Skip to main content

Modulating Surface Energy and Surface Roughness for Inhibiting Microbial Growth

  • Chapter
  • First Online:
Engineered Antimicrobial Surfaces

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

This chapter summarizes various strategies of developing antibacterial surfaces based on special composition and topography to obtain efficient and long-term antibacterial and/or antifouling properties. These include both active (bacteria killing) and passive (preventing bacteria attachment) strategies. We also look at fabrication techniques that replicate nature-inspired micro- and/or nano-patterns onto surfaces as well as other synthetic ways to impart antibacterial activity to surfaces. The interplay between surface properties and bacterial interaction has been addressed as the key feature for designing such antibacterial and antifouling surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056. https://doi.org/10.1016/j.pnsc.2008.04.001

    Article  CAS  Google Scholar 

  2. Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI (2018) Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4:e01067. https://doi.org/10.1016/j.heliyon.2018.e01067

    Article  Google Scholar 

  3. Desrousseaux C, Sautou V, Descamps S, Traoré O (2013) Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect 85:87–93. https://doi.org/10.1016/j.jhin.2013.06.015

    Article  CAS  Google Scholar 

  4. Costello CM, Yeung CL, Rawson FJ, Mendes PM (2012) Application of nanotechnology to control bacterial adhesion and patterning on material surfaces. J Exp Nanosci 7:634–651. https://doi.org/10.1080/17458080.2012.740640

    Article  CAS  Google Scholar 

  5. Wu S, Zhang B, Liu Y, Suo X, Li H (2018) Influence of surface topography on bacterial adhesion: a review (review). Biointerphases 13:060801. https://doi.org/10.1116/1.5054057

    Article  CAS  Google Scholar 

  6. Tuson HH, Weibel DB (2013) Bacteria-surface interactions. Soft Matter 9:4368–4380. https://doi.org/10.1039/c3sm27705d

    Article  CAS  Google Scholar 

  7. Cheng Y, Feng G, Moraru CI (2019) Micro- and nanotopography sensitive bacterial attachment mechanisms: a review. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.00191

  8. Yuan Y, Hays MP, Hardwidge PR, Kim J (2017) Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv 7:14254–14261. https://doi.org/10.1039/c7ra01571b

    Article  CAS  Google Scholar 

  9. Kelleher SM, Habimana O, Lawler J, O’Reilly B, Daniels S, Casey E, Cowley A (2015) Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features. ACS Appl Mater Interfaces 8:14966–14974. https://doi.org/10.1021/acsami.5b08309

  10. Preedy E, Perni S, Nipiĉ D, Bohinc K, Prokopovich P (2014) Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria. Langmuir 30:9466–9476. https://doi.org/10.1021/la501711t

    Article  CAS  Google Scholar 

  11. Perera-Costa D, Bruque JM, González-Martín ML, Gómez-García AC, Vadillo-Rodríguez V (2014) Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns. Langmuir 30:4633–4641. https://doi.org/10.1021/la5001057

    Article  CAS  Google Scholar 

  12. Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31:295–304. https://doi.org/10.1016/j.tibtech.2013.01.017

    Article  CAS  Google Scholar 

  13. Jaggessar A, Shahali H, Mathew A, Yarlagadda PKDV (2017) Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J Nanobiotechnol 15:64. https://doi.org/10.1186/s12951-017-0306-1

    Article  CAS  Google Scholar 

  14. Rigo S, Cai C, Gunkel-Grabole G, Maurizi L, Zhang X, Xu J, Palivan CG (2018) Nanoscience-based strategies to engineer antimicrobial surfaces. Adv Sci 5:1700892. https://doi.org/10.1002/advs.201700892

    Article  CAS  Google Scholar 

  15. Hu R, Li G, Jiang Y, Zhang Y, Zou JJ, Wang L, Zhang X (2013) Silver-zwitterion organic-inorganic nanocomposite with antimicrobial and antiadhesive capabilities. Langmuir 29:3773–3779. https://doi.org/10.1021/la304708b

    Article  CAS  Google Scholar 

  16. De Giglio E, Cafagna D, Cometa S, Allegretta A, Pedico A, Giannossa LC, Sabbatini L, Mattioli-Belmonte M, Iatta R (2013) An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization. Anal Bioanal Chem 405:805–816. https://doi.org/10.1007/s00216-012-6293-z

    Article  CAS  Google Scholar 

  17. Wang B, Liu H, Wang Z, Shi S, Nan K, Xu Q, Ye Z, Chen H (2017) A self-defensive antibacterial coating acting through the bacteria-triggered release of a hydrophobic antibiotic from layer-by-layer films. J Mater Chem B 5:1498–1506. https://doi.org/10.1039/c6tb02614a

    Article  CAS  Google Scholar 

  18. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145. https://doi.org/10.1016/j.jconrel.2011.07.002

    Article  CAS  Google Scholar 

  19. Tripathy A, Sen P, Su B, Briscoe WH (2017) Natural and bioinspired nanostructured bactericidal surfaces. Adv Colloid Interface Sci 248:85–104. https://doi.org/10.1016/j.cis.2017.07.030

    Article  CAS  Google Scholar 

  20. Han S, Ji S, Abdullah A, Kim D, Lim H, Lee D (2018) Superhydrophilic nanopillar-structured quartz surfaces for the prevention of biofilm formation in optical devices. Appl Surf Sci 429:244–252. https://doi.org/10.1016/j.apsusc.2017.07.164

    Article  CAS  Google Scholar 

  21. Vasudevan R, Kennedy AJ, Merritt M, Crocker FH, Baney RH (2014) Microscale patterned surfaces reduce bacterial fouling-microscopic and theoretical analysis. Colloids Surf B Biointerfaces 117:225–232. https://doi.org/10.1016/j.colsurfb.2014.02.037

    Article  CAS  Google Scholar 

  22. Barcelo S, Li Z (2016) Nanoimprint lithography for nanodevice fabrication. Nano Converg 3:21. https://doi.org/10.1186/s40580-016-0081-y

    Article  CAS  Google Scholar 

  23. Zhao XM, Xia Y, Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J Mater Chem 7:1069–1074. https://doi.org/10.1039/a700145b

  24. Franssila S (2010) Introduction to microfabrication. https://doi.org/10.1002/9781119990413

  25. Oh JK, Lee JK, Kim SJ, Park KW (2009) Synthesis of phase- and shape-controlled TiO2 nanoparticles via hydrothermal process. J Ind Eng Chem 15:270–274. https://doi.org/10.1016/j.jiec.2008.10.001

    Article  CAS  Google Scholar 

  26. Zhu K, Hu G (2014) Supercritical hydrothermal synthesis of titanium dioxide nanostructures with controlled phase and morphology. J Supercrit Fluids 94:165–173. https://doi.org/10.1016/j.supflu.2014.07.011

    Article  CAS  Google Scholar 

  27. Surmenev R, Vladescu A, Surmeneva M, Ivanova A, Braic M, Grubova I, Cotrut CM (2017) Radio frequency magnetron sputter deposition as a tool for surface modification of medical implants. In: Modern technologies for creating the thin-film systems and coatings, pp 213–248

    Google Scholar 

  28. Ye J, Deng J, Chen Y, Yang T, Zhu Y, Wu C, Wu T, Jia J, Cheng X, Wang X (2019) Cicada and catkin inspired dual biomimetic antibacterial structure for the surface modification of implant material. Biomater Sci 7:2826–2832. https://doi.org/10.1039/c9bm00082h

    Article  CAS  Google Scholar 

  29. Lutey AHA, Gemini L, Romoli L, Lazzini G, Fuso F, Faucon M, Kling R (2018) Towards laser-textured antibacterial surfaces. Sci Rep 8:10112. https://doi.org/10.1038/s41598-018-28454-2

    Article  CAS  Google Scholar 

  30. Graham MV, Cady NC (2014) Nano and microscale topographies for the prevention of bacterial surface fouling. Coatings 4:37–59. https://doi.org/10.3390/coatings4010037

    Article  CAS  Google Scholar 

  31. Hasan J, Chatterjee K (2015) Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale 7:15568–15575. https://doi.org/10.1039/c5nr04156b

    Article  CAS  Google Scholar 

  32. Dundar Arisoy F, Kolewe KW, Homyak B, Kurtz IS, Schiffman JD, Watkins JJ (2018) Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography. ACS Appl Mater Interfaces 10:20055–20063. https://doi.org/10.1021/acsami.8b05066

  33. Hasan J, Raj S, Yadav L, Chatterjee K (2015) Engineering a nanostructured “super surface” with superhydrophobic and superkilling properties. RSC Adv 5:44953–44959. https://doi.org/10.1039/c5ra05206h

    Article  CAS  Google Scholar 

  34. Bucaro MA, Vasquez Y, Hatton BD, Aizenberg J (2012) Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano 6:6222–6230. https://doi.org/10.1021/nn301654e

    Article  CAS  Google Scholar 

  35. Qi S, Yi C, Ji S, Fong CC, Yang M (2009) Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS Appl Mater Interfaces 1:30–34. https://doi.org/10.1021/am800027d

    Article  CAS  Google Scholar 

  36. Minoura K, Yamada M, Mizoguchi T, Kaneko T, Nishiyama K, Ozminskyj M, Koshizuka T, Wada I, Suzutani T (2017) Antibacterial effects of the artificial surface of nanoimprinted moth-eye film. PLoS ONE 12:e0185366. https://doi.org/10.1371/journal.pone.0185366

    Article  CAS  Google Scholar 

  37. Gao A, Hang R, Huang X, Zhao L, Zhang X, Wang L, Tang B, Ma S, Chu PK (2014) The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials 35:4223–4235. https://doi.org/10.1016/j.biomaterials.2014.01.058

    Article  CAS  Google Scholar 

  38. Wang J, Li J, Guo G, Wang Q, Tang J, Zhao Y, Qin H, Wahafu T, Shen H, Liu X, Zhang X (2016) Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver. Sci Rep 6:32699. https://doi.org/10.1038/srep32699

    Article  CAS  Google Scholar 

  39. Kim EJ, Choi M, Park HY, Hwang JY, Kim HE, Hong SW, Lee J, Yong K, Kim W (2019) Thorn-like TiO2 nanoarrays with broad spectrum antimicrobial activity through physical puncture and photocatalytic action. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-50116-0

    Article  CAS  Google Scholar 

  40. Fisher LE, Yang Y, Yuen M-F, Zhang W, Nobbs AH, Su B (2016) Bactericidal activity of biomimetic diamond nanocone surfaces. Biointerphases 11:011014. https://doi.org/10.1116/1.4944062

    Article  CAS  Google Scholar 

  41. Dickson MN, Liang EI, Rodriguez LA, Vollereaux N, Yee AF (2015) Nanopatterned polymer surfaces with bactericidal properties. Biointerphases 10:021010. https://doi.org/10.1116/1.4922157

    Article  CAS  Google Scholar 

  42. Lee MJ, Kwon JS, Jiang HB, Choi EH, Park G, Kim KM (2019) The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure. Sci Rep 9:1938. https://doi.org/10.1038/s41598-019-39414-9

    Article  CAS  Google Scholar 

  43. Pietrzyk B, Porȩbska K, Jakubowski W, Miszczak S (2019) Antibacterial properties of Zn doped hydrophobic SiO2 coatings produced by sol-gel method. Coatings 9:362. https://doi.org/10.3390/coatings9060352

    Article  CAS  Google Scholar 

  44. Majhi S, Arora A, Mishra A (2019) Surface immobilization of a short antimicrobial peptide (AMP) as an antibacterial coating. Materialia 6:100350. https://doi.org/10.1016/j.mtla.2019.100350

    Article  CAS  Google Scholar 

  45. Chen X, Hirt H, Li Y, Gorr S-U, Aparicio C (2014) Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms. PLoS ONE 9:e111579. https://doi.org/10.1371/journal.pone.0111579

    Article  CAS  Google Scholar 

  46. Kayes MI, Galante AJ, Stella NA, Haghanifar S, Shanks RMQ, Leu PW (2018) Stable lotus leaf-inspired hierarchical, fluorinated polypropylene surfaces for reduced bacterial adhesion. React Funct Polym 128:40–46. https://doi.org/10.1016/j.reactfunctpolym.2018.04.013

    Article  CAS  Google Scholar 

  47. Lin J, Chen X, Chen C, Hu J, Zhou C, Cai X, Wang W, Zheng C, Zhang P, Cheng J, Guo Z, Liu H (2018) Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl Mater Interfaces 10:6124–6136. https://doi.org/10.1021/acsami.7b16235

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majhi, S., Mishra, A. (2020). Modulating Surface Energy and Surface Roughness for Inhibiting Microbial Growth. In: Snigdha, S., Thomas, S., Radhakrishnan, E., Kalarikkal, N. (eds) Engineered Antimicrobial Surfaces. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4630-3_6

Download citation

Publish with us

Policies and ethics