Skip to main content

Application of LED-Based Photoacoustic Imaging in Diagnosis of Human Inflammatory Arthritis

  • Chapter
  • First Online:
LED-Based Photoacoustic Imaging

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 7))

Abstract

Using low cost and small size light emitting diodes (LED) as the alternative illumination source for photoacoustic (PA) imaging has many advantages, and can largely benefit the clinical translation of the emerging PA imaging (PAI) technology. To overcome the challenge of achieving sufficient signal-to-noise ratio by the LED light that is orders of magnitude weaker than lasers, extensive signal averaging over hundreds of pulses is performed. According to our research, the LED-based PAI could be a promising tool for several clinical applications, such as assessment of peripheral microvascular function and dynamic changes, and diagnosis of inflammatory arthritis. In this chapter, we will first introduce a commercially available LED-based PAI system, and then show the ability of this system in identifying inflammatory arthritis in human hand joints. B-mode ultrasound (US), Doppler, and PA images were obtained from 12 joints with clinically active arthritis, five joints with subclinically active arthritis, and 12 normal joints. The quantitative assessment of hyperemia in joints by PAI demonstrated statistically significant differences among the three conditions. The imaging results from the subclinically active arthritis joints also suggested that the LED-based PAI has a higher sensitivity to angiogenic microvasculature compared to US Doppler imaging. This initial clinical study on arthritis patients validates that PAI can be a potential imaging modality for the diagnosis of inflammatory arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.L. Hoving et al., Non‐pharmacological interventions for preventing job loss in workers with inflammatory arthritis. Cochrane Database Syst. Rev. 11 (2014)

    Google Scholar 

  2. S.Y. Park et al., HMGB1 induces angiogenesis in rheumatoid arthritis via HIF-1α activation. Eur. J. Immunol. 45(4), 1216–1227 (2015)

    Article  Google Scholar 

  3. M. Biniecka et al., Dysregulated bioenergetics: a key regulator of joint inflammation. Ann. Rheum. Dis. 75(12), 2192–2200 (2016)

    Article  Google Scholar 

  4. C.M. Quiñonez-Flores, S.A. González-Chávez, C. Pacheco-Tena, Hypoxia and its implications in rheumatoid arthritis. J. Biomed. Sci. 23(1), 62 (2016)

    Google Scholar 

  5. B.N. Weissman, Imaging of arthritis and metabolic bone disease. (Elsevier Health Sciences, 2009)

    Google Scholar 

  6. W.A. Schmidt, Technology insight: the role of color and power Doppler ultrasonography in rheumatology. Nat. Rev. Rheumatol. 3(1), 35 (2007)

    Article  Google Scholar 

  7. I. Goldie, The synovial microvascular derangement in rheumatoid arthritis and osteoarthritis. Acta Orthop. Scand. 40(6), 751–764 (1969)

    Article  Google Scholar 

  8. J. Jo et al., A functional study of human inflammatory arthritis using photoacoustic imaging. Sci. Rep. 7(1), 15026 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. P.J. van den Berg et al., Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system. Photoacoustics 8, 8–14 (2017)

    Article  Google Scholar 

  10. M.W. Schellenberg, H.K. Hunt, Hand-held optoacoustic imaging: a review. Photoacoustics 11, 14–27 (2018)

    Article  Google Scholar 

  11. L.V. Wang, Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 3(9), 503 (2009)

    Article  ADS  Google Scholar 

  12. X. Wang et al., Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21(7), 803 (2003)

    Article  Google Scholar 

  13. L.V. Wang, S. Hu, Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012)

    Google Scholar 

  14. D. Razansky, C. Vinegoni, V. Ntziachristos, Multispectral photoacoustic imaging of fluorochromes in small animals. Opt. Lett. 32(19), 2891–2893 (2007)

    Article  ADS  Google Scholar 

  15. H.F. Zhang et al., Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24(7), 848 (2006)

    Article  Google Scholar 

  16. J. Jo et al., In vivo quantitative imaging of tumor pH by nanosonophore assisted multispectral photoacoustic imaging. Nat. Commun. 8(1), 471 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. C.H. Lee et al., Ion-selective nanosensor for photoacoustic and fluorescence imaging of potassium. Anal. Chem. 89(15), 7943–7949 (2017)

    Article  Google Scholar 

  18. T.J. Allen, P.C. Beard, High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics. Biomed. Opt. Express 7(4), 1260–1270 (2016)

    Article  Google Scholar 

  19. A. Hariri et al., The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics 9, 10–20 (2018)

    Article  Google Scholar 

  20. K. Sivasubramanian, M. Pramanik, High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system. Biomed. Opt. Express 7(2), 312–323 (2016)

    Article  Google Scholar 

  21. Y.-H. Wang, P.-C. Li, SNR-dependent coherence-based adaptive imaging for high-frame-rate ultrasonic and photoacoustic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(8), 1419–1432 (2014)

    Article  Google Scholar 

  22. Y. Zhu et al., Light emitting diodes based photoacoustic imaging and potential clinical applications. Sci. Rep. 8(1), 9885 (2018)

    Article  ADS  Google Scholar 

  23. X. Wang et al., Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J. Biomed. Opt. 11(2), 024015 (2006)

    Article  ADS  Google Scholar 

  24. S. Yang et al., Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography. Med. Phys. 34(8), 3294–3301 (2007)

    Article  Google Scholar 

  25. C. Kim, C. Favazza, L.V. Wang, In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem. Rev. 110(5), 2756–2782 (2010)

    Article  Google Scholar 

  26. J.E. Tooke, Peripheral microvascular disease in diabetes. Diabetes Res. Clin. Pract. 30, S61–S65 (1996)

    Article  Google Scholar 

  27. J.E. Tooke, Microvascular function in human diabetes: a physiological perspective. Diabetes 44(7), 721–726 (1995)

    Article  Google Scholar 

  28. E. Tateishi-Yuyama et al., Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. The Lancet 360(9331), 427–435 (2002)

    Article  Google Scholar 

  29. B.A. Lipsky et al., Diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis., 885–910 (2004)

    Google Scholar 

  30. A.E. Jones et al., Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA 303(8), 739–746 (2010)

    Article  Google Scholar 

  31. G. Hernandez-Cardoso et al., Terahertz imaging for early screening of diabetic foot syndrome: a proof of concept. Sci. Rep. 7, 42124 (2017)

    Article  ADS  Google Scholar 

  32. I.R. Mahy et al., Disturbance of peripheral microvascular function in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Cardiovasc. Res. 30(6), 939–944 (1995)

    Article  Google Scholar 

  33. I.R. Mahy, J.E. Tooke, Peripheral microvascular function in human heart failure. Clin. Sci. 88(5), 501–508 (1995)

    Article  Google Scholar 

  34. M.J.U. Corrêa et al., Quantification of basal digital blood flow and after cold stimulus by laser doppler imaging in patients with systemic sclerosis. Revista brasileira de reumatologia 50(2), 128–134 (2010)

    Article  Google Scholar 

  35. A.L. Herrick, S. Clark, Quantifying digital vascular disease in patients with primary Raynaud’s phenomenon and systemic sclerosis. Ann. Rheum. Dis. 57(2), 70–78 (1998)

    Article  Google Scholar 

  36. T. Kanetaka et al., Laser Doppler skin perfusion pressure in the assessment of Raynaud’s phenomenon. Eur. J. Vasc. Endovasc. Surg. 27(4), 414–416 (2004)

    Article  Google Scholar 

  37. X. Wang et al., Imaging of joints with laser-based photoacoustic tomography: an animal study. Med. Phys. 33(8), 2691–2697 (2006)

    Article  MathSciNet  Google Scholar 

  38. H.F. Zhang et al., Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett. 90(5), 053901 (2007)

    Article  ADS  Google Scholar 

  39. Y. Sun, E.S. Sobel, H. Jiang, Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study. J. Biomed. Opt. 14(6), 064002 (2009)

    Article  ADS  Google Scholar 

  40. G. Xu et al., Photoacoustic and ultrasound dual-modality imaging of human peripheral joints. J. Biomed. Opt. 18(1), 010502 (2012)

    Article  Google Scholar 

  41. P. van Es et al., Initial results of finger imaging using photoacoustic computed tomography. J. Biomed. Opt. 19(6), 060501 (2014)

    Article  Google Scholar 

  42. Y. Sun, E.S. Sobel, H. Jiang, First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints. Med. Phys. 38(7), 4009–4017 (2011)

    Article  Google Scholar 

  43. J.R. Rajian, G. Girish, X. Wang, Photoacoustic tomography to identify inflammatory arthritis. J. Biomed. Opt. 17(9), 096013 (2012)

    Article  ADS  Google Scholar 

  44. J.R. Rajian et al., Characterization and treatment monitoring of inflammatory arthritis by photoacoustic imaging: a study on adjuvant-induced arthritis rat model. Biomed. Opt. Express 4(6), 900–908 (2013)

    Article  Google Scholar 

  45. N. Beziere et al., Optoacoustic imaging and staging of inflammation in a murine model of arthritis. Arthritis Rheumatol. 66(8), 2071–2078 (2014)

    Article  Google Scholar 

  46. P. Brenchley, Antagonising angiogenesis in rheumatoid arthritis. Ann. Rheum. Dis. 60(suppl 3), iii71–iii74 (2001)

    Google Scholar 

  47. Z. Szekanecz, A.E. Koch, Mechanisms of disease: angiogenesis in inflammatory diseases. Nat. Rev. Rheumatol. 3(11), 635 (2007)

    Article  Google Scholar 

  48. M. Drouart et al., High serum vascular endothelial growth factor correlates with disease activity of spondylarthropathies. Clin. Exp. Immunol. 132(1), 158–162 (2003)

    Article  Google Scholar 

  49. G.S. Firestein, Starving the synovium: angiogenesis and inflammation in rheumatoid arthritis. J. Clin. Investig. 103(1), 3–4 (1999)

    Article  Google Scholar 

  50. O. FitzGerald et al., Morphometric analysis of blood vessels in synovial membranes obtained from clinically affected and unaffected knee joints of patients with rheumatoid arthritis. Ann. Rheum. Dis. 50(11), 792–796 (1991)

    Article  Google Scholar 

  51. S. Hirohata, J. Sakakibara, Angioneogenesis in rheumatoid arthritis. The Lancet 354(9176), 423–424 (1999)

    Article  Google Scholar 

  52. P. Jones, R. Makki, J. Weiss, Endothelial cell stimulating angiogenesis factor—a new biological marker for disease activity in ankylosing spondylitis? Rheumatology 33(4), 332–335 (1994)

    Article  Google Scholar 

  53. A.E. Koch, Angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum.: Official J. Am. Coll. Rheumatol. 41(6), 951–962 (1998)

    Article  Google Scholar 

  54. J. Levick, Hypoxia and acidosis in chronic inflammatory arthritis; relation to vascular supply and dynamic effusion pressure. J. Rheumatol. 17(5), 579–582 (1990)

    Google Scholar 

  55. K. Lund‐Olesen, Oxygen tension in synovial fluids. Arthritis Rheum.: Official J. Am. Coll. Rheumatol 13(6), 769–776 (1970)

    Google Scholar 

  56. E.M. Paleolog, J.M. Miotla, Angiogenesis in arthritis: role in disease pathogenesis and as a potential therapeutic target. Angiogenesis 2(4), 295–307 (1998)

    Article  Google Scholar 

  57. C. Stevens et al., Hypoxia and inflammatory synovitis: observations and speculation. Ann. Rheum. Dis. 50(2), 124 (1991)

    Article  Google Scholar 

  58. H. Taylor et al., Raised endothelial cell stimulating angiogenesis factor in ankylosing spondylitis. Clin. Exp. Rheumatol. 11(5), 537–539 (1993)

    Google Scholar 

  59. P.S. Treuhaft, D.J. McCarty, Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum.: Official J. Am. Coll. Rheumatol. 14(4), 475–484 (1971)

    Article  Google Scholar 

  60. D. Walsh, Angiogenesis and arthritis. Rheumatology (Oxford, England) 38(2), 103–112 (1999)

    Article  Google Scholar 

  61. J. Jo et al., Detecting joint inflammation by an LED-based photoacoustic imaging system: a feasibility study. J. Biomed. Opt. 23(11), 110501 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Cyberdyne, Inc for technical support and long-term collaboration with our lab. This research was funded by the National Institute of Health (R01AR060350, 5R21AI122098-021, R21AI12209801A1) and Michigan Institute for Clinical and Health Research (MICHR) (UL1TR000433).

Ethical Approval

All procedures for human subjects in this study were approved by the Institutional Review Board (IRB) of the University of Michigan Medical School (HUM00003693).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueding Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Y., Jo, J., Xu, G., Girish, G., Schiopu, E., Wang, X. (2020). Application of LED-Based Photoacoustic Imaging in Diagnosis of Human Inflammatory Arthritis. In: Kuniyil Ajith Singh, M. (eds) LED-Based Photoacoustic Imaging . Progress in Optical Science and Photonics, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-15-3984-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3984-8_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3983-1

  • Online ISBN: 978-981-15-3984-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics