Skip to main content

System Biology and Network Analysis Approaches on Oxidative Stress in Cancer

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Oxidative stress refers to the pathophysiological condition when production of reactive oxygen species (ROS) saturates the intrinsic antioxidant defense mechanism. ROS have been shown to modulate diverse physiological processes including cellular signaling by acting as second messengers, hypoxic response pathways, inflammation, and immune response in mammalian cells. However, defects in antioxidant defense machinery contribute to elevated levels of ROS resulting in cytotoxicity and impaired cellular functions. In mitochondria, ROS are produced as an inescapable byproduct of oxidative phosphorylation, and hypoxia also promotes amplification of cellular levels of ROS. Hypoxia and oxidative stress-induced generation of ROS contribute to each step of carcinogenesis, starting from tumor formation to malignant transformation. This transformation involves dysregulation of an enormous number of genes and proteins, involved in various pathways including the conventional hypoxia-inducible factor (HIF) pathway. Understanding the interconnectivity between signaling and metabolic pathways is indispensable for early disease detection and therapeutics to develop. System biology aids in this process by analyzing disease dynamics as an integrated system of genes, networks, and pathways to gain important biological insights. Network-based comprehensive analysis integrates multifaceted high throughput data to identify novel cancer biomarkers. Integration of network and pathway analysis can effectively detect molecules and pathways that get perturbed during tumorigenesis. Eventually, dynamic analysis of biological networks using systems biology approaches may provide useful information to gain better understanding of a multifactorial disease like cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albert R, Thakar J et al (2014) Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. Wiley Interdiscip Rev Syst Biol Med 6(5):353–369

    Article  CAS  Google Scholar 

  • Amelio I, Tsvetkov P, Knight R et al (2016) Syn target: an online tool to test the synergetic effect of genes on survival outcome in cancer. Cell Death Differ 23:912

    Article  CAS  Google Scholar 

  • Antonov A, Krestyaninova M, Knight R et al (2014) PPISURV: a novel bioinformatics tool for uncovering the hidden role of specific genes in cancer survival outcome. Oncogene 33:1621–1628

    Article  CAS  Google Scholar 

  • Arnér ESJ, Holmgren A (2006) The thioredoxin system in cancer. Semin Cancer Biol 16(6):420–426

    Article  Google Scholar 

  • Bag AK, Mandloi S, Jarmalavicius S, Mondal S, Kumar K, Mandal C et al (2019) Connecting signaling and metabolic pathways in EGF receptor-mediated oncogenesis of glioblastoma. PLoS Comput Biol 15(8):e1007090

    Article  CAS  Google Scholar 

  • Bell ER, Klimova TA et al (2007a) Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol Cell Biol 27(16):5737–5745

    Article  CAS  Google Scholar 

  • Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GRS, Chandel NS et al (2007b) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177(6):1029–1036

    Article  CAS  Google Scholar 

  • Bhattacharyya M, Chakrabarti S et al (2015) Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies. Malar J 14:70

    Article  Google Scholar 

  • Camps C, Saini HK, Mole DR, Choudhry H et al (2014) Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer 13:28

    Article  Google Scholar 

  • Csiki I, Yanagisawa K, Haruki N et al (2006) Thioredoxin-1modulates transcription of cyclooxygenase-2 via hypoxiainduciblefactor-1alpha in non-small cell lung cancer. Cancer Res 66(1):143–150

    Article  CAS  Google Scholar 

  • Giacomantonio CE, Goodhill GJ (2010) A Boolean model of the gene regulatory network underlying Mammalian cortical area development. PLoS Comput Biol 2010;6(9):e1000936. https://doi.org/10.1371/journal.pcbi.1000936

  • Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947

    Article  CAS  Google Scholar 

  • Graham AM, Presnell JS (2017) Hypoxia inducible factor (HIF) transcription factor family expansion, diversification, divergence and selection in eukaryotes. PLoS One 12(6):e0179545

    Article  Google Scholar 

  • Guruharsha KG, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N et al (2011) A protein complex network of Drosophila melanogaster. Cell 147:690–703

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA et al (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  • Hautaniemi S, Kharait S, Iwabu A, Wells A, Lauffenburger DA et al (2005) Modeling of signal-response cascades using decision tree analysis. Bioinformatics 21(9):2027–2035

    Article  CAS  Google Scholar 

  • Hernández Patiño CE, Jaime-Muñoz G, Resendis-Antonio O et al (2013) Systems biology of cancer: moving toward the integrative study of the metabolic alterations in cancer cells. Front Physiol 3:481

    Article  Google Scholar 

  • Ho JC, Abdullah LN, Pang QY, Jha S et al (2017) Inhibition of the H3K9 methyl transferase G9A attenuates oncogenicity and activates the hypoxia signaling pathway. PLoS One 12(11):e0188051

    Article  Google Scholar 

  • https://www.ncbi.nlm.nih.gov/geo/geo2r/, GEO2R

  • https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37340, GSE37340

  • Huang Z, Mayr NA, Yuh WT, Lo SS, Montebello JF, Grecula JC, Lu L, Li K, Zhang H, Gupta N, Wang JZ et al (2010) Predicting outcomes in cervical cancer: a kinetic model of tumor regression during radiation therapy. Cancer Res 70(2):463–470

    Article  CAS  Google Scholar 

  • Hughey JJ, Lee TK, Covert MW et al (2010) Computational modeling of mammalian signalling networks. Wiley Interdiscip Rev Syst Biol Med 2(2):194–209

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  Google Scholar 

  • Kumari S, Badana AK, Murali MG, Shailender G, Malla RR (2017) Reactive oxygen species: a key constituent in cancer survival. Biomark Insights 13:1–9

    Google Scholar 

  • Le Novère N et al (2015) Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet 16(3):146–158

    Article  Google Scholar 

  • Leone A, Roca MS, Ciardiello C, Costantini S, Budillon A (2017) Oxidative stress gene expression profile correlates with cancer patient poor prognosis: identification of crucial pathways might select novel therapeutic approaches. Oxid Med Cell Longev 2017:2597581. Article ID 2597581, 18 p

    Google Scholar 

  • Lesne A (2006) Complex network: from graph theory to biology. Lett Math Phys 78:235–262

    Article  Google Scholar 

  • Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5):479–496

    Article  CAS  Google Scholar 

  • MacIntyr NR (2014) Tissue hypoxia: implications for the respiratory clinician. Respir Care 59(10):1590–1596

    Article  Google Scholar 

  • Macklin PS, McAuliffe J, Pugh CW, Yamamoto A (2017) Hypoxia and HIF pathway in cancer and the placenta. Placenta 56:8–13

    Google Scholar 

  • Masson N, Ratcliffe PJ (2014) Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab 2(1):3

    Article  Google Scholar 

  • Naldi A, Monteiro PT, Müssel C (2015) Consortium for logical models and tools., Kestler HA, Thieffry D, Xenarios I, Saez-Rodriguez J, Helikar T, Chaouiya C. Cooperative development of logical modelling standards and tools with CoLoMoTo. Bioinformatics 31(7):1154–1159

    Article  CAS  Google Scholar 

  • Park BJ, Cha MK, Kim IH (2014) Thioredoxin 1 as a serum marker for breast cancer and its use in combination with CEA or CA15-3 for improving the sensitivity of breast cancer diagnoses. BMC Res Notes 7:7

    Article  Google Scholar 

  • Puniya BL, Allen L, Hochfelder C, Majumder M, Helikar T et al (2016) Systems perturbation analysis of a large-scale signal transduction model reveals potentially influential candidates for cancer therapeutics. Front Bioeng Biotechnol 4:10

    Article  Google Scholar 

  • Raymaekers K, Stegen S, van Gastel N, Carmeliet G (2015) The vasculature: a vessel for bone metastasis. Bonekey Rep 4:742

    Google Scholar 

  • Rodic S, Vincent MD (2017) Reactive oxygen species (ROS) are a key determinant of cancer’s metabolic phenotype. Int J Cancer 142:440–448 (2018)

    Article  Google Scholar 

  • Saez-Rodriguez J, Alexopoulos LG, Zhang M, Morris MK, Lauffenburger DA, Sorger PK et al (2011) Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res 71(16):5400–5411

    Article  CAS  Google Scholar 

  • Samaga R, Klamt S et al (2013) Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks. Cell Commun Signal 11(1):43

    Article  Google Scholar 

  • Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G et al (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20(4):370–375

    Article  Google Scholar 

  • Seeza GL, Roth PH, Fang H-M, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763

    Article  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  • Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    CAS  PubMed  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  Google Scholar 

  • Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, Polese M et al (2016) The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxid Med Cell Longev 2016. Article ID 3907147, 18 p

    Google Scholar 

  • Waypa GB, Marks JD, Guzy R et al (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106(3):526–535

    Article  CAS  Google Scholar 

  • Yoshida GJ (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res 34:111

    Article  Google Scholar 

  • Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322:104–110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Chakrabarti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bose, S., Kumar, K., Chakrabarti, S. (2021). System Biology and Network Analysis Approaches on Oxidative Stress in Cancer. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_158-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_158-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics