation, metallicity, initial mass function and binary evolution. MNRAS 502:4877–4889

    Article  ADS  Google Scholar 

  302. Savchenko V, Ferrigno C, Kuulkers E, Bazzano A, Bozzo E, Brandt S, Chenevez J, Courvoisier TJ-L, Diehl R, Domingo A, Hanlon L, Jourdain E, von Kienlin A, Laurent P, Lebrun F, Lutovinov A, A. Martin-Carrillo, Mereghetti S, Natalucci L, Rodi J, Roques J-P, Sunyaev R, Ubertini P (2017) Integral detection of the first prompt gamma-ray signal coincident with the gravitational-wave event gw170817. Astrophys J Lett 848(2):L15

    Article  ADS  Google Scholar 

  303. Schaye J, Crain RA, Bower RG, Furlong M, Schaller M, Theuns T, Claudio Dalla Vecchia, Frenk CS, McCarthy IG, Helly JC, Jenkins A, Rosas-Guevara YM, Simon White DM, Baes M, Booth CM, Camps P, Navarro JF, Qu Y, Rahmati A, Sawala T, Thomas PA, Trayford J (2015) The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446(1):521–554

    Article  ADS  Google Scholar 

  304. Schmidt P, Ohme F, Hannam M (2015) Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter. Phys Rev D 91(2):024043

    Google Scholar 

  305. Schneider R, Graziani L, Marassi S, Spera M, Mapelli M, Alparone M, de Bennassuti M (2017) The formation and coalescence sites of the first gravitational wave events. MNRAS 471(1):L105–L109

    Article  ADS  Google Scholar 

  306. Schutz BF (1989) Gravitational wave sources and their detectability. Class Quan Grav 6:1761–1780

    Article  ADS  Google Scholar 

  307. Sigurdsson S, Hernquist L (1993) Primordial black holes in globular clusters. Nature 364:423–425

    Article  ADS  Google Scholar 

  308. Sigurdsson S, Phinney ES (1995) Dynamics and interactions of binaries and neutron stars in globular clusters. Astrophys J Suppl 99:609

    Article  ADS  Google Scholar 

  309. Soares-Santos M, Holz DE, Annis J, Chornock R, Herner K, Berger E, Brout D, Chen H-Y, Kessler R, Sako M, Allam S, Tucker DL, Butler RE, Palmese A, Doctor Z, Diehl HT, Frieman J, Yanny B, Lin H, Scolnic D, Cowperthwaite P, Neilsen E, Marriner J, Kuropatkin N, Hartley WG, Paz-Chinchn F, Alexander KD, Balbinot E, Blanchard P, Brown DA, Carlin JL, Conselice C et al (2017) The electromagnetic counterpart of the binary neutron star merger ligo/virgo gw170817. I. discovery of the optical counterpart using the dark energy camera. Astrophys J Lett 848(2):L16

    Google Scholar 

  310. Soker N (2004) Energy and angular momentum deposition during common envelope evolution. New Astron 9(5):399–408

    Article  ADS  Google Scholar 

  311. Soker N (2016) The jet feedback mechanism (JFM) in stars, galaxies and clusters. New Astron 75:1–23

    Article  Google Scholar 

  312. Spera M, Mapelli M (2017) Very massive stars, pair-instability supernovae and intermediate-mass black holes with the sevn code. MNRAS 470:4739–4749

    Article  ADS  Google Scholar 

  313. Spera M, Mapelli M, Bressan A (2015) The mass spectrum of compact remnants from the PARSEC stellar evolution tracks. MNRAS 451:4086–4103

    Article  ADS  Google Scholar 

  314. Spera M, Mapelli M, Giacobbo N, Trani AA, Bressan A, Costa G (2019) Merging black hole binaries with the SEVN code. MNRAS 485(1):889–907

    Article  ADS  Google Scholar 

  315. Spitzer Jr L (1969) Equipartition and the formation of compact nuclei in spherical stellar systems. Astrophys J Lett 158:L139

    Article  ADS  Google Scholar 

  316. Spitzer Jr L, Hart MH (1971) Random gravitational encounters and the evolution of spherical systems. I. Method. Astrophys J 164:399

    Article  ADS  Google Scholar 

  317. Spitzer L (1987) Dynamical evolution of globular clusters. Princeton University Press

    Google Scholar 

  318. Spruit HC (2002) Dynamo action by differential rotation in a stably stratified stellar interior. Astron Astrophys 381:923–932

    Article  ADS  Google Scholar 

  319. Stegmann J, Antonini F (2020) Flipping spins in mass transferring binaries and origin of spin-orbit misalignment in binary black holes. arXiv e-prints, page arXiv:2012.06329

