Skip to main content

Sexual Selection in Angiosperms: Paradox Re-visited

  • Chapter
  • First Online:
Book cover Reproductive Ecology of Flowering Plants: Patterns and Processes
  • 776 Accesses

Abstract

The theory of sexual selection, proposed by Darwin, explains the evolution of sexually dimorphic characters in animals. The idea was and is still being used to elucidate the exaggerated sexual traits in male animals. He claimed females to be better in making the reproductive investments for offsprings than males. This made him suggest strategies wherein females choose the best fit males and males compete among themselves for mate acquisition. Today the concept has been developed extensively, and various other sexually related traits have been suggested to evolve in the same manner. By highlighting and merging the frameworks of sexual selection envisioned by various researchers from time to time, the present chapter discusses how sexual selection can occur in plants even though individuals do not make a direct interaction. Traits influencing export and reception of pollen in both hermaphrodites and dioecious taxa affect pollination which is likely to influence mate acquisition. In many instances phenotypes facilitating pollen export are in harmony with those that enhance pollen receipt. However, the reverse can also be true. This suggests that visitation rate of pollinator(s) limits both male and female functions in same or different directions. The present chapter summarizes the theory of sexual selection and attempts to review the conceptual developments in plants using evidences from different fields. The theory drives fundamental evolutionary processes such as trait elaboration and speciation including plant and floral morphologies. The empirical findings concerning potentially affected traits are discussed. At the same time, care has been taken to address the criticisms fairly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguade M (1999) Positive selection drives the evolution of the Acp29Ab accessory gland protein in Drosophila. Genetics 152:543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alonzo SH (2012) Sexual selection favours male parental care, when females can choose. Proc R Soc London, Ser B 279:1784–1790

    Google Scholar 

  • Alonzo SH, Servedio MR (2019) Grey zones of sexual selection: why is finding a modern definition so hard? Proc R Soc B 286:20191325

    PubMed  Google Scholar 

  • Andersson M (1982) Female choice selects for extreme tail length in a widow bird. Nature 299:818–820

    Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Apait VJ, Nakamura RR, Wheeler NC (1989) Differential male reproductive success in Douglas-fir. TAG Theor Appl Genet 77:681–684

    Google Scholar 

  • Arathi HS, Ganeshaiah KN, Uma Shaanker R, Hegde SG (1996) Factors affecting embryo abortion in Syzygium cuminii (L.) skeels (Myrtaceae). Int J Plant Sci 157:49–52

    Google Scholar 

  • Arditti J, Elliott J, Kitching IJ, Wasserthal LT (2012) ‘Good heavens what insect can suck it’- Charles Darwin, Angraecum sesquipedale and Xanthopan morganii praedicta. Bot J Linn Soc 169:403–432

    Google Scholar 

  • Armbruster WS (1996) Evolution of floral morphology and function: an integrative approach to adaptation, constraint, and compromise in Dalechampia (Euphorbiaceae). In: Llyod DG, Barrett SCH (eds) Floral biology. Chapman & Hall, New York, pp 241–272

    Google Scholar 

  • Armbuster WS, Martin P, Kidd J, Stafford R, Rogers DG (1995) Reproductive significance of indirect pollen-tube growth in Dalechampia (Euphorbiaceae). Am J Bot 82:51–56

    Google Scholar 

  • Arnold SJ (1994a) Is there a unifying concept of sexual selection applies to both plants and animals? Am Nat 144:S1–S12

    Google Scholar 

  • Arnold SJ (1994b) Bateman’s principles and the measurement of sexual selection in plants and animals? Am Nat 144:S126–S149

    Google Scholar 

  • Baker HG, Baker I (1983) Some evolutionary and taxonomic implications of variation in the chemical reserves of pollen. In: Mulcahy DL, Ottaviano E (eds) Pollen biology and implications for plant breeding. Elsevier Biomedical, New York, pp 43–52

    Google Scholar 

  • Baskin JM, Baskin CC (2015) Pollen (microgametophyte) competition: an assessment of its significance in the evolution of flowering plant diversity with particular reference to seed germination. Seed Sci Res 25:1–11

    Google Scholar 

  • Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368

    CAS  PubMed  Google Scholar 

  • Bawa KS (1980) Evolution of dioecy in flowering plants. Annu Rev Ecol Syst 11:15–39

    Google Scholar 

  • Bemis WP (1958) Selective fertilization in Lima beans. Genetics 44:555–562

    Google Scholar 

  • Bertin RI (1982) The evolution and maintenance of andromonoecy. Evol Theory 6:25–32

    Google Scholar 

  • Bertin RI (1988) Paternity in plants. In: Lovett Doust J, Lovett Doust L (eds) Plant reproductive ecology: patterns and strategies. Oxford University Press, New York, pp 30–59

    Google Scholar 

  • Bond WJ, Maze KE (1999) Survival costs and reproductive benefits of floral display in a sexually dimorphic dioecious shrub, Leucadendron xanthoconus. Evol Ecol 13:1–18

    Google Scholar 

  • Bond WJ, Midgley JJ (1988) Allometry and sexual differences in leaf size. Am Nat 131:901–910

    Google Scholar 

  • Brannes DK, Cleveland RW (1963) Pollen tube growth of diploid alfalfa in vitro. Crop Sci 3:291–295

    Google Scholar 

  • Brooks R (2002) Variation in female mate choice within guppy populations: population divergence, multiple ornaments and the maintenance of polymorphism. Genetica 116:343–358

    CAS  PubMed  Google Scholar 

  • Broyles SB, Wyatt R (1990) Paternity analysis in a natural population of Asclepias exaltata: multiple paternity, functional gender, and the ‘pollen-donation hypothesis’. Evolution 44(6):1454–1468

    PubMed  Google Scholar 

  • Cameron E, Day T, Rowe L (2003) Sexual conflict and indirect benefits. J Evol Biol 16:1055–1060

    CAS  PubMed  Google Scholar 

  • Campbell DR (1989) Measurements of selection in a hermaphrodite plant: variation in male and female pollination success. Evolution 43:318–334

    PubMed  Google Scholar 

  • Campbell DR (1992) Variation in sex allocation and floral morphology in Ipomopsis aggregata (Polemoniaceae). Am J Bot 79:516–521

    Google Scholar 

  • Charlesworth D, Schemske DW, Sork VL (1987) The evolution of plant reproductive characters: sexual versus natural selection. In: Bradbury JW, Andersson MB (eds) Sexual selection: testing the alternatives. Wiley, New York, pp 317–335

    Google Scholar 

  • Charnov EL (1979) Simultaneous hermaphroditism and sexual selection. Proc Natl Acad Sci USA 76:2480–2484

    CAS  PubMed  Google Scholar 

  • Chenoweth SF, Appleton NC, Allen SL, Rundle HD (2015) Genomic evidence that sexual selection impedes adaptation to a novel environment. Curr Biol 25:1860–1866

    CAS  PubMed  Google Scholar 

  • Cocucci AA, Marino S, Baranzelli M, Wiemer AP, Sersic A (2014) The buck in the milkweed: evidence of male-male-interference among pollinaria on pollinators. New Phytol 203:280–286

    PubMed  Google Scholar 

  • Cruzan MB (1993) Analysis of pollen-style interactions in Petunia hybrida; the determination of variance in male reproductive success. Sex Plant Reprod 6:275–281

    Google Scholar 

  • Currah L (1981) Pollen competition in onion (Allium cepa L.). Euphytica 30:687–696

    Google Scholar 

  • Dahl AE, Fredrikson M (1996) The time table for development of maternal tissues sets the stage for male genomic selection in Betula pendula (Betulaceae). Am J Bot 83:895–902

    Google Scholar 

  • Dai C, Galloway F (2013) Sexual selection in a hermaphroditic plant through female reproductive success. J Evol Biol 26:2622–2632

    CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Penguin Books, London

    Google Scholar 

  • Darwin C (1862) The various contrivances by which orchids are fertilized by insects. John Murray, London

    Google Scholar 

  • Darwin C (1871) The descent of man and selection in relation to sex. John Murray, London

    Google Scholar 

  • De Jong TJ, Klinkhamer PGL (1994) Plant size and reproductive success through female and male function. J Ecol 82:399–402

    Google Scholar 

  • Delph LF, Ashman TL (2006) Trait selection in flowering plants: how does sexual selection contribute? Integr Comp Biol 46:465–472

    PubMed  Google Scholar 

  • Delvin B, Clegg J, Ellstrand NC (1992) The effect of flower production on male reproductive success in wild radish population. Evolution 46:1030–1042

    Google Scholar 

  • Douglas KL, Cruden RW (1994) The reproductive biology of Anemone canadensis (Ranunculaceae): breeding system and facilitation of sexual selection. Am J Bot 81:314–321

    Google Scholar 

  • Dumas CD, Gaude T (1981) Stigma-pollen recognition and pollen hydration. Phytomorphology 31:191–201

    Google Scholar 

  • Eckhart VM (1993) Do hermaphrodites of gynodioecious Phacelia linearis (Hydrophyllaceae) trade off seed production to attract pollinators? Biol J Linn Soc 50:47–63

    Google Scholar 

  • Fawcett TW, Kuijper B, Pen I, Weissing FJ (2007) Should attractive males have more sons? Behav Ecol 18:71–80

    Google Scholar 

  • Fisher RA (1915) The evolution of sexual preference. Eugen Rev 7:184–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon, Oxford

    Google Scholar 

  • Frascaroli E, Landi P (1991) Pollen and plant characteristics of maize populations derived from gametophytic selection. Agri Mediterranea 121:130–134

    Google Scholar 

  • Ganeshaiah KN, Uma Shaanker R (1988a) Regulation of seed number and female incitation of mate competition by a pH- dependent proteinaceous inhibitor of pollen grain germination in Leucaena leucocephala. Oecologia 75:110–113

    CAS  PubMed  Google Scholar 

  • Ganeshaiah KN, Uma Shaanker R (1988b) Embryo abortion in a wind dispersed tree Dalbergia sissoo: maternal regulation or sibling rivalry? Oecologia 77:135–139

    CAS  PubMed  Google Scholar 

  • Ganeshaiah KN, Uma Shaanker R, Shivashankar G (1986) Stigmatic inhibition of pollen germination-its implication for frequency distribution of seed number in pods of Leucaena leucocephala (Lam) de Wit. Oecologia 70:568–572

    CAS  PubMed  Google Scholar 

  • Ganeshaiah KN, Kathuria P, Uma Shaanker R, Vasudeva R (1995) Evolution of style-length variability in figs and optimization of ovipositor length in their pollinator wasps: a co-evolutionary model. J Genet 74:25–39

    Google Scholar 

  • Grace JL, Shaw KL (2011) Co-evolution of male mating signal and female preference during early lineage divergence of the Hawaiian cricket, Laupala cerasina. Evolution 65:2184–2196

    PubMed  Google Scholar 

  • Grant V (1995) Sexual selection in plants-pros and cons. Proc Natl Acad Sci USA 92:1247–1250

    CAS  PubMed  Google Scholar 

  • Gray DA, Cade WH (2000) Sexual selection and speciation in field crickets. Proc Natl Acad Sci USA 97:14449–14454

    CAS  PubMed  Google Scholar 

  • Hall DW, Kirkpatrick M, West B (2000) Runaway sexual selection when female preferences are directly selected. Evolution 54:1862–1869

    CAS  PubMed  Google Scholar 

  • Hamilton W, Zuk M (1982) The study of mate choice. In: Bateson P (ed) Mate choice. Cambridge University Press, Cambridge, pp 3–32

    Google Scholar 

  • Harder LD, Barrett SCH (1995) Mating cost of large floral displays in hermaphrodite plants. Nature 373:512–515

    CAS  Google Scholar 

  • Harder LD, Thomson JD (1989) Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. Am Nat 133:323–344

    Google Scholar 

  • Herrero M (1983) Factors affecting fruit set in ‘Agua de Aranjuez’ pear. Acta Hortic 139:91–96

    Google Scholar 

  • Herrero M, Hormaza JI (1996) Pistil strategies controlling pollen tube growth. Sex Plant Reprod 9:343–347

    Google Scholar 

  • Hinata K, Okazaki K (1986) Role of stigma in the expression of self-incompatibility in crucifers in view of genetic analysis. In: Mulcahy DL, Mulcahy GB, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer-Verlag, New York, pp 185–190

    Google Scholar 

  • Hosken DJ, House CM (2011) Sexual selection. Curr Biol 21:R62–R65

    CAS  PubMed  Google Scholar 

  • Iyenger NK (1938) Pollen-tube studies in Gossypium. J Genet 37:69–106

    Google Scholar 

  • Janicke T, Morrow EH (2019) Sexual selection. Evol Med Public Health 2019:36. https://doi.org/10.1093/emph/eoz007

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen WA, Ashton ME, Beasley CA (1983) Pollen tube-embryo sac interaction in cotton. In: Mulcahy DL, Ottaviano E (eds) Pollen biology and implications for plant breeding. Elsevier Biomedical, New York, pp 67–72

    Google Scholar 

  • Johannsson MH, Stephensson AG (1997) Effects of pollination intensity on the vigor of the sporophytic and gametophytic generation of Cucurbita texana. Sex Plant Reprod 10:236–240

    Google Scholar 

  • Johnston SE, Gratten J, Berenos C, Pilkington JG, Clutton-Brock TH, Pemberton JM, Slate J (2013) Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 502:93–95

    CAS  PubMed  Google Scholar 

  • Jones AG, Ratterman NL (2009) Mate choice and sexual selection: what have we learned since Darwin? Proc Natl Acad Sci USA 106:10001–10008

    CAS  PubMed  Google Scholar 

  • Jones KN, Reithel JS (2001) Pollinator-mediated selection on a flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). Am J Bot 88:447–454

    Google Scholar 

  • Kaul V, Koul AK (2009) Sex expression and breeding strategy in Commelina benghalensis L. J Biosci 34:977–990

    PubMed  Google Scholar 

  • Kenrick J, Knox RB (1982) Function of the polyad in reproduction of Acacia. Ann Bot 50:721–727

    Google Scholar 

  • Kirkpatrick M (1982) Sexual selection and the evolution of female choice. Evolution 36:1–12

    PubMed  Google Scholar 

  • Kirkpatrick MI, Barton N (1997) The strength of indirect selection on female mating preferences. Proc Natl Acad Sci USA 94:1282–1286

    CAS  PubMed  Google Scholar 

  • Kirkpatrick M, Ryan MJ (1991) The evolution of mating preferences and the paradox of the lek. Nature 350:33–38

    Google Scholar 

  • Kodrick-Brown A, Brown J (1984) Truth in advertising: the kinds of traits favoured by sexual selection. Am Nat 124:309–323

    Google Scholar 

  • Kokko H, Mappes J (2005) Sexual selection when fertilization is not guaranteed. Evolution 59:1876–1885

    PubMed  Google Scholar 

  • Kokko H, Brooks R, McNamara JM, Houston AI (2002) The sexual selection continuum. Proc Biol Sci 269:1331–1340

    PubMed  PubMed Central  Google Scholar 

  • Kraaijeveld K, Kraaijeveld-Smit FJL, Maan ME (2011) Sexual selection and speciation: the comparative evidence revisited. Biol Rev 86:367–377

    PubMed  Google Scholar 

  • Kuijper B, Pen I, Weissing FJ (2012) A guide to sexual selection theory. Annu Rev Ecol Evol Syst 43:287–311

    Google Scholar 

  • Lande R (1981) Models of speciation by sexual selection on polygenic traits. Proc Natl Acad Sci USA 78:3721–3725

    CAS  PubMed  Google Scholar 

  • Lankinen A, Green KK (2015) Using theories of sexual selection and sexual conflict to improve our understanding of plant ecology and evolution. AoB Plants 7:plv008. https://doi.org/10.1093/aobpla/plv008

    Article  PubMed  PubMed Central  Google Scholar 

  • Lankinen A, Skogsmyr I (2001a) Evolution of pistil length as a choice mechanism for pollen quality. Oikos 92:81–90

    Google Scholar 

  • Lankinen A, Skogsmyr I (2001b) The effect of pollen competition on the maintenance of variation in fertilization ability. Oikos 93:439–469

    Google Scholar 

  • Lee TD (1984) Patterns of fruit maturation: a gametophyte competition hypothesis. Am Nat 123:427–432

    Google Scholar 

  • Lee TD, Bazzaz FA (1982a) Regulation of fruit and seed production in an annual legume, Cassia fasciculata. Ecology 63:1364–1373

    Google Scholar 

  • Lee TD, Bazzaz FA (1982b) Regulation of fruit maturation pattern in an annual legume, Cassia fasciculata. Ecology 63:1374–1388

    Google Scholar 

  • Levin DA, Berube DE (1972) Phlox and Colius: the efficiency of a pollination system. Evolution 26:242–250

    PubMed  Google Scholar 

  • Linskens HF, Pfahler PL (1977) Genotypic effects on the amino acid relationships in maize (Zea mays L.) pollen and style. Theor Appl Genet 50:173–177

    CAS  PubMed  Google Scholar 

  • Linskens HF, Spanjers AW (1973) Changes of the electric potential in the transmitting tissue of Petunia styles after cross- and self-pollination. Incompat News Let 3:81–85

    Google Scholar 

  • Lloyd DG (1979) Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat 113:67–79

    Google Scholar 

  • Lloyd DG, Webb CJ (1977) Secondary sex characters in plants. Bot Rev 43:177–216

    Google Scholar 

  • Lloyd DG, Yates JMA (1982) Intrasexual selection and the segregation of pollen and stigmas in hermaphrodite plants, exemplified by Wahlenbergia albomarginata (Campanulaceae). Evolution 36:903–913

    PubMed  Google Scholar 

  • Long TAF, Agrawal AF, Rowe L (2012) The effect of sexual selection on offspring fitness depends on the nature of genetic variation. Curr Biol 22:204–206

    CAS  PubMed  Google Scholar 

  • Lovett Doust J (1990) Botany agonistes: on phytocentrism and plant sociobiology. Trends Ecol Evol (Amsterdam) 4:121–133

    Google Scholar 

  • Marshall DL (1991) Nonrandom mating in wild radish: variation in pollen donor success and effects of multiple paternity among one-to six-donor pollinations. Am J Bot 78:1404–1418

    Google Scholar 

  • Marshall DL (1998) Pollen donor performance can be consistent across maternal plants in wild radish (Raphanus sativus, Brassicaceae): a necessary condition for the action of sexual selection. Am J Bot 85:1389–1397

    CAS  PubMed  Google Scholar 

  • Marshall DL, Ellstrand NC (1986) Sexual selection in Raphanus sativus: experimental data on non-random fertilization, maternal choice, and consequences of multiple paternity. Am Nat 127:446–461

    Google Scholar 

  • Marshall DL, Evans AS (2016) Can selection on male mating character result in evolutionary change? A selection experiment on California wild radish, Raphanus sativus. Am J Bot 103:553–567

    CAS  PubMed  Google Scholar 

  • Marshall DL, Folsom MW (1991) Mate choice in plants: an anatomical to population perspective. Annu Rev Ecol Syst 22:37–63

    Google Scholar 

  • Maynard-Smith J, Price GR (1973) The logic of animal conflicts. Nature 246:15–18

    Google Scholar 

  • Mazer S (1987a) Maternal investment and male reproductive success in angiosperms: parent-offspring conflict or sexual selection? Biol J Linn Soc 30:115–133

    Google Scholar 

  • Mazer S (1987b) Parental effects on seed development and seed yield in Raphanus raphanistrum: implications for natural and sexual selection. Evol Int J Org Evol 41:355–371

    Google Scholar 

  • Mckenna MA (1986) Heterostyly and microgametophytic selection: the effect of pollen competition on sporophytic vigor in two distylous species. In: Mulcahy DL, Mulcahy GB, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer, New York

    Google Scholar 

  • Meagher TR (1986) Heterostyly and microgametophytic selection: the effects of pollen competition on sporophytic vigour in two distylous species. In: Mulcahy DL, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer Verlag, Berlin, pp 443–448

    Google Scholar 

  • Meagher TR (1991) Analysis of paternity within a natural population of Chamaelirium luteum. II. Patterns of male reproductive success. Am Nat 137:738–752

    Google Scholar 

  • Midgley JJ (2010) Causes of secondary sexual differences in plants-evidence from extreme leaf dimorphism in Leucadendron (Proteaceae). S Afr J Bot 76:588–592

    Google Scholar 

  • Mohan Raju B, Ganeshaiah KN, Uma Shaanker R (2001) Paternal parents enhance dispersal ability of their progeny in a wind dispersed species, Tecoma stans L. Curr Sci 81:22–24

    Google Scholar 

  • Moller AP, Jennions MD (2001) How important are direct fitness benefits to sexual selection? Naturwissenschaften 88:401–415

    CAS  PubMed  Google Scholar 

  • Moore JC, Pannell JR (2011) Sexual selection in plants. Curr Biol 21:R176–R182

    CAS  PubMed  Google Scholar 

  • Morgan MT (1992) The evolution of traits influencing male and female fertility in outcrossing plants. Am Nat 139:1022–1051

    Google Scholar 

  • Morgan MT (1994) Models of sexual selection in hermaphrodites especially plants. Am Nat 144:S100–S125

    Google Scholar 

  • Mota PG (2009/10) Darwin’s sexual selection theory-a forgotten idea. Antropol Port 26/27: 149–161

    Google Scholar 

  • Mulcahy DL (1979) The rise of angiosperms: a genecological factor. Science 206:20–23

    CAS  PubMed  Google Scholar 

  • Mulcahy DL, Mulcahy GB (1975) Influence of gametophytic competition on sporophytic quality in Dianthus chinensis. Theor Appl Genet 46:277–280

    CAS  PubMed  Google Scholar 

  • Mulcahy DL, Mulcahy GB, Ottaviano E (1975) Sporophytic expression of gametophytic competition in Petunia hybrid. In: Mulcahy DL (ed) Gamete competition in plants and animals. North-Holland Publishing Co., Amsterdam, pp 227–232

    Google Scholar 

  • Mulcahy GB, Mulcahy DL, Pfahler PL (1982) The effect of delayed pollination in Petunia hybrida. Acta Bot Neerl 31:97–103

    Google Scholar 

  • Murdy WH, Carter MEB (1987) Regulation of the timing of pollen germination by the pistil in Talinum mengesii (Portulacaceae). Am J Bot 74:1888–1892

    Google Scholar 

  • Nakamura RR (1986) Maternal investment and fruit abortion in Phaseolus vulgaris. Am J Bot 73:1049–1057

    Google Scholar 

  • Niesenbaum RA, Casper BB (1994) Pollen tube numbers and selective fruit maturation in Lindera benzoin. Am Nat 144:184–191

    Google Scholar 

  • Nilsson LA, Rabakonandrianina E, Pettersson B (1992) Exact tracking of pollen transfer and mating in plants. Nature 360:666–668

    Google Scholar 

  • Nosil P (2015) Evolution: sex limits adaptation. Curr Biol 25:R613–R616

    CAS  PubMed  Google Scholar 

  • O’ Donnell ME, Bacesa KS (1993) Gamete selection and patterns of ovule and seed abortion. Curr Sci 65:214–219

    Google Scholar 

  • Oh KP, Fergus DJ, Grace JL, Shaw KL (2012) Interspecific genetics of speciation phenotypes: song and preference co-evolution in Hawaiian crickets. J Evol Biol 25:1500–1512

    CAS  PubMed  Google Scholar 

  • Panhuis TM, Butlin R, Zuk M, Tregenza T (2001) Sexual selection and speciation. Trends Ecol Evol 16:364–371

    PubMed  Google Scholar 

  • Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev Camb Philos Soc 45:525–567

    Google Scholar 

  • Pen I, Weissing FJ (2000) Sexual selection and the sex ratio: an ESS analysis. Selection 1:59–69

    Google Scholar 

  • Peter CI, Johnson S (2006) Doing the twist: a test of Darwin’s cross-pollination hypothesis for pollinarium reconfiguration. Biol Lett 2:65–68

    PubMed  Google Scholar 

  • Philipp M, Hansen T (2000) The influence of plant and corolla size on pollen deposition and seed set in Geranium sanguineum (Geraniaceae). Nord J Bot 20:129–140

    Google Scholar 

  • Pischedda A, Rice WR (2012) Partitioning sexual selection into its mating success and fertilization success components. Proc Natl Acad Sci USA 109(6):2049–2053

    CAS  PubMed  Google Scholar 

  • Pleasants JM (1981) Bumblebee response to variation in nectar availability. Ecology 62:1648–1661

    Google Scholar 

  • Pleasants JM, Stephen SJ (1983) Nectar production rates of Asclepias quadrifolia: causes and consequences of individual variation. Oecologia 59:232–238

    PubMed  Google Scholar 

  • Pomiankowski A, Moller AP (1995) A resolution of the lek paradox. Proc R Soc Lond Ser B Biol Sci 260:21–29

    Google Scholar 

  • Price T, Schluter D, Heckman NE (1993) Sexual selection when the female directly benefits. Biol J Linn Soc 48:187–211

    Google Scholar 

  • Queller DC (1983) Sexual selection in a hermaphroditic plant. Nature 305:706–707

    Google Scholar 

  • Queller DC (1987) Sexual selection in flowering plants. In: Bradbury JW, Andersson MB (eds) Sexual selection: testing the alternatives. Wiley, New York, pp 165–179

    Google Scholar 

  • Rademaker MCJ, De Jong TJ (1998) Effects of flower number on estimated pollen transfer in natural populations of three hermaphroditic species: an experiment with fluorescent dye. J Evol Biol 11:623–641

    Google Scholar 

  • Radha NR, Vasudeva R, Hegde SG, Ganeshaiah KN, Uma Shaanker R (1993) Components of male gametophytic competition in Vigna unguiculata L. (Walp). Evol Trends Plant 7:29–36

    Google Scholar 

  • Raina M, Kaul V (2018) Assessment of stigma receptivity via papillar integrity in Kigelia pinnata (Jacq.) DC. Proc Natl Acad Sci, India Section B: Biol Sci 89:867–875

    Google Scholar 

  • Raina M, Kumar R, Kaul V (2017) Stigmatic limitations on reproductive success in a paleotropical tree: causes and consequences. AoB Plants 9:plx 023. https://doi.org/10.1093/aobpla/plx023

    Article  Google Scholar 

  • Ramesha BT, Yetish MD, Ravikanth G, Ganeshaiah KN, Ghazoul J, Uma Shaanker R (2011) Stylish lengths: mate choice in flowers. J Biosci 36(2):229–234

    CAS  PubMed  Google Scholar 

  • Ramsetter J, Mulcahy DL (1988) Consequences of pollen competition for Aureolaria flava seedlings. Bull Ecol Soc Am Suppl 69:269–270

    Google Scholar 

  • Ratikainen H, Kokko H (2010) Differential allocation and compensation: who deserves the silver spoon? Behav Ecol 21:195–200

    Google Scholar 

  • Richards AJ (1997) Plant breeding systems. Chapman and Hall, London

    Google Scholar 

  • Ritchie MG (1996) What is the paradox of the lek? Trends Ecol Evol 11:175

    CAS  PubMed  Google Scholar 

  • Ritchie MG (2007) Sexual selection and speciation. Annu Rev Ecol Evol Syst 38:79–102

    Google Scholar 

  • Rowe L, Houle D (1996) The lek paradox and the capture of genetic variance by condition dependent traits. Proc Biol Sci 263:1415–1421

    Google Scholar 

  • Sari-Gorla MC, Frova C, Ottaviano E, Soave C (1983) Gene expression at the gametophytic phase in maize. In: Mulcahy DL, Ottaviano E (eds) Pollen biology and implications for plant breeding. Elsevier Biomedical, New York, pp 323–328

    Google Scholar 

  • Schaffner JH (1927) Sex limited characters in heterosporous sporophytes. Ohio J Sci 27:19–24

    Google Scholar 

  • Schemske DW, Fenster C (1983) Pollen grain interaction in a neotropical Costus: effects of clump size and competitors. In: Mulcahy DL, Ottaviano E (eds) Pollen biology and implications for plant breeding. Elsevier Biomedical, New York, pp 405–410

    Google Scholar 

  • Schlichting CD, Stephenson AG, Davis LE, Winsor JA (1987) Pollen competition and offspring variance. Evol Trends Plant 1:35–39

    Google Scholar 

  • Servedio MR, Burger R (2014) The counter-intuitive role of sexual selection in species maintenance and speciation. Proc Natl Acad Sci USA 111:8113–8118

    CAS  PubMed  Google Scholar 

  • Sharma N, Shivanna KR (1986) Self incompatibility: recognition and inhibition in Nicotiana alata. In: Mulcahy DL, Mulcahy GB, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer-Verlag, New York, pp 179–184

    Google Scholar 

  • Skogsmyr I, Lankinen A (2000) Female assessment of good genes in stylar tissue. Evol Ecol Res 2:965–979

    Google Scholar 

  • Skogsmyr I, Lankinen A (2002) Sexual selection: an evolutionary force in plants. Biol Rev 77:537–562

    PubMed  Google Scholar 

  • Snow AA, Mazer SJ (1988) Gametophytic selection in Raphanus raphanistrum: a test for heritable variation in pollen competitive ability. Evol Int J Org Evol 42:1065–1075

    Google Scholar 

  • Snow AA, Spira TP (1991a) Differential pollen tube growth rates and non-random fertilization in Hibiscus moscheutos (Malvaceae). Am J Bot 78:1419–1426

    Google Scholar 

  • Snow AA, Spira TP (1991b) Pollen vigor and the potential for sexual selection in plants. Nature 352:796–797

    Google Scholar 

  • Snow AA, Spira TP (1996) Pollen-tube competition and male fitness in Hibiscus moscheutos. Evolution 50:1866–1870

    PubMed  Google Scholar 

  • Stanton ML (1994) Male-male competition during pollination in plant populations. Am Nat 144:S40–S68

    Google Scholar 

  • Stanton ML, Snow AA, Handel SN (1986) Floral evolution: attractiveness to pollinators increases male fitness. Science 232:1625–1627

    CAS  PubMed  Google Scholar 

  • Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate consequences. Annu Rev Ecol Syst 12:253–279

    Google Scholar 

  • Stephenson AG (1983) Sexual selection in hermaphroditic plants. Nature 305:765–766

    Google Scholar 

  • Stephenson AG, Bertin RI (1983) Male competition, female choice and sexual selection in plants. In: Real L (ed) Pollination biology. Academic Press, London, pp 109–149

    Google Scholar 

  • Stephenson AG, Winsor JA (1986) Lotus corniculatus regulates offspring quality through selective fruit abortion. Evolution 40:453–458

    PubMed  Google Scholar 

  • Stephenson AG, Winsor JA, Schlichting CD, Davis LE (1988a) Pollen competition, non-random fertilization, and progeny fitness: a reply to Charlesworth. Am Nat 132:303–308

    Google Scholar 

  • Stephenson AG, Johnson RS, Winsor JA (1988b) Effects of competition on growth of Lotus corniculatus L. seedlings produced by random and natural patterns of fruit abortion. Am Midl Nat 1201:102–107

    Google Scholar 

  • Sutherland S (1986) Patterns of fruit-set: what controls fruit-flower ratios in plants? Evolution 40:117–128

    PubMed  Google Scholar 

  • Swanson WJ, Vacquier VD (1995) Extraordinary divergence and positive Darwinian selection in a fusagenic protein coating the acrosomal process of abalone spermatozoa. Proc Natl Acad Sci USA 92:4957–4961

    CAS  PubMed  Google Scholar 

  • Swanson NJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3:137–144

    CAS  PubMed  Google Scholar 

  • Tazzyman SJ, Seymour RM, Pomiankowski A (2012) Fixed and dilutable benefits: female choice for good genes or fertility. Proc R Soc Lond Ser B 279:334–340

    Google Scholar 

  • Tejaswini (1999) Gametophytic selection as a plant breeding tool to develop disease resistant and vigorous plants: testing the feasibility in Dianthus spp. Ph. D Thesis, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Bangalore

    Google Scholar 

  • Tejaswini GKN, Uma Shaanker R (2001) Sexual selection in plants: the process, components and significance. Proc Indian Nat Sci Acad (PINSA) 67(6):423–432

    Google Scholar 

  • Thomson JD (1988) Effects of variation in inflorescence size and floral rewards on the visitation rates of trap lining pollinators of Aralia hispida. Evol Ecol 2:65–76

    Google Scholar 

  • Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and descent of man, 1871–1971. Heinemann, London, pp 136–179

    Google Scholar 

  • Udovic D (1981) Determinants of fruit set in Yucca whipplei: reproductive expenditure vs pollinator availability. Oecologia 48:389–399

    PubMed  Google Scholar 

  • Uma Shaanker R, Ganeshaiah KN (1984) Age-specific sex ratio in a monoecious species Croton bonplandianum Baill. New Phytol 97:523–531

    Google Scholar 

  • Uma Shaanker R, Ganeshaiah KN (1988) Bimodal distribution of seeds per pod in Caesalpinia pulcherrima- parent-offspring conflict? Evol Trends Plant 2:91–98

    Google Scholar 

  • Uma Shaanker R, Ganeshaiah KN (1989) Stylar plugging by fertilized ovules in Kleinhovia hospita (Sterculiaceae) – a case of vaginal sealing in plants? Evol Trends Plant 3:59–64

    Google Scholar 

  • Uma Shaanker R, Ganeshaiah KN (1990) Pollen grain deposition patterns and stigma strategies in regulating seed number per pod in multi-ovulated species. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants. Man and the biosphere series. Parthenon Publishing Co, Paris, pp 165–178

    Google Scholar 

  • Uma Shaanker R, Ganeshaiah KN (1997) Conflict between parent and offspring in plants: predictions, processes and evolutionary consequences. Curr Sci 72:932–939

    Google Scholar 

  • Verma S, Kaul V, Magotra R, Koul AK (2008) Pollinator induced anther dehiscence in Incarvillea emodi (Bignoniaceae). Curr Sci 94:1372–1374

    Google Scholar 

  • Verma S, Magotra R, Sharma N, Koul AK (2009) Stigma behavior in Incarvillea emodi. Int J Plant Reprod Biol 1:27–32

    Google Scholar 

  • Wasserthal LT (1997) The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. soronium and A. compactum and the evolution of extremely long spurs by pollinator shift. Bot Acta 110:343–359

    Google Scholar 

  • Weins D (1984) Ovule survivorship, brood size, life history, breeding systems and reproductive success in plants. Oecologia 64:47–53

    Google Scholar 

  • Weins D, Calvin CL, Wilson CA, Davern CI, Frank D, Seavery SR (1987) Reproduction success, spontaneous embryo abortion and genetic load in flowering plants. Oecologia 71:501–509

    Google Scholar 

  • Whittal JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447:706–709

    Google Scholar 

  • Wilkinson GS, Breden F, Mank JE, Ritchie MG, Higginson AD, Radwan J, Jaquiery J, Salzburger W, Arriero E, Barribeau SM, Phillips PC, Renn SCP, Rowe L (2015) The locus of sexual selection: moving sexual selection studies into the post-genomics era. J Evol Biol 28:739–755

    CAS  PubMed  Google Scholar 

  • Willson MF (1979) Sexual selection in plants. Am Nat 113:777–790

    Google Scholar 

  • Willson MF (1994) Sexual selection in plants: perspective and overview. Am Nat 144:S13–S39

    Google Scholar 

  • Willson MF, Price PW (1977) The evolution of inflorescence size in Asclepias (Asclepiadaceae). Evolution 31:495–511

    PubMed  Google Scholar 

  • Willson MF, Price PW (1980) Resource limitation of fruit and seed production in some Asclepias species. Can J Bot 58:2229–2233

    Google Scholar 

  • Yampolsky C, Yampolsky HY (1922) Distribution of sex forms in the phanerogamic flora. Bibl Genet 3:1–62

    Google Scholar 

  • Zahavi A (1975) Mate selection: a selection for a handicap. J Theor Biol 53:205–214

    CAS  PubMed  Google Scholar 

  • Zahavi A (1977) The cost of honesty (further remarks on the handicap principle). J Theor Biol 67:603–605

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Professor Rajesh Tandon of the Department of Botany, University of Delhi, for giving us an opportunity to dwell upon one of the trickiest topics of evolutionary biology. We feel indebted to Professor K. R. Shivanna for his critique and suggestions incorporation of which has improved the text considerably. We duly acknowledge the Head of the Department of Botany (UGC- SAP DRS II), University of Jammu for providing the library facilities. We thank the research scholars of our lab for their secretarial help.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaul, V., Raina, M. (2020). Sexual Selection in Angiosperms: Paradox Re-visited. In: Tandon, R., Shivanna, K., Koul, M. (eds) Reproductive Ecology of Flowering Plants: Patterns and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4210-7_12

Download citation

Publish with us

Policies and ethics