Skip to main content

Biotechnological Approaches to Develop Rice Tolerance to Low and High Temperature Stress

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

Temperature above or below optimum has a negative impact on plant growth and performance, which leads to a great loss in economic yield. Rice (Oryza sativa L.) is one of the major staple food crops around the world and highly sensitive to temperature stress during the reproductive stage. Rice productivity in the tropics, subtropics, and temperate areas is in danger due to low (cold stress) and high (heat stress) temperatures. Both low and high temperatures equally affect both vegetative and generative organs of rice and sometimes lead to complete sterility. In response to temperature stress, a significant variability exists among rice germplasms. Stresses evoke cascades of physiological and molecular events and to increase the global production under such environment, we need to understand the mechanism which will help in the mitigation of stress. In response to temperature stress, protection of structural proteins, enzymes, and membranes, and expression of heat shock proteins (HSPs) are one of the major biochemical processes that impart thermotolerance. All these traits should be exploited for the development of thermo-tolerant varieties and finally the replacement of the sensitive varieties with tolerant ones. Various biotechnological tools, along with integrated management and conventional breeding, can help us to develop novel rice genotypes with better grain yield under stress. In this chapter, we will discuss the effects of low and high temperature on rice crop and various biotechnological approaches and tools including genetic engineering and omics for improving the thermal stress tolerance of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andaya VC, Tai TH (2007) Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Breed 20:349–358

    Article  CAS  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554

    Article  CAS  Google Scholar 

  • Ahmad W, Noor MA, Afzal I, Bakhtavar MA, Nawaz MM, Sun X, Zhou B, Ma W, Zhao M (2016) Improvement of sorghum crop through exogenous application of natural growth-promoting substances under a changing climate. Sustainability 8:1330

    Article  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190. https://doi.org/10.1007/s11099-013-0021-6

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Small heat shock proteins: structural assembly and functional responses against heat stress in plants. In: Ahmad P, Ahanger MA, Singh VP, Tripathi DK, Alam P, Alyemeni MN (eds) Plant metabolites and regulation under environmental stress. Elsevier (Academic Press), Amsterdam, pp 367–376

    Google Scholar 

  • Basavaraju R (2011) Plant tissue culture-agriculture and health of man. Indian J Sci Technol 4(3):333–335. https://doi.org/10.17485/ijst/2011/v4i3/29994

    Article  Google Scholar 

  • Ben Saad R, Zouari N, Ben Ramdhan W, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72(1–2):171–190

    Article  CAS  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  Google Scholar 

  • Blum A (1985) Breeding crop varieties for stress environment. CritRev Plant Sci 2:199–238

    Article  Google Scholar 

  • Bonnecarrère V, Quero G, Monteverde E, Rosas J, Pérez de Vida F, Cruz M et al (2014) Candidate gene markers associated with cold tolerance in vegetative stage of rice (Oryzasativa L.). Euphytica 203:385–398

    Article  CAS  Google Scholar 

  • Byun MY, Cui LH, Lee J, Park H, Lee A, Kim WT, Lee H (2018) Identification of rice genes associated with enhanced cold tolerance by comparative transcriptome analysis with two transgenic rice plants overexpressing DaCBF4 or DaCBF7, isolated from Antarctic flowering plant Deschampsia antarctica. Front Plant Sci 9:601

    Article  Google Scholar 

  • Chang HC, Tang YC, Hayer-Hartl M, Hartl FU (2007) SnapShot: molecular chaperones, part I. Cell 128:212

    Article  Google Scholar 

  • Cheng LR, Wang JM, Uzokwe V, Meng LJ, Yun W, Yong S, Zhu LH, Xu JL, Li ZK (2012) Genetic analysis of cold tolerance at seedling stage and heat tolerance at anthesis in rice (Oryzasativa L.). J Integr Agric 11:359–367

    Article  Google Scholar 

  • Chen XJ, Ye CJ, Lu HY (2006) Cloning of GmHSFA1 gene and its overexpression leading to enhancement of heat tolerance in transgenic soybean. Acta Genet Sin 28:1411–1420

    Article  CAS  Google Scholar 

  • Chen L, Zhao Y, Xu S et al (2018) OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytol 218(1):219–231. https://doi.org/10.1111/nph.14977

    Article  CAS  Google Scholar 

  • Christou P, Ford TM, Kofron M (1991) Production of transgenic rice (Oryzasativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Biotechnology 9:957–962

    Article  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363(1491):557–572

    Article  CAS  Google Scholar 

  • Collard B, Cruz C, McNally K, Virk P, Mackill D (2008) Rice molecular breeding laboratories in the genomics era: current status and future considerations. Int J Plant Genomics 2008:524847

    Article  CAS  Google Scholar 

  • Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ, Wright D, Graham G (2014) Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311–336

    Article  CAS  Google Scholar 

  • Darvey N, Zhao X (2007) Improvement of rice breeding using biotechnology approaches. A report for the Rural Industries Research and Development Corporation, RIRDC Publication No 07/044 RIRDC, Project No US-143A.

    Google Scholar 

  • Dai LY, Lin XH, Ye CR, Ise K, Saito K, Kato A, Xu FR, Yu TQ, Zhang DP (2004) Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice, Kunmingxiaobaigu. Breed Sci 54:253–258

    Article  CAS  Google Scholar 

  • Das G, Rao G (2015) Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci 6:698

    Google Scholar 

  • Datta SK, Datta K, Potrykus I (1990) Embryogenesis and plant regeneration from microspores of both indica and japonica rice (Oryza sativa). Plant Sci 67(1):83–88

    Article  Google Scholar 

  • Endo M, Tsuchiya T, Hamada K et al (2009) High temperatures cause male sterilityin rice plants with transcriptional alterations during pollen development. Plant Cell Physiol 50:1911–1922

    Article  CAS  Google Scholar 

  • Endo T, Chiba B, Wagatsuma K, Saeki K, Ando T, Shomura A, Mizubayashi T, Ueda T, Yamamoto T, Nishio T (2016) Detection of QTLs for cold tolerance of rice cultivar ‘Kuchum’ and effect of QTL pyramiding. Theor Appl Genet 129:631–640

    Article  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  Google Scholar 

  • Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci U S A 105:12623–12628

    Article  CAS  Google Scholar 

  • Fujino K, Obara M, Shimizu T, Koyanagi KO, Ikegaya T (2015) Genome-wide association mapping focusing on a rice population derived from rice breeding programs in a region. Breed Sci 65:403–410

    Article  CAS  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC et al (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311. https://doi.org/10.1007/s00299-008-0623-9

    Article  CAS  Google Scholar 

  • Goff SA et al (2002) A draft sequence of the rice genome (Oryzasativa L. ssp. japonica). Science 296:92–100

    Article  CAS  Google Scholar 

  • Gothandam KM, Easwaran N, Sivashanmugam K, Shin JS (2009) OsPRP3, a flower specific Proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol Biol 72:125–135

    Article  CAS  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351

    Article  CAS  Google Scholar 

  • Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J (2008) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics 35:105–118

    Article  CAS  Google Scholar 

  • Gupta PK, Kulwal PL, Jaiswal V (2014) Association mapping in crop plants: opportunities and challenges. Adv Genet 85:109–147

    Article  CAS  Google Scholar 

  • Han B, Huang X (2013) Sequencing-based genome-wide association study in rice. Curr Opin Plant Biol 16:133–138

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2012) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 6:1314–1323

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M, Vahdati K, Leslie C (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. InTech, Burlington. https://doi.org/10.5772/54833

    Book  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Article  Google Scholar 

  • Hemantaranjan A, Bhanu A, Singh M, Yadav D, Patel P, Katiyar D (2014) Heat stress responses and thermotolerance. Adv Plants Agric Res 1:62–70. https://doi.org/10.15406/apar.2014.01.00012

    Article  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Otyzasativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  CAS  Google Scholar 

  • Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press Inc., New York, pp 277–300

    Google Scholar 

  • Huang J, Sun SJ, Xu DQ et al (2009a) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389(3):556–561

    Article  CAS  Google Scholar 

  • Huang S et al (2009b) The genome of the cucumber, Cucumissativus L. Nat Genet 41:1275–1281

    Article  CAS  Google Scholar 

  • Huang G-T, Ma S-L, Bai L-P et al (2012a) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39(2):969–987

    Article  CAS  Google Scholar 

  • Huang J, Sun S, Xu D et al (2012b) A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Mol Biol 80(3):337–350

    Article  CAS  Google Scholar 

  • Hussain S, Khaliq A, Ali B, Hussain S (2019) Temperature extremes: impact on rice growth and development. In: Plant abiotic stress tolerance_agronomic, molecular and biotechnological approaches. Springer, Berlin. https://doi.org/10.9787/PBB.2018.6.1.1

    Chapter  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53(1):225–245

    Article  CAS  Google Scholar 

  • IRGSP (2005) The map based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M et al (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153. https://doi.org/10.1093/pcp/pci230

    Article  CAS  Google Scholar 

  • Jacobsen E, Schouten HJ (2007) Cisgenesis strongly improvesintrogression breeding and induced translocation breeding of plants. Trends Biotechnol 25:219–223

    Article  CAS  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R et al (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryzasativa L.). J Exp Bot 61:143–156

    Article  CAS  Google Scholar 

  • Jagadish SVK, Septiningsih EM, Kohli A, Thomson MJ, Ye C, Redoña E et al (2012) Genetic advances in adapting rice to a rapidly changing climate. J Agron Crop Sci 198:360–373

    Article  Google Scholar 

  • Jekníc Z, Pillman KA, Dhillon T, Skinner JS, Veisz O, Cuesta-Marcos A et al (2014) Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Mol Biol 84:67–82. https://doi.org/10.1007/s11103-013-0119-z

    Article  CAS  Google Scholar 

  • Jena KK, Kim SM, Suh JP, Yang CI, Kim YG (2012) Identification of cold-tolerant breeding lines by quantitative trait loci associated with cold tolerance in rice. Crop Sci 52(2):517–523

    Article  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    Article  CAS  Google Scholar 

  • Kennedy G, Burlingame B (2003) Analysis of food composition data on rice from a plant genetic resources perspective. Food Chem 80:589–596

    Article  CAS  Google Scholar 

  • Kim S-J, Lee S-C, Hong S, An K, An G, Kim S-R (2009) Ectopic expression of a cold-responsive OsAsr1 cDNA gives enhanced cold tolerance in transgenic rice. Mol Cells 27:449–458

    Article  CAS  Google Scholar 

  • Kim SM, Suh JP, Lee CK, Lee JH, Kim YG, Jena KK (2014) QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Gen Genomics 289:333–343

    Article  CAS  Google Scholar 

  • Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang ZX, Minobe Y (2010) Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Gen Genomics 284:45–54

    Article  CAS  Google Scholar 

  • Koh S, Lee S-C, Kim M-K, Koh J, Lee S, An G, Choe S, Kim S-R (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466. https://doi.org/10.1007/s11103-007-9213-4

    Article  CAS  Google Scholar 

  • Kovalchuk N, Jia W, Eini O, Morran S, Pyvovarenko T, Fletcher S et al (2013) Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters. Plant Biotechnol J 11:659–670. https://doi.org/10.1111/pbi.12056

    Article  CAS  Google Scholar 

  • Krishnan P, Ramakrishnan B, Reddy KR, Reddy V (2011) Chapter three-high-temperature effects on rice growth, yield, and grain quality. Adv Agron 111:87–106

    CAS  Google Scholar 

  • Kumar M, Gho Y-S, Jung K-H, Kim S-R (2017) Genome-wide identification and analysis of genes, conserved between japonica and indica rice cultivars, that respond to low-temperature stress at the vegetative growth stage. Front Plant Sci 8:1120

    Article  Google Scholar 

  • Kumar A, Sandhu N, Dixit S, Yadav S, Swamy BPM, Shamsudin NAA (2018) Marker-assisted selection strategy to pyramid two or more QTLs for quantitative trait-grain yield under drought. Rice 11(1). https://doi.org/10.1186/s12284-018-0227-0

  • Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Ando I, Sato Y (2007) A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8. Theor Appl Genet 115:593–600

    Article  Google Scholar 

  • Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N (2017) Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One 12:e0171254

    Article  CAS  Google Scholar 

  • Lang NT, Ha PTT, Tru PC, Toan TB, Buu BC, Cho YC (2015) Breeding for heat tolerance rice based on marker-assisted backcrosing in Vietnam. Plant Breed Biotechnol 3:274–281

    Article  Google Scholar 

  • Lee SC, Won HK, An K, An G, Kim SR (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol. Cell 18:107–114

    CAS  Google Scholar 

  • Leng P, Lübberstedt T, Xu M-l (2017) Genomics-assisted breeding – a revolutionary strategy for crop improvement. J Integr Agric 16:2674–2685. https://doi.org/10.1016/S2095-3119(17)61813-6

    Article  Google Scholar 

  • Liu K, Wang L, Xu Y et al (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226(4):1007–1016

    Article  CAS  Google Scholar 

  • Luo Y, Yin Z (2013) Marker-assisted breeding of Thai fragrance rice for semi-dwarf phenotype, submergence tolerance and disease resistance to rice blast and bacterial blight. Mol Breed 32:709–721

    Article  CAS  Google Scholar 

  • Lv Y, Guo Z, Li X, Ye H, Xiong L (2016) New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. Plant Cell Environ 39:556–570

    Article  CAS  Google Scholar 

  • Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K (2009) Enhanced tolerance to chilling stress in OSMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150:244–256

    Article  CAS  Google Scholar 

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221

    Article  CAS  Google Scholar 

  • Ma X, Feng F, Wei H, Mei H, Xu K, Chen S, Li T, Liang X, Liu H, Luo L (2016) Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Front Plant Sci 7:1801

    Google Scholar 

  • Ma Y, Yang C, He Y, Tian Z, Li J (2017) Rice OVATE family protein 6 regulates plant development and confers resistance to drought and cold stresses. J Exp Bot 68(17):4885–4898

    Article  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kano I, Yano M, Fjellstrom R, De Clerk G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa ). DNA Res 9(6):199–207

    Article  CAS  Google Scholar 

  • McNally, C. & Wadsley, J & Couchman, H.. (2009). Self-Gravity and Angular Momentum Transport in Extended Galactic Disks. Astrophysical Journal - ASTROPHYS J. 697. 10.1088/0004-637X/697/2/L162. 

    Google Scholar 

  • Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res 15(12):1767–1776

    Article  CAS  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A et al (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249. https://doi.org/10.1111/j.1467-7652.2010.00547.x

    Article  CAS  Google Scholar 

  • Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17. 7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed 13:165–175

    Article  CAS  Google Scholar 

  • Murashige, Toshio & Skoog, Folke. (2006). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum. 15. 473 - 497. 10.1111/j.1399-3054.1962.tb08052.x. 

    Google Scholar 

  • Narayanan NN et al (2004) Molecular breeding: marker-assisted selection combined with biolistic transformation for blast and bacterial blight resistance in Indica rice (cv. CO39). Mol Breed 14:61–71

    Article  CAS  Google Scholar 

  • Nevo E, Chen GX (2010) Drought and salt tolerances in wildrelatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    Article  CAS  Google Scholar 

  • Nogoy FM, Song JY, Ouk S, Rahimi S, Kwon SW, Kang KK et al (2016) Current applicable DNA markers for marker assisted breeding in abiotic and biotic stress tolerance in rice (Oryza sativa L.). Plant Breed Biotechnol 4:271–284

    Article  Google Scholar 

  • Nover L, Bharti K, Döring P et al (2001) Arabidopsis and the Hsf world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189

    Article  CAS  Google Scholar 

  • Ogbonnaya FC, Rasheed A, Okechukwu EC, Jighly A, Makdis F, Wuletaw T, Hagras A, Uguru MI, Agbo CU (2017) Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor Appl Genet 130:1819–1835

    Article  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656. https://doi.org/10.1111/j.1467-7652.2007.00272.x

    Article  CAS  Google Scholar 

  • Pan Y, Zhang H, Zhang D, Li J, Xiong H, Yu J, Li J, Rashid MAR, Li G, Ma X (2015) Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping. PLoS One 10:e0120590

    Article  CAS  Google Scholar 

  • Parkhi V et al (2005) Molecular characterization of marker free transgenic lines of Indica rice that accumulate carotenoids in seed endosperm. Mol Gen Genomics 274:325–336

    Article  CAS  Google Scholar 

  • Paterson AH et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  Google Scholar 

  • Peng-fei LENG, Lübberstedt T, Ming-liang XU (2017) Genomics-assisted breeding – a revolutionary strategy for crop improvement. J Integr Agric 16(12):2674–2685

    Article  Google Scholar 

  • Poli Y, Basava R, Panigrahy M, Vinukonda V, Dokula N, Voleti S et al (2013) Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice 6:36

    Article  Google Scholar 

  • Prasanth VV, Babu MS, Basava RK, Tripura Venkata V, Mangrauthia SK, Voleti SR, Neelamraju S (2017) Trait and marker associations in Oryzanivara and O. rufipogon derived rice lines under two different heat stress conditions. Front Plant Sci 8:1819. https://doi.org/10.3389/fpls.2017.01819

    Article  Google Scholar 

  • Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W (2011) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585:231–239

    Article  CAS  Google Scholar 

  • Qiu X, Pang Y, Yuan Z, Xing D, Xu J, Dingkuhn M et al (2015) Genome-wide association study of grain appearance and milling quality in a worldwide collection of indica rice germplasm. PLoS One 10:e0145577

    Article  CAS  Google Scholar 

  • Ramkumar G, Sivaranjani AKP, Pandey MK, Sakthivel K, Shobha Rani N, Sudarshan I, Prasad GSV, Neeraja CN, Sundaram RM, Viraktamath BC, Madhav MS (2010) Development of a PCR-based SNP marker system for effective selection of kernel length and kernel elongation in rice. Mol Breed 26(4):735–740

    Article  Google Scholar 

  • Rao Y, Yang Y, Huang L, Pan J, Ma B, Qian Q, Zeng D (2013) Research progress on cold stress in rice. Mol Plant Breed 11:443–450

    CAS  Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnología Aplicada 22:1–10

    Google Scholar 

  • Roychoudhury A, Banerjee A (2015) Transcriptome analysis of abiotic stress response in plants. Transcriptomics 3:e115

    Article  Google Scholar 

  • Roychoudhury A, Datta K, Datta SK (2011) Abiotic stress in plants: from genomics to metabolomics. In: Narendra Tuteja, Sarvajeet Singh Gill, Renu Tuteja Omics and plant abiotic stress tolerance, Bentham Science Publishers Sharjah, 91–120

    Google Scholar 

  • Saito K, Hayano-Saito Y, Maruyama-Funatsuki W, Sato Y, Kato A (2004) Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice. Theor Appl Genet 109:515–522

    Article  CAS  Google Scholar 

  • Saito K, Hayano-Saito Y, Kuroki M, Sato Y (2010) Map-based cloning of the rice cold tolerance gene Ctb1. Plant Sci 79:97–102

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata AN (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  CAS  Google Scholar 

  • Sakthivel R, Mahmudov NI, Lee SG (2009) Controllability of non-linear impulsive stochasticsystems. Int J Control 82(5):801–807

    Article  Google Scholar 

  • Sarma NP, Sundaram RM (2005) Molecular markers in rice breeding. In: Reddy GP, Janaki Krishna PS (eds) Biotechnological interventions for dryland agriculture. B.S. Publishers, Hyderabad, pp 64–74

    Google Scholar 

  • Scafaro AP, Atwell BJ, Steven M, Van RB, Alguacil RG, Van RJ, Alexander G (2018) A thermotolerant variant of Rubisco activase from a wild relative improves growth and seed yield in rice under heat stress. Front Plant Sci 9:1663

    Article  Google Scholar 

  • Schmutz J et al (2010) Genome sequence of the paleopolyploid soybean. Nature 463:178–183

    Article  CAS  Google Scholar 

  • Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  Google Scholar 

  • Sehgal D, Bhat V, Raina SN (2008) Applicability of DNA markers for genome diagnostics of grain legumes. In: Kirti PB (ed) Handbook of new technology for genetic improvement of grain legumes. CRC Press, New York, pp 497–557

    Google Scholar 

  • Septiningsih E, Pamplona A, Sanchez D, Neeraja C, Vergara G, Heuer S, Ismail A, Mackill D (2008) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  CAS  Google Scholar 

  • Shah F, Huang J, Cui K, Nie L, Shah T, Chen C, Wang K (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agric Sci 149:545–556

    Article  CAS  Google Scholar 

  • Shamsudin NAA, Swamy BM, Ratnam W, Cruz MTS, Raman A, Kumar A (2016) Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet 17:30

    Article  CAS  Google Scholar 

  • Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C (2012a) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol. 12:80

    Article  CAS  Google Scholar 

  • Shirasawa S, Endo T, Nakagomi K, Yamaguchi M, Nishio T (2012b) Delimitation of a QTL region controlling cold tolerance at booting stage of a cultivar, ‘Lijiangxintuanheigu’, in rice, Oryza sativa L. Theor Appl Genet 124:937–946

    Article  CAS  Google Scholar 

  • Singh NK, Mohapatra T (2007) Application of genomics for molecular breeding in rice. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, vol II – Genomics applications in crops. Springer, New York, pp 169–185

    Chapter  Google Scholar 

  • Sthapit BR, Witcombe JR, Wilson JM (1998) Inheritance of tolerance to chilling stress in rice during germination and plumule greening. Crop Sci. 38:660–665

    Article  Google Scholar 

  • Stroud H, Ding B, Simon SA, Feng S, Bellizzi M, Pellegrini M, Jacobsen SE (2013) Plants regenerated from tissue culture contain stable epigenome changes in rice. ELife 2013(2):1–14. https://doi.org/10.7554/eLife.00354

    Article  Google Scholar 

  • Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol. 153:145–158

    Article  CAS  Google Scholar 

  • Suh J (2015) An institutional and policy framework to foster integrated rice-duck farming in Asian developing countries. Int J Agric Sustain 13:294–307

    Article  Google Scholar 

  • Sundaram RM, Vishnupriya MR, Shobha Rani N, Laha GS, Viraktamath BC, Balachandran SM, Sarma NP, Mishra B, Reddy GA, Sonti RV (2010) RPBio-189 (IET19045) (IC569676; INGR09070), a paddy (Oryza sativa) germplasm with high bacterial blight resistance, yield and fine-grain type. Indian J Plant Genet Resour 23:327–328

    Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signalling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2011) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 14:691–699

    CAS  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and nonheat stress response pathways. BMC Genomics 8:125

    Article  CAS  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 154:571–577. https://doi.org/10.1104/pp.110.161794

    Article  CAS  Google Scholar 

  • Tian Y, Zhang H, Pan X et al (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20(4):857–866

    Article  CAS  Google Scholar 

  • Tomlinson I (2013) Doubling food production to feed the 9 billion: a critical perspective on a key discourse of food security in the UK. J Rural Stud 29:81–90

    Article  Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  Google Scholar 

  • Varshney R, Hoisington D, Tyagi A (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499

    Article  CAS  Google Scholar 

  • Varshney RK et al (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 27:522–530

    Article  CAS  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  CAS  Google Scholar 

  • Wahid AS, Galani S, Ashraf M, Foolad M (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang F, Peng SB (2017) Yield potential and nitrogen use efficiency of China’s super rice. J Integr Agric 16:1000–1008

    Article  CAS  Google Scholar 

  • Wang Z, Wang J, Wang F, Bao Y, Wu Y, Zhang H (2009) Genetic control of germination ability under cold stress in rice. Rice Sci 16:173–180

    Article  Google Scholar 

  • Waqas MA, Khan I, Akhter MJ, Noor MA, Ashraf U (2017) Exogenous application of plant growth regulators (PGRs)induces chilling tolerance in short-duration hybrid maize. Environ Sci Pollut Res 24:11459–11471

    Article  CAS  Google Scholar 

  • Xiao N, Huang WN, Li AH, Gao Y, Li YH, Pan CH, Ji H, Zhang XX, Dai Y, Dai ZY (2015) Fine mapping of the qLOP2 and qPSR2–1 loci associated with chilling stress tolerance of wild rice seedlings. Theor Appl Genet 128:173–185

    Article  CAS  Google Scholar 

  • Xiao N, Gao Y, Qian H, Gao Q, Wu Y, Zhang D, Zhang X, Yu L, Li Y, Pan C, Liu G, Zhou C, Jiang M, Huang N, Dai Z, Liang C, Chen Z, Chen J, Lia A (2018) Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiol 177:1108–1123

    Article  CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 48:391–407

    Article  Google Scholar 

  • Xu DQ, Huang J, Guo SQ et al (2008a) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582(7):1037–1043

    Article  CAS  Google Scholar 

  • Xu L-M, Zhou L, Zeng Y-W et al (2008b) Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line. Plant Sci 174(3):340–347

    Article  CAS  Google Scholar 

  • Xu M, Li L, Fan Y, Wan J, Wang L (2011) ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty. Plant Cell Rep. 30:1949–1957. https://doi.org/10.1007/s00299-011-1103-1

    Article  CAS  Google Scholar 

  • Yang A, Dai XY, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63(7):2541–2556. https://doi.org/10.1093/jxb/err431

    Article  CAS  Google Scholar 

  • Yang T, Zhang S, Zhao J, Huang Z, Zhang G, Liu B (2015) Meta-analysis of QTLs underlying cold tolerance in rice (Oryza sativa L.). Mol Plant Breed 13:1–15

    Google Scholar 

  • Ye C, Tenorio FA, Argayoso MA, Laza MA, Koh H, Redoña ED, Jagadish KSV, Gregorio G (2015a) Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genet 16:41

    Article  CAS  Google Scholar 

  • Ye C, Tenorio FA, Redoña ED, Morales-Cortezano PS, Cabrega GA, Jagadish KSV, Gregorio GB (2015b) Validating and characterizing qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice. Theor Appl Genet 128:1507–1517

    Article  CAS  Google Scholar 

  • Yu J et al (2002) A draft sequence of the rice genome (Oryzasativa L.ssp. indica). Science 296:79–92

    Article  CAS  Google Scholar 

  • Zafar SA, Hussain M, Raza M, Ahmed HGMD, Rana IA, Sadia B, Atif RM (2016) Genome wide analysis of heat shock transcription factor (HSF) family in chickpea and its comparison with Arabidopsis. Plant Omics 9:136–141

    Article  CAS  Google Scholar 

  • Zafar SA, Hameed A, Nawaz MA, Wei MA, Noor MA, Hussain M, Mehboob-ur-Rahman (2018) Mechanisms and molecular approaches for heat tolerance in rice (Oryzasativa L.) under climate change scenario. J Integr Agric 17(4):726–738

    Article  CAS  Google Scholar 

  • Zhang HM, Yang H, Rech EL, Golds TJ, Davis AS, Mulligan BJ, Cocking EC, Davey MR (1988) Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Rep 7(6):379–384

    CAS  Google Scholar 

  • Zhang Y, Chen C, Jin X-F, Xiong A-S, Peng R-h, Hong Y-H, Yao Q-H, Chen J (2009) Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Rep 42:486–492. https://doi.org/10.5483/BMBRep.2009.42.8.486

    Article  CAS  Google Scholar 

  • Zhang F et al (2010) High frequency targeted mutagenesis inArabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107:12028–12033

    Article  CAS  Google Scholar 

  • Zhang X, Guo X, Lei C et al (2011) Overexpression of SlCZFP1, a novel TFIIIA-type zinc finger protein from tomato, confers enhanced cold tolerance in transgenic Arabidopsis and rice. Plant Mol Biol Rep 29(1):185–196

    Article  CAS  Google Scholar 

  • Zhang Q, Chen Q, Wang S, Hong Y, Wang Z (2014) Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice (New York, NY) 7(1):24

    Google Scholar 

  • Zhang Z, Li J, Pan Y et al (2017) Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun 8:14788

    Article  CAS  Google Scholar 

  • Zhou L, Zeng Y, Zheng W, Tang B, Yang S, Zhang H, Li J, Li Z (2010) Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line. Theor Appl Genet 121:895–905

    Article  CAS  Google Scholar 

  • Zhou WH, Xue DW, Zhang GP (2011) Protein response of rice leaves to high temperature stress and its difference of genotypes at different growth stage. Acta Agron Sinica 37:820–831. (in Chinese)

    Article  CAS  Google Scholar 

  • Zhu J, Verslues PE, Zheng X, Lee BH, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong CH, Zhu JK, Hasegawa PH, Bressan RA (2010) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci U S A 107:13972

    Article  CAS  Google Scholar 

  • Zhu Y, Chen K, Mi X, Chen T, Ali J, Ye G, Xu J, Li Z (2015) Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice. PLoS One 10:e0145704

    Article  CAS  Google Scholar 

  • Zou J, Liu C, Chen X (2011) Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep 30:2155–2165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nita Lakra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakra, N., Soni, A., Munjal, R. (2020). Biotechnological Approaches to Develop Rice Tolerance to Low and High Temperature Stress. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4120-9_23

Download citation

Publish with us

Policies and ethics