    Google Scholar 

  320. Stevenson S, Berry CPL, Mandel I (2017) Hierarchical analysis of gravitational-wave measurements of binary black hole spin-orbit misalignments. MNRAS 471(3):2801–2811

    Article  ADS  Google Scholar 

  321. Stevenson S, Sampson M, Powell J, Vigna-Gómez A, Neijssel CJ, Szécsi D, Mandel I (2019) The impact of pair-instability mass loss on the binary black hole mass distribution. Astrophys J 882(2):121

    Article  ADS  Google Scholar 

  322. Stone NC, Metzger BD (2016) Rates of stellar tidal disruption as probes of the supermassive black hole mass function. MNRAS 455(1):859–883

    Article  ADS  Google Scholar 

  323. Stone NC, Metzger BD, Haiman Z (2017) Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. MNRAS 464(1):946–954

    Article  ADS  Google Scholar 

  324. Sukhbold T, Ertl T, Woosley SE, Brown JM, Janka HT (2016) Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys J 821(1):38

    Article  ADS  Google Scholar 

  325. Sukhbold T, Woosley SE (2014) The compactness of presupernova stellar cores. Astrophys J 783(1):10

    Article  ADS  Google Scholar 

  326. Suwa Y, Yoshida T, Shibata M, Umeda H, Takahashi K (2015) Neutrino-driven explosions of ultra-stripped Type Ic supernovae generating binary neutron stars. MNRAS 454:3073–3081

    Article  ADS  Google Scholar 

  327. Tang J, Bressan A, Rosenfield P, Slemer A, Marigo P, Girardi L, Bianchi L (2014) New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies. MNRAS 445:4287–4305

    Article  ADS  Google Scholar 

  328. Tang PN, Eldridge JJ, Stanway ER, Bray JC (2020) Dependence of gravitational wave transient rates on cosmic star formation and metallicity evolution history. MNRAS 493(1):L6–L10

    Article  ADS  Google Scholar 

  329. Tanikawa A (2013) Dynamical evolution of stellar mass black holes in dense stellar clusters: estimate for merger rate of binary black holes originating from globular clusters. MNRAS 435(2):1358–1375

    Article  ADS  Google Scholar 

  330. Tanikawa A, Kinugawa T, Yoshida T, Hijikawa K, Umeda H (2020) Population III binary black holes: effects of convective overshooting on formation of GW190521. arXiv e-prints, page arXiv:2010.07616

    Google Scholar 

  331. Tanikawa A, Susa H, Yoshida T, Trani AA, Kinugawa T (2020) Merger rate density of Population III binary black holes below, above, and in the pair-instability mass gap. arXiv e-prints, page arXiv:2008.01890

    Google Scholar 

  332. Tauris TM, Kramer M, Freire PCC, Wex N, Janka H-T, Langer N, Podsiadlowski P, Bozzo E, Chaty S, Kruckow MU, van den Heuvel EPJ, Antoniadis J, Breton RP, Champion DJ (2017) Formation of double neutron star systems. Astrophys J 846:170

    Article  ADS  Google Scholar 

  333. Tauris TM, Langer N, Moriya TJ, Podsiadlowski P, Yoon S-C, Blinnikov SI (2013) Ultra-stripped type Ic supernovae from close binary evolution. Astrophys J Lett 778:L23

    Article  ADS  Google Scholar 

  334. Tauris TM, Langer N, Podsiadlowski P (2015) Ultra-stripped supernovae: progenitors and fate. MNRAS 451:2123–2144

    Article  ADS  Google Scholar 

  335. The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P et al (2020) Population properties of compact objects from the second LIGO-Virgo gravitational-wave transient catalog. arXiv e-prints, page arXiv:2010.14533

    Google Scholar 

  336. The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P et al (2020) Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. arXiv e-prints, page arXiv:2010.14529

    Google Scholar 

  337. Thorne KS (1987) Gravitational radiation. In: Hawking SW, Israel W (eds) Three hundred years of gravitation, pp 330–458. Cambridge University Press, Cambridge

    Google Scholar 

  338. Tokovinin A (2008) Comparative statistics and origin of triple and quadruple stars. MNRAS 389(2):925–938

    Article  ADS  Google Scholar 

  339. Tokovinin A (2014) From binaries to multiples. II. Hierarchical multiplicity of F and G dwarfs. Astron J 147(4):87

    Google Scholar 

  340. Toonen S, Hamers A, Portegies Zwart S (2016) The evolution of hierarchical triple star-systems. Comput Astrophys Cosmol 3(1):6

    Article  ADS  Google Scholar 

  341. Tout CA, Aarseth SJ, Pols OR, Eggleton PP (1997) Rapid binary star evolution for N-body simulations and population synthesis. MNRAS 291(4):732–748

    Article  ADS  Google Scholar 

  342. Tutukov A, Yungelson L (1973) Evolution of massive close binaries. Nauchnye Informatsii 27:70

    ADS  Google Scholar 

  343. Udall R, Jani K, Lange J, O’Shaughnessy R, Clark J, Cadonati L, Shoemaker D, Holley-Bockelmann K (2020) Inferring parameters of GW170502: the loudest intermediate-mass black hole trigger in LIGO’s O1/O2 data. Astrophys J 900(1):80

    Article  ADS  Google Scholar 

  344. Ugliano M, Janka H-T, Marek A, Arcones A (2012) Progenitor-explosion connection and remnant birth masses for neutrino-driven supernovae of iron-core progenitors. Astrophys J 757(1):69

    Article  ADS  Google Scholar 

  345. van den Heuvel EPJ (1976) Late stages of close binary systems. In: Eggleton P, Mitton S, Whelan J (eds) Structure and evolution of close binary systems, vol 73, p 35

    Google Scholar 

  346. van den Heuvel EPJ (2019) High-mass X-ray binaries: progenitors of double compact objects. IAU Symp 346:1–13

    ADS  Google Scholar 

  347. van Loon JT, Cioni MRL, Zijlstra AA, Loup C (2005) An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars. Astron Astrophys 438(1):273–289

    Article  ADS  Google Scholar 

  348. van Son LAC, De Mink SE, Broekgaarden FS, Renzo M, Justham S, Laplace E, Morán-Fraile J, Hendriks DD, Farmer R (2020) Polluting the pair-instability mass gap for binary black holes through super-eddington accretion in isolated binaries. Astrophys J 897(1):100

    Article  ADS  Google Scholar 

  349. Venumadhav T, Zackay B, Roulet J, Dai L, Zaldarriaga M (2020) New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo. Phys Rev D 101(8):083030

    Article  ADS  Google Scholar 

  350. Verbunt F, Igoshev A, Cator E (2017) The observed velocity distribution of young pulsars. Astron Astrophys 608:A57

    Article  ADS  Google Scholar 

  351. Vick M, MacLeod M, Lai D, Loeb A (2020) Tidal dissipation impact on the eccentric onset of common envelope phases in massive binary star systems. arXiv e-prints, page arXiv:2008.05476

    Google Scholar 

  352. Vink JS (2016) Mass loss and stellar superwinds. ArXiv e-prints

    Google Scholar 

  353. Vink JS, de Koter A, Lamers HJGLM (2001) Mass-loss predictions for O and B stars as a function of metallicity. Astron Astrophys 369:574–588

    Article  ADS  Google Scholar 

  354. Vink JS, Muijres LE, Anthonisse B, de Koter A, Gräfener G, Langer N (2011) Wind modelling of very massive stars up to 300 solar masses. Astron Astrophys 531:A132

    Article  Google Scholar 

  355. Vink JS, de Koter A (2005) On the metallicity dependence of Wolf-Rayet winds. Astron Astrophys 442(2):587–596

    Article  ADS  Google Scholar 

  356. Vitale S, Farr WM, Ng KKY, Rodriguez CL (2019) Measuring the star formation rate with gravitational waves from binary black holes. Astrophys J Lett 886(1):L1

    Article  ADS  Google Scholar 

  357. Vogelsberger M, Genel S, Springel V, Torrey P, Sijacki D, Xu D, Snyder G, Bird S, Nelson D, Hernquist L (2014) Properties of galaxies reproduced by a hydrodynamic simulation. Nature 509:177–182

    Article  ADS  Google Scholar 

  358. Vogelsberger M, Genel S, Springel V, Torrey P, Sijacki D, Xu D, Snyder G, Nelson D, Hernquist L (2014) Introducing the illustris project: simulating the coevolution of dark and visible matter in the Universe. MNRAS 444:1518–1547

    Article  ADS  Google Scholar 

  359. Wade GA, Neiner C, Alecian E, Grunhut JH, Petit V, de Batz B, Bohlender DA, Cohen DH, Henrichs HF, Kochukhov O, Land Street JD, Manset N, Martins F, Mathis S et al (2016) The MiMeS survey of magnetism in massive stars: introduction and overview. MNRAS 456(1):2–22

