Skip to main content

Lignocellulosic Waste Valorization and Biorefineries Concept

  • Chapter
  • First Online:
Lignocellulosic Ethanol Production from a Biorefinery Perspective

Abstract

Lignocellulosic waste is the extremely encouraging renewable feedstock for sustainable energy production and fine chemicals. Lignocellulosic biomass is structurally a complex mixture of the various compounds. Lignocellulosic biomass is not hydrolyzed to product like glucose or other simpler sugar. The hydrolysis of the lignocellulosic biomass yields hexoses and pentoses sugar, various by-products like organic acids, carbon dioxide, plant fiber, and lignin residues. The concept of biorefinery or circular bioeconomy is upsurging solution to make profit and maximal utilization of the lignocellulosic waste. The valorization of lignin and cellulose fractions into energy or fine chemical is depending on the usefulness of discerning depolymerization of the pretreatment scheme which usually involves harsh pyrolytic and solvothermal practices aided by corrosive acids or alkali. The existing solution to valorize lignocellulosic biomass is enzymatic hydrolysis due to its less energy necessity and fewer extent of pollution caused, but the major constraint is the low availability of cellulose due to its stiff association with lignin. So, to develop an efficient biorefinery or circular bioeconomy system which is commercially viable and fulfill upcoming expectation in converting lignocellulosic substrates into fuels. The conclusive aspects in a feasible lignocellulose biorefinery system will be the substrate availability and raw material supply. Devoted tools to care the application of advanced technologies and make the market acceptance of new stuff will be desirable to hasten the evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alriols, M. G., GarcĂ­a, A., Llano-Ponte, R., & Labidi, J. (2010). Combined organosolv and ultrafiltration lignocellulosic biorefinery process. Chemical Engineering Journal, 157(1), 113–120.

    CAS  Google Scholar 

  • Azapagic, A. (2014). Sustainability considerations for integrated biorefineries. Trends in Biotechnology, 32(1), 1–4.

    PubMed  CAS  Google Scholar 

  • BaĂŞta, B. E. L., Lima, D. R. S., Balena Filho, J. G., Adarme, O. F. H., Gurgel, L. V. A., & de Aquino, S. F. (2016). Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process. Bioresource Technology, 218, 436–446.

    PubMed  Google Scholar 

  • Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6, 141.

    Google Scholar 

  • Bastiaens, L., Van Roy, S., Thomassen, G., & Elst, K. (2017). Biorefinery of algae: Technical and economic considerations. In Microalgae-based biofuels and bioproducts (pp. 327–345). Kidlington, UK: Woodhead Publishing.

    Google Scholar 

  • Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: Practical design and theory. London, UK: Academic Press.

    Google Scholar 

  • Booysen, K., Reddy, P., Foxon, K., Davis, S., 2016. Development of New Products Greenhouse Toolbox and Feedback from Step-Bio Collaborators. Durban

    Google Scholar 

  • Borghesi, A., & Gaudenzi, B. (2013). Operational risk and supply chain risk management. In Risk management (pp. 117–137). Milano, Italy: Springer.

    Google Scholar 

  • Budzianowski, W. M., & Postawa, K. (2016). Total chain integration of sustainable biorefinery systems. Applied Energy, 184, 1432–1446.

    Google Scholar 

  • Cheali, P., Posada, J. A., Gernaey, K. V., & Sin, G. (2015). Upgrading of lignocellulosic biorefinery to value-added chemicals: Sustainability and economics of bioethanol-derivatives. Biomass and Bioenergy, 75, 282–300.

    CAS  Google Scholar 

  • Chen, M.J., Liao, C.Z., Tsai, Y.F., 2005. Manual and Case Studies of Composting Technology and Equipment. Issued by the Taiwan Green Productivity Foundation, Prepared for the Industrial Development Bureau, Ministry of Economic Affairs, Taiwan.

    Google Scholar 

  • Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421.

    CAS  Google Scholar 

  • Clark, J. H., & Deswarte, F. E. (2008). The biorefinery concept—An integrated approach. Introduction to Chemicals from Biomass, 2.

    Google Scholar 

  • Clifton-Brown, J., Harfouche, A., Casler, M. D., Dylan Jones, H., Macalpine, W. J., Murphy-Bokern, D., … Bastien, C. (2019). Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GCB Bioenergy, 11(1), 118–151.

    PubMed  Google Scholar 

  • D’Angelo, S. C., Dall’Ara, A., Mondelli, C., PĂ©rez-RamĂ­rez, J., & Papadokonstantakis, S. (2018). Techno-economic analysis of a glycerol biorefinery. ACS Sustainable Chemistry & Engineering, 6(12), 16563–16572.

    Google Scholar 

  • Dahmen, N., Lewandowski, I., Zibek, S., & Weidtmann, A. (2019). Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. GCB Bioenergy, 11(1), 107–117.

    Google Scholar 

  • Daioglou, V., Stehfest, E., Wicke, B., Faaij, A., & van Vuuren, D. P. (2016). Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy, 8(2), 456–470.

    Google Scholar 

  • De Bhowmick, G., Sarmah, A. K., & Sen, R. (2018). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, 247, 1144–1154.

    PubMed  Google Scholar 

  • Dufosse, K., Aoun, W. B., & Gabrielle, B. (2017). Life-cycle assessment of agricultural feedstock for biorefineries. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Elbersen, B., Van Eupen, M., Mantel, S., Alexopoulou, E., Bai, Z., Boogard, H., & Zanetti, F. (2018). Mapping marginal land potentially available for industrial crops in Europe. In 26th European Biomass Conference & Exhibition. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Elsayed, M., Abomohra, A. E. F., Ai, P., Wang, D., El-Mashad, H. M., & Zhang, Y. (2018). Biorefining of rice straw by sequential fermentation and anaerobic digestion for bioethanol and/or biomethane production: Comparison of structural properties and energy output. Bioresource Technology, 268, 183–189.

    PubMed  CAS  Google Scholar 

  • Esteban, J., & Ladero, M. (2018). Food waste as a source of value-added chemicals and materials: A biorefinery perspective. International Journal of Food Science & Technology, 53(5), 1095–1108.

    CAS  Google Scholar 

  • Fabbrini, F., Ludovisi, R., Alasia, O., Flexas, J., Douthe, C., Ribas CarbĂł, M., … Harfouche, A. (2019). Characterization of phenology, physiology, morphology and biomass traits across a broad Euro-Mediterranean ecotypic panel of the lignocellulosic feedstock Arundo donax. GCB Bioenergy, 11(1), 152–170.

    CAS  Google Scholar 

  • Gavrilescu, M. (2014). Biorefinery systems: An overview. In Bioenergy research: Advances and applications (pp. 219–241). Elsevier.

    Google Scholar 

  • Gnansounou, E., & Pandey, A. (2017). Classification of biorefineries taking into account sustainability potentials and flexibility (No. BOOK_CHAP). Elsevier.

    Google Scholar 

  • Gnansounou, E., & Raman, J. K. (2017). Life cycle assessment of algal biorefinery (No. BOOK_CHAP, pp. 199–219). Elsevier.

    Google Scholar 

  • Hamelinck, C. N., Van Hooijdonk, G., & Faaij, A. P. (2005). Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle-and long-term. Biomass and Bioenergy, 28(4), 384–410.

    CAS  Google Scholar 

  • Hasenheit, M., Gerdes, H., Kiresiewa, Z., & Beekman, V. (2016). D2. 2: Summary report on the social, economic and environmental impacts of the bioeconomy. European Union.

    Google Scholar 

  • Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: A literature review. International Journal of Production Research, 53(16), 5031–5069.

    Google Scholar 

  • Hoeber, S., Arranz, C., Nordh, N. E., Baum, C., Low, M., Nock, C., … Weih, M. (2018). Genotype identity has a more important influence than genotype diversity on shoot biomass productivity in willow short-rotation coppices. GCB Bioenergy, 10(8), 534–547.

    Google Scholar 

  • Hu, J., Zhang, Q., & Lee, D. J. (2017). Kraft lignin biorefinery: A proposal. Bioresource Technology, 247, 1181–1183.

    PubMed  Google Scholar 

  • Hytönen, E., & Stuart, P. (2011). Techno-economic assessment and risk analysis of biorefinery processes. In Computer aided chemical engineering (Vol. 29, pp. 1376–1380). Amsterdam: The Netherland: Elsevier.

    Google Scholar 

  • Kapanji, K. K., Haigh, K. F., & Görgens, J. F. (2019). Techno-economic analysis of chemically catalysed lignocellulose biorefineries at a typical sugar mill: Sorbitol or glucaric acid and electricity co-production. Bioresource Technology, 289, 121635.

    PubMed  CAS  Google Scholar 

  • Klein-Marcuschamer, D., Simmons, B. A., & Blanch, H. W. (2011). Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels, Bioproducts and Biorefining, 5(5), 562–569.

    CAS  Google Scholar 

  • Kumar, P., Sharma, P. K., Sharma, P. K., & Sharma, D. (2015). Micro-algal lipids: A potential source of biodiesel. Journal of Innovations in Pharmaceuticals and Biological Sciences, 2(2), 135–143.

    CAS  Google Scholar 

  • Lauer, M. (2008). Methodology guideline on techno economic assessment (TEA). In Workshop WP3B economics, methodology guideline.

    Google Scholar 

  • Lewandowski, I. (2015). Securing a sustainable biomass supply in a growing bioeconomy. Global Food Security, 6, 34–42.

    Google Scholar 

  • Lewandowski, I., & Faaij, A. P. (2006). Steps towards the development of a certification system for sustainable bio-energy trade. Biomass and Bioenergy, 30(2), 83–104.

    Google Scholar 

  • Liew, W. H., Hassim, M. H., & Ng, D. K. (2014). Review of evolution, technology and sustainability assessments of biofuel production. Journal of Cleaner Production, 71, 11–29.

    CAS  Google Scholar 

  • Luo, L., van der Voet, E., & Huppes, G. (2010). Biorefining of lignocellulosic feedstock–technical, economic and environmental considerations. Bioresource Technology, 101(13), 5023–5032.

    PubMed  CAS  Google Scholar 

  • Ma, J., Shi, S., Jia, X., Xia, F., Ma, H., Gao, J., & Xu, J. (2019). Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. Journal of Energy Chemistry, 36, 74–86.

    Google Scholar 

  • Meighan, B. N., Lima, D. R. S., Cardoso, W. J., BaĂŞta, B. E. L., Adarme, O. F. H., Santucci, B. S., … Gurgel, L. V. A. (2017). Two-stage fractionation of sugarcane bagasse by autohydrolysis and glycerol organosolv delignification in a lignocellulosic biorefinery concept. Industrial Crops and Products, 108, 431–441.

    CAS  Google Scholar 

  • Memon, M. S., Guo, J., Tagar, A. A., Perveen, N., Ji, C., Memon, S. A., & Memon, N. (2018). The effects of tillage and straw incorporation on soil organic carbon status, rice crop productivity, and sustainability in the rice-wheat cropping system of eastern China. Sustainability, 10(4), 961.

    Google Scholar 

  • Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550.

    CAS  Google Scholar 

  • Mohan, S. V., Nikhil, G. N., Chiranjeevi, P., Reddy, C. N., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12.

    Google Scholar 

  • Montafia, P., & Gnansounou, E. (2017). Life Cycle Assessment of Thermochemical Conversion of Empty Fruit Bunch of Oil Palm to Bio-Methane (No. BOOK_CHAP). Elsevier.

    Google Scholar 

  • Mussatto, S. I., & Teixeira, J. A. (2010). Lignocellulose as raw material in fermentation processes. Hoboken, NJ: Wiley.

    Google Scholar 

  • Nanda, S., Azargohar, R., Dalai, A. K., & Kozinski, J. A. (2015). An assessment on the sustainability of lignocellulosic biomass for biorefining. Renewable and Sustainable Energy Reviews, 50, 925–941.

    CAS  Google Scholar 

  • Nieder-Heitmann, M., Haigh, K., Louw, J., & Görgens, J. F. (2019). Economic evaluation and comparison of succinic acid and electricity co-production from sugarcane bagasse and trash lignocelluloses in a biorefinery, using different pretreatment methods: Dilute acid (H2SO4), alkaline (NaOH), organosolv, ammonia fibre expansion (AFEX™), steam explosion (STEX), and wet oxidation. In Biofuels, bioproducts and biorefining. Chichester: UK: Wiley.

    Google Scholar 

  • Nielsen, J. B., Jensen, A., Madsen, L. R., Larsen, F. H., Felby, C., & Jensen, A. D. (2017). Noncatalytic direct liquefaction of biorefinery lignin by ethanol. Energy & Fuels, 31(7), 7223–7233.

    CAS  Google Scholar 

  • Nikolakopoulos, A., & Kokossis, A. (2017). A problem decomposition approach for developing total water networks in lignocellulosic biorefineries. Process Safety and Environmental Protection, 109, 732–752.

    CAS  Google Scholar 

  • Nizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K. M., Shahzad, K., … Pant, D. (2017). Waste biorefineries: Enabling circular economies in developing countries. Bioresource Technology, 241, 1101–1117.

    PubMed  CAS  Google Scholar 

  • Novo, L. P., Gurgel, L. V. A., Marabezi, K., & da Silva Curvelo, A. A. (2011). Delignification of sugarcane bagasse using glycerol–water mixtures to produce pulps for saccharification. Bioresource Technology, 102(21), 10040–10046.

    PubMed  CAS  Google Scholar 

  • Ă–zdenkçi, K., De Blasio, C., Muddassar, H. R., Melin, K., Oinas, P., Koskinen, J., … Järvinen, M. (2017). A novel biorefinery integration concept for lignocellulosic biomass. Energy Conversion and Management, 149, 974–987.

    Google Scholar 

  • Rakotovao, M., Gobert, J., & Brullot, S. (2018). Developing a socio-economic framework for the assessment of rural biorefinery projects. European Biomass Conference and Exhibition Proceedings, 2018, 1378–1389.

    Google Scholar 

  • Raman, J. K., & Gnansounou, E. (2017). Life Cycle Assessment of Vetiver-Based Biorefinery With Production of Bioethanol and Furfural (No. BOOK_CHAP, pp. 147–165). Elsevier.

    Google Scholar 

  • Sharma, D. (2016). Biosurfactants in food. Cham: Switzerland: Springer International Publishing.

    Google Scholar 

  • Sharma, D., & Dhanjal, D. S. (2016). Bio-nanotechnology for active food packaging. Journal of Applied Pharmaceutical Science, 6(09), 220–226.

    CAS  Google Scholar 

  • Silalertruksa, T., Pongpat, P., & Gheewala, S. H. (2017). Life cycle assessment for enhancing environmental sustainability of sugarcane biorefinery in Thailand. Journal of Cleaner Production, 140, 906–913.

    CAS  Google Scholar 

  • Solarte-Toro, J. C., Romero-GarcĂ­a, J. M., MartĂ­nez-Patiño, J. C., Ruiz-Ramos, E., Castro-Galiano, E., & Cardona-Alzate, C. A. (2019). Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renewable and Sustainable Energy Reviews, 107, 587–601.

    CAS  Google Scholar 

  • Tran, P. H. N., Ko, J. K., Gong, G., Um, Y., & Lee, S. M. (2020). Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. Biotechnology for Biofuels, 13(1), 12.

    Google Scholar 

  • Tuazon, D., & Gnansounou, E. (2017). Towards an Integrated Sustainability Assessment of Biorefineries (No. BOOK_CHAP, pp. 259–301). Elsevier.

    Google Scholar 

  • Vaskan, P., Ruiz Pachon, E. M., & Gnansounou, E. (2017). Life cycle assessment of sugar crops and starch-based integrated biorefineries (No. BOOK_CHAP, pp. 97–146). Elsevier.

    Google Scholar 

  • Wagner, M., Mangold, A., Lask, J., Petig, E., Kiesel, A., & Lewandowski, I. (2019). Economic and environmental performance of miscanthus cultivated on marginal land for biogas production. GCB Bioenergy, 11(1), 34–49.

    CAS  Google Scholar 

  • Zhang, Y., & Wright, M. M. (2014). Product selection and supply chain optimization for fast pyrolysis and biorefinery system. Industrial & Engineering Chemistry Research, 53(51), 19987–19999.

    CAS  Google Scholar 

  • Zhang, Y. H. P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology & Biotechnology, 35(5), 367–375.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, D., Saini, A. (2020). Lignocellulosic Waste Valorization and Biorefineries Concept. In: Lignocellulosic Ethanol Production from a Biorefinery Perspective. Springer, Singapore. https://doi.org/10.1007/978-981-15-4573-3_7

Download citation

Publish with us

Policies and ethics