Skip to main content

Dynamical System Theory of Flow Instability Using the Impulse and the Frequency Response Approaches

  • Conference paper
  • First Online:
Mathematical Modeling and Computational Tools (ICACM 2018)

Abstract

We study the causal relation in a fluid dynamical system, for the impulse and frequency response approaches as instability theories and corresponding experiments. The zero-pressure-gradient (ZPG) boundary layer is analyzed to find complementary aspects of these approaches. The drawbacks of instability study are in formulating it as a homogeneous system. Another difficulty for the instability is in classifying it for either temporal or spatial growth. When viscous effects were included in the spatial theory, it predicted wave solution (known as Tollmien–Schlichting (TS) waves), which left many scientists unconvinced. Experimental verification remained difficult as instability does not require explicit excitation, and dependence on background noise makes experiment non-repeatable. The classic experiment of Schubauer and Skramstad for the boundary layer (J Aero Sci 14(2), 69–78, [24]) excited a monochromatic source inside to obtain spatially growing TS waves—considered as the frequency response of the boundary layer. In contrast, Gaster and Grant (Proc R Soc A 347(1649), 253–269, [13]) tried to create TS waves by a localized impulse excitation and ended up creating a wave-packet by the impulse response of the dynamical system. Here, we focus mainly on the impulse response of the ZPG boundary layer using Bromwich contour integral method (BCIM) developed by the authors for spatio-temporal growth of disturbance field in creating spatio-temporal wave-front (STWF). The main achievement of BCIM is in identifying the cause for the creation of STWF by both the approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashpis, D.E., Reshotko, E.: The vibrating ribbon problem revisited. J. Fluid Mech. 213, 531 (1990)

    Article  MathSciNet  Google Scholar 

  2. Bers, A.: Physique des Plasmas. Gordon and Breach, New York, USA (1975)

    Google Scholar 

  3. Bhaumik, S., Sengupta, T.K.: Precursor of transition to turbulence: Spatiotemporal wave front. Phys. Rev. E 89(4), 043018 (2014)

    Article  Google Scholar 

  4. Bhaumik, S., Sengupta, T.K.: Impulse response and spatio-temporal wave-packets: the common feature of rogue waves, tsunami and transition to turbulence. Phys. Fluids 29, 124103 (2017)

    Article  Google Scholar 

  5. Bhaumik, S., Sengupta, T.K., Shabab, Z.A.: Receptivity to harmonic excitation following non-impulsive start for boundary layer flows. AIAA J. 55(10), 3233–3238 (2017)

    Article  Google Scholar 

  6. Borrell, G., Sillero, J.A., Jiménez, J.: A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers. Comput. Fluids 80, 37–43 (2013)

    Article  Google Scholar 

  7. Breuer, K.S., Cohen, J., Haritonidis, J.H.: The late stages of transition induced by a low-amplitude wavepacket in a laminar boundary layer. J. Fluid Mech. 340, 395–411 (1997)

    Article  MathSciNet  Google Scholar 

  8. Brillouin, L.: Wave Propagation and Group Velocity. Academic press, New York, USA (1960)

    MATH  Google Scholar 

  9. Chomaz, J.-M.: Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357–392 (2005)

    Article  MathSciNet  Google Scholar 

  10. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, UK (1981)

    MATH  Google Scholar 

  11. Emmons, H.W.: The laminar-turbulent transition in a boundary layer-Part I. J. Aeronaut. Sci. 18(7), 490–498 (1951)

    Article  MathSciNet  Google Scholar 

  12. Fasel, H., Konzelmann, U.: Non-parallel stability of a flat plate boundary layer using the complete Navier-Stokes equation. J. Fluid Mech. 221, 331–347 (1990)

    Article  Google Scholar 

  13. Gaster, M., Grant, I.: An experimental investigation of the formation and development of a wave packet in a laminar boundary layer. Proc. Royal Soc. A 347(1649), 253–269 (1975)

    Google Scholar 

  14. Gaster, M.: On the generation of spatially growing waves in a boundary layer. J. Fluid Mech. 22, 433 (1965)

    Article  MathSciNet  Google Scholar 

  15. Gaster, M.: Growth of disturbances in both space and time. Phys. Fluids 11, 723–727 (1968)

    Article  Google Scholar 

  16. Gaster, M., Sengupta, T.K.: The generation of disturbances in a boundary layer by wall perturbations: the vibrating ribbon revisited once more. In: Instabilities and Turbulence in Engineering Flows, Kluwer Academic Publisher, Dordrecht, The Netherlands (1993)

    Google Scholar 

  17. Heisenberg, W.: Über stabilität und turbulenz von flüssigkeitsströmen. Ann. Phys. Lpz. 379, 577–627 (1924). (Translated as On stability and turbulence of fluid flows. NACA Tech. Memo. Wash. No 1291, 1951)

    Google Scholar 

  18. Hof, B., Doorne, C.W.H.V., Westerweel, J., Nieuwstadt, F.T.M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R.R., Waleffe, F.: Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305(5690), 1594–1598 (2004)

    Article  Google Scholar 

  19. Huerre, P., Monkewitz, P.A.: Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151–168 (1985)

    Article  MathSciNet  Google Scholar 

  20. Kloker, M.J.: A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition. Appl. Sci. Res. 59(4), 353–377 (1997)

    Article  MathSciNet  Google Scholar 

  21. Orr, McF.W.: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid, Part I: A perfect liquid. Part II: A viscous liquid. Proc. Roy. Irish Acad., A27, 9–138 (1907)

    Google Scholar 

  22. Papoulis, A.: Fourier Integral and Its Applications. McGraw Hill, New York, USA (1962)

    MATH  Google Scholar 

  23. Schlichting, H.: Zur entstehung der turbulenz bei der plattenströmung. Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 42, 181–208 (1933)

    Google Scholar 

  24. Schubauer, G.B., Skramstad, H.K.: Laminar boundary layer oscillations and the stability of laminar flow. J. Aero. Sci. 14(2), 69–78 (1947)

    Article  Google Scholar 

  25. Sengupta, T. K.: Impulse response of laminar boundary layer and receptivity. In: 7th International Conference on Numerical Methods In Laminar and Turbulent Flows. Pineridge Press (1991)

    Google Scholar 

  26. Sengupta, T.K.: Solution of the Orr-Sommerfeld equation for high wave numbers. Comput. Fluids 21(2), 301–303 (1992)

    Article  Google Scholar 

  27. Sengupta, T.K.: Instabilities of Flows and Transition to Turbulence. CRC Press, Taylor & Francis Group, Florida, USA (2012)

    Book  Google Scholar 

  28. Sengupta, T.K., Ballav, M., Nijhawan, S.: Generation of Tollmien—Schlichting waves by harmonic excitation. Phys. Fluids 6(3), 1213–1222 (1994)

    Article  Google Scholar 

  29. Sengupta, T.K., Bhaumik, S.: Onset of turbulence from the receptivity stage of fluid flows. Phys. Rev. Lett. 154501, 1–5 (2011)

    Google Scholar 

  30. Sengupta, T.K., Bhaumik, S., Bhumkar, Y.: Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E 85(2), 026308 (2012)

    Article  Google Scholar 

  31. Sengupta, T.K., Singh, N., Suman, V.K.: Dynamical system approach to instability of flow past a circular cylinder. J. Fluid Mech. 658, 82–115 (2010)

    Article  MathSciNet  Google Scholar 

  32. Sengupta, T.K., Rao, A.K., Venkatasubbaiah, K.: Spatio-temporal growing wave fronts in spatially stable boundary layers. Phys. Rev. Lett. 96(22), 224504–1–4

    Google Scholar 

  33. Sengupta, T.K., Rao, A.K., Venkatasubbaiah, K.: Spatio-temporal growth of disturbances in a boundary layer and energy based receptivity analysis. Phys. Fluids 18, 094101 (2006)

    Article  MathSciNet  Google Scholar 

  34. Sommerfeld, A.: Ein Beitrag zur hydrodynamiscen Erklarung der turbulenten Flussigkeitsbewegung. In: Proceedings of 4th International Congress Mathematicians, Rome, pp. 116–124 (1908)

    Google Scholar 

  35. Sundaram, P., Sengupta, T.K., Bhaumik, S.: The three-dimensional impulse response of a boundary layer to different types of wall excitation. Phys. Fluids 30, 124103 (2018)

    Article  Google Scholar 

  36. Tollmien, W.: Über die enstehung der turbulenz. I. English translation: NACA TM 609 (1931)

    Google Scholar 

  37. Trefethen, L.N., Trefethen, A.E., Reddy, S.C., Driscoll, T.A.: Hydrodynamic stability without eigenvalues. Science 261(5121), 578–584 (1993)

    Article  MathSciNet  Google Scholar 

  38. Van Der Pol, B., Bremmer, H.: Operational calculus based on two-sided Laplace integral. Cambridge University Press, Cambridge, UK (1959)

    MATH  Google Scholar 

  39. Yeo, K.S., Zhao, X., Wang, Z.Y., Ng, K.C.: DNS of wavepacket evolution in a Blasius boundary layer. J. Fluid Mech. 652, 333–372 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan K. Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sengupta, T.K., Sengupta, S., Sundaram, P. (2020). Dynamical System Theory of Flow Instability Using the Impulse and the Frequency Response Approaches. In: Bhattacharyya, S., Kumar, J., Ghoshal, K. (eds) Mathematical Modeling and Computational Tools. ICACM 2018. Springer Proceedings in Mathematics & Statistics, vol 320. Springer, Singapore. https://doi.org/10.1007/978-981-15-3615-1_11

Download citation

Publish with us

Policies and ethics