    Article  ADS  Google Scholar 

  360. Webbink RF (1984) Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae. Astrophys J 277:355–360

    Article  ADS  Google Scholar 

  361. Webbink RF (1985) Stellar evolution and binaries. In: Pringle JE, Wade RA (eds) Interacting binary stars, p 39. Cambridge University Press, Cambridge

    Google Scholar 

  362. Weidner C, Kroupa P (2006) The maximum stellar mass, star-cluster formation and composite stellar populations. MNRAS 365:1333–1347

    Article  ADS  Google Scholar 

  363. Weidner C, Kroupa P, Bonnell IAD (2010) The relation between the most-massive star and its parental star cluster mass. MNRAS 401(1):275–293

    Article  ADS  Google Scholar 

  364. Willems B, Henninger M, Levin T, Ivanova N, Kalogera V, McGhee K, Timmes FX, Fryer CL (2005) Understanding compact object formation and natal kicks. I. Calculation methods and the case of GRO J1655-40. Astrophys J 625(1):324–346

    Article  ADS  Google Scholar 

  365. Wong KWK, Breivik K, Kremer K, Callister T (2020) Joint constraints on the field-cluster mixing fraction, common envelope efficiency, and globular cluster radii from a population of binary hole mergers via deep learning. arXiv e-prints, page arXiv:2011.03564

    Google Scholar 

  366. Wong T-W, Valsecchi F, Fragos T, Kalogera V (2012) Understanding compact object formation and natal kicks. III. The case of cygnus X-1. Astrophys J 747(2):111

    Google Scholar 

  367. Woosley SE (2017) Pulsational pair-instability supernovae. Astrophys J 836:244

    Article  ADS  Google Scholar 

  368. Woosley SE (2019) The evolution of massive helium stars, including mass loss. Astrophys J 878(1):49

    Article  ADS  Google Scholar 

  369. Woosley SE, Heger A (2006) The progenitor stars of gamma-ray bursts. Astrophys J 637(2):914–921

    Article  ADS  Google Scholar 

  370. Woosley SE, Heger A, Weaver TA (2002) The evolution and explosion of massive stars. Rev Mod Phys 74(4):1015–1071

    Article  ADS  Google Scholar 

  371. Xu X-J, Li X-D (2010) On the binding energy parameter λ of common envelope evolution. Astrophys J 716:114–121

    Article  ADS  Google Scholar 

  372. Yang Y, Bartos I, Gayathri V, Ford KES, Haiman Z, Klimenko S, Kocsis B, Márka S, Márka Z, McKernan B, O’Shaughnessy R (2019) Hierarchical black hole mergers in active galactic nuclei. Phys Rev Lett 123(18):181101

    Article  ADS  Google Scholar 

  373. Yang Y, Bartos I, Haiman Z, Kocsis B, Márka Z, Stone NC, Márka S (2019) AGN disks harden the mass distribution of stellar-mass binary black hole mergers. Astrophys J 876(2):122

    Article  ADS  Google Scholar 

  374. Yoon SC, Langer N, Norman C (2006) Single star progenitors of long gamma-ray bursts. I. Model grids and redshift dependent GRB rate. Astron Astrophys 460(1):199–208

    Google Scholar 

  375. Zackay B, Venumadhav T, Dai L, Roulet J, Zaldarriaga M (2019) Highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run. Phys Rev D 100(2):023007

    Article  ADS  Google Scholar 

  376. Zevin M, Pankow C, Rodriguez CL, Sampson L, Chase E, Kalogera V, Rasio FA (2017) Constraining formation models of binary black holes with gravitational-wave observations. Astrophys J 846:82

    Article  ADS  Google Scholar 

  377. Zevin M, Kelley LZ, Nugent A, Fong W-F, Christopher Berry PL, Kalogera V (2020) Forward modeling of double neutron stars: insights from highly offset short gamma-ray bursts. Astrophys J 904(2):190

    Article  ADS  Google Scholar 

  378. Ziosi BM, Mapelli M, Branchesi M, Tormen G (2014) Dynamics of stellar black holes in young star clusters with different metallicities – II. Black hole-black hole binaries. MNRAS 441:3703–3717

    Google Scholar 

Download references

Acknowledgements

We thank the DEMOBLACK team for useful discussions and for providing us with some essential material for this review. MM acknowledges financial support from the European Research Council for the ERC Consolidator grant DEMOBLACK, under contract no. 770017.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mapelli, M. (2021). Formation Channels of Single and Binary Stellar-Mass Black Holes. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-4702-7_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4702-7_16-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4702-7

  • Online ISBN: 978-981-15-4702-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics