Skip to main content

Pharmacology of Angiotensin and Its Receptors

  • Chapter
  • First Online:
Frontiers in Pharmacology of Neurotransmitters

Abstract

Angiotensin is a peptide hormone produced by the proteolytic cascade initiated by the enzyme renin. The physiological effects of angiotensin are articulated by a particular receptor subtype, and it allows the cells to respond to extracellular signals. In earlier days, receptors were used to be identified using in vitro radioimmuno assay methods similar to the method used to identify receptor-binding properties of antibodies. However, nowadays the validation of receptors is done by doing the molecular or gene grafting into an unresponsive cell and then by observing the changes in chemical messengers. These innovative methods of identifying receptors have led to the discovery of two major angiotensin receptors, angiotensin type 1 receptor (AT1 receptor) and type 2 receptor (AT2 receptor), which produce cellular signals. Angiotensin has various physiological functions in different places such as juxtaglomerular cells, aldosterone, heart and kidney. The pharmacological intervention of renin–angiotensin system can be done by using beta blockers which create the inhibitory effect on renin secretion from juxtaglomerular (JG) cells. There is another method which involves the use of the renin inhibitory peptide. However, this method is not yet proved to be a successful approach for controlling the renin–angiotensin system. By far the most appropriate method of controlling the renin–angiotensin system is by using orally active angiotensin-converting enzyme (ACE) inhibitors, which interrupt the whole system. However, due to the associated adverse effects of ACE inhibitors, angiotensin receptor blockers (ARBs) are chosen over them. This chapter describes the history and origin of angiotensin, its biosynthesis, its mechanism of action and its physiological role. Further, the chapter also narrates the role of angiotensin as drug target and the use of ARBs for the pharmacotherapeutic intervention of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

Ang II:

Angiotensin II

ARBs:

Angiotensin receptor blockers

AT1 :

Angiotensin type 1 receptor

AT2 :

Angiotensin type 2 receptor

AT3 :

Angiotensin type 3 receptor

AT4 :

Angiotensin type 4 receptor

CHF:

Congestive heart failure

CKD:

Chronic kidney disease

GPCR:

G-Protein-coupled receptor

JG Cells:

Juxtaglomerular cells

mRNA:

Messenger RNA

NC-IUPHAR:

International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification

RAS:

Renin–angiotensin system

US FDA:

United States Food and Drug Administration

WHO:

World Health Organization

References

  • Antonaccio MJ, Rubin B, Horovitz ZP, Laffan RJ, Goldberg ME, High JP, Harris DN, Zaidi I (1979) Effects of chronic treatment with captopril (sq 14, 225), an orally active inhibitor of angiotensin i-converting enzyme, in spontaneously hypertensive rats. Jpn J Pharmacol 29:285–294

    Article  CAS  Google Scholar 

  • Benz J, Oshrain C, Henry D, Avery C, Chiang YT, Gatlin M (1997) Valsartan, a new angiotensin II receptor antagonist: a double-blind study comparing the incidence of cough with lisinopril and hydrochlorothiazide. J Clin Pharmacol 37:101–107

    Article  CAS  Google Scholar 

  • Bonnardeaux A, Davies E, Jeunemaitre X, Fery I, Charru A, Clauser E, Tiret L, Cambien F, Corvol P, Soubrier F (1994) Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension 24:63–69

    Article  CAS  Google Scholar 

  • Boyd JE, Palmore WP, Mulrow PJ (1971) Role of potassium in the control of aldosterone secretion in the rat. Endocrinology 88:556–565

    Article  CAS  Google Scholar 

  • Braun-Menendez E, Fasciolo JC, Leloir LF, Muñoz JM (1940) The substance causing renal hypertension. J Physiol 98:283–298

    Article  CAS  Google Scholar 

  • Bumpus FM, Schwarz H, Page IH (1957) Synthesis and pharmacology of the octapeptide angiotonin. Science 125:886–887

    Article  CAS  Google Scholar 

  • Bumpus FM, Smeby RR, Page IH, Khairallah PA (1964) Distribution and metabolic fate of angiotensin ii and various derivatives. Can Med Assoc J 90:190–193

    CAS  Google Scholar 

  • Bumpus FM, Catt KJ, Chiu AT, Degasparo M, Goodfriend T, Husain A, Peach MJ, Taylor DG Jr, Timmermans PB (1991) Nomenclature for angiotensin receptors. A report of the nomenclature committee of the council for high blood pressure research. Hypertension 17:720–721

    Article  CAS  Google Scholar 

  • Burnier M, Rutschmann B, Nussberger J, Versaggi J, Shahinfar S, Waeber B, Brunner HR (1993) Salt-dependent renal effects of an angiotensin II antagonist in healthy subjects. Hypertension 22:339–347

    Article  CAS  Google Scholar 

  • Burnier M, Hagman M, Nussberger J, Biollaz J, Armagnac C, Brouard R, Waeber B, Brunner HR (1995) Short-term and sustained renal effects of angiotensin II receptor blockade in healthy subjects. Hypertension 25:602–609

    Article  CAS  Google Scholar 

  • Campanile CP, Goodfriend TL (1981) Steroids as potential modulators of angiotensin receptors in bovine adrenal glomerulosa and kidney. Steroids 37:681–700

    Article  CAS  Google Scholar 

  • Carroll JE, Goodfriend TL (1984) Androgen modulation of adrenal angiotensin receptors. Science 224:1009–1011

    Article  CAS  Google Scholar 

  • Carroll JE, Landry AS, Elliott ME, Yatvin MB, Vorpahl J, Goodfriend TL (1983) Cholesteryl hemisuccinate alters membrane fluidity, angiotensin receptors, and responses in adrenal glomerulosa cells. Life Sci 32:1573–1581

    Article  CAS  Google Scholar 

  • Chabielska E, Pawlak R, Golatowski J, Buczko W (1998) The antithrombotic effect of captopril and losartan on experimental arterial thrombosis in rats. J Physiol Pharmacol 49:251–260

    CAS  Google Scholar 

  • Chaki S, Inagami T (1992) Identification and characterization of a new binding site for angiotensin II in mouse neuroblastoma neuro-2A cells. Biochem Biophys Res Commun 182:388–394

    Article  CAS  Google Scholar 

  • Chang RS, Lotti VJ (1990) Two distinct angiotensin II receptor binding sites in rat adrenal revealed by new selective nonpeptide ligands. Mol Pharmacol 37:347–351

    CAS  Google Scholar 

  • Chang RSL, Lotti VJ, Keegan ME (1982) Inactivation of angiotensin ii receptors in bovine adrenal cortex by dithiothreitol further evidence for the essential nature of disulfide bonds. Biochem Pharmacol 31:1903–1906

    Article  CAS  Google Scholar 

  • Chappell MC, Millsted A, Diz DI, Brosnihan KB, Ferrario CM (1991) Evidence for an intrinsic angiotensin system in the canine pancreas. J Hypertens 9:751–759

    Article  CAS  Google Scholar 

  • Chiu AT, Herblin WF, Mccall DE, Ardecky RJ, Carini DJ, Duncia JV, Pease LJ, Wong PC, Wexler RR, Johnson AL et al (1989) Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196–203

    Article  CAS  Google Scholar 

  • Conlin PR, Moore TJ, Williams GH, Hollenberg NK (1993) Rapid modulation of renal and adrenal responsiveness to angiotensin II. Hypertension 22:832–838

    Article  CAS  Google Scholar 

  • De Gasparo M, Husain A, Alexander W, Catt KJ, Chiu AT, Drew M, Goodfriend T, Harding JW, Inagami T, Timmermans PB (1995) Proposed update of angiotensin receptor nomenclature. Hypertension 25:924–927

    Article  CAS  Google Scholar 

  • De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    Google Scholar 

  • Dzau VJ, Gibbons GH (1987) Autocrine-paracrine mechanisms of vascular myocytes in systemic hypertension. Am J Cardiol 60:99i–103i

    Article  CAS  Google Scholar 

  • Dzau V, Baxter J, Cantin M, De Bold A, Ganten D, Gross K, Husain A, Inagami T, Menard J, Poole S, Robertson J, Tang J, Yamamoto K (1987) Report of the Joint Nomenclature and Standardization Committee of the International Society of Hypertension, American Heart Association and the World Health Organization. Hypertension 5:507–511

    Article  CAS  Google Scholar 

  • Elliott DF, Peart WS (1956) Amino-acid sequence in a hypertensin. Nature 177:527–528

    Article  CAS  Google Scholar 

  • Engler MM, Schambelan M, Engler MB, Ball DL, Goodfriend TL (1998) Effects of dietary gamma-linolenic acid on blood pressure and adrenal angiotensin receptors in hypertensive rats. Proc Soc Exp Biol Med 218:234–237

    Article  CAS  Google Scholar 

  • Esler M (2009) Heart and mind: psychogenic cardiovascular disease. J Hypertens 27:692–695

    Article  CAS  Google Scholar 

  • Gansevoort RT, De Zeeuw D, De Jong PE (1994a) Is the antiproteinuric effect of ACE inhibition mediated by interference in the renin-angiotensin system? Kidney Int 45:861–867

    Article  CAS  Google Scholar 

  • Gansevoort RT, De Zeeuw D, Shahinfar S, Redfield A, De Jong PE (1994b) Effects of the angiotensin II antagonist losartan in hypertensive patients with renal disease. J Hypertens Suppl 12:S37–S42

    CAS  Google Scholar 

  • Gasc JM, Shanmugam S, Sibony M, Corvol P (1994) Tissue-specific expression of type 1 angiotensin II receptor subtypes. An in situ hybridization study. Hypertension 24:531–537

    Article  CAS  Google Scholar 

  • Glossmann H, Baukal A, Catt KJ (1974) Angiotensin II receptors in bovine adrenal cortex. Modification of angiotensin II binding by guanyl nucleotides. J Biol Chem 249:664–666

    CAS  Google Scholar 

  • Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension: i. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347–379

    Article  CAS  Google Scholar 

  • Goodfriend TL (2000) Angiotensin receptors: history and mysteries. Am J Hypertens 13:442–449

    Article  CAS  Google Scholar 

  • Goodfriend TL, Lin SY (1970) Receptors for angiotensin I and II. Circ Res 27:163–174

    CAS  Google Scholar 

  • Goodfriend TL, Ball DL, Farley DB (1968) Radioimmunoassay of angiotensin. J Lab Clin Med 72:648–662

    CAS  Google Scholar 

  • Goodfriend T, Knych E, Allmann D, Kent K, Cooper T (1971) Angiotensin binding to receptors-a guide to physiology and therapy. In: Margoulies M, Greenwood F (eds) Proceedings of the Second International Symposium, Structure-Activity Relationships of Protein and Polypeptide Hormones, 1971. Excerpta Medica, Amsterdam, pp 243–249

    Google Scholar 

  • Goodfriend TL, Elliott ME, Catt KJ (1996) Angiotensin receptors and their antagonists. N Engl J Med 334:1649–1654

    Article  CAS  Google Scholar 

  • Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE (1991) Expression of AT2 receptors in the developing rat fetus. J Clin Invest 88:921–933

    Article  CAS  Google Scholar 

  • Griendling KK, Lassegue B, Murphy TJ, Alexander RW (1994) Angiotensin II receptor pharmacology. Adv Pharmacol 28:269–306

    Article  CAS  Google Scholar 

  • Gunther S (1984) Characterization of angiotensin II receptor subtypes in rat liver. J Biol Chem 259:7622–7629

    CAS  Google Scholar 

  • Guthrie GP Jr (1995) Angiotensin receptors: physiology and pharmacology. Clin Cardiol 18:29–34

    Article  Google Scholar 

  • Harding JW, Cook VI, Miller-Wing AV, Hanesworth JM, Sardinia MF, Hall KL, Stobb JW, Swanson GN, Coleman JK, Wright JW et al (1992) Identification of an AII(3-8) [AIV] binding site in guinea pig hippocampus. Brain Res 583:340–343

    Article  CAS  Google Scholar 

  • Hunyady L, Bor M, Balla T, Catt KJ (1994) Identification of a cytoplasmic Ser-Thr-Leu motif that determines agonist-induced internalization of the AT1 angiotensin receptor. J Biol Chem 269:31378–31382

    CAS  Google Scholar 

  • Inagami T, Iwai N, Sasaki K, Guo DF, Furuta H, Yamano Y, Bardhan S, Chaki S, Makito N, Badr K (1993) Angiotensin II receptors: cloning and regulation. Arzneimittelforschung 43:226–228

    CAS  Google Scholar 

  • Iyer SN, Ferrario CM, Chappell MC (1998) Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension 31:356–361

    Article  CAS  Google Scholar 

  • Kabour A, Henegar JR, Janicki JS (1994) Angiotensin II (AII)-induced myocyte necrosis: role of the AII receptor. J Cardiovasc Pharmacol 23:547–553

    Article  CAS  Google Scholar 

  • Kainulainen K, Perola M, Terwilliger J, Kaprio J, Koskenvuo M, Syvänen A-C, Vartiainen E, Peltonen L, Kontula K (1999) Evidence for involvement of the type 1 angiotensin II receptor locus in essential hypertension. Hypertension 33:844–849

    Article  CAS  Google Scholar 

  • Kakinuma Y, Fogo A, Inagami T, Ichikawa I (1993) Intrarenal localization of angiotensin II type 1 receptor mRNA in the rat. Kidney Int 43:1229–1235

    Article  CAS  Google Scholar 

  • Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T (1993) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543–24546

    CAS  Google Scholar 

  • Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PM, Thomas WG (2015) International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli [corrected]. Pharmacol Rev 67:754–819

    Article  CAS  Google Scholar 

  • Kent KM, Goodfriend TL, Mccallum ZT, Dempsey PJ, Cooper T (1972) Inotropic agents in hypoxic cat myocardium: depression and potentiation. Circ Res 30:196–204

    Article  CAS  Google Scholar 

  • Lacourciere Y, Brunner H, Irwin R, Karlberg BE, Ramsay LE, Snavely DB, Dobbins TW, Faison EP, Nelson EB (1994) Effects of modulators of the renin-angiotensin-aldosterone system on cough. Losartan Cough Study Group. J Hypertens 12:1387–1393

    CAS  Google Scholar 

  • Lin SY, Goodfriend TL (1970) Angiotensin receptors. Am J Phys 218:1319–1328

    Article  CAS  Google Scholar 

  • Matsusaka T, Nishimura H, Utsunomiya H, Kakuchi J, Niimura F, Inagami T, Fogo A, Ichikawa I (1996) Chimeric mice carrying ‘regional’ targeted deletion of the angiotensin type 1A receptor gene. Evidence against the role for local angiotensin in the in vivo feedback regulation of renin synthesis in juxtaglomerular cells. J Clin Invest 98:1867–1877

    Article  CAS  Google Scholar 

  • Mcdougall SJ, Widdop RE, Lawrence AJ (2005) Central autonomic integration of psychological stressors: focus on cardiovascular modulation. Auton Neurosci 123:1–11

    Article  Google Scholar 

  • Mendelsohn FA, Quirion R, Saavedra JM, Aguilera G, Catt KJ (1984) Autoradiographic localization of angiotensin II receptors in rat brain. Proc Natl Acad Sci U S A 81:1575–1579

    Article  CAS  Google Scholar 

  • Minghelli G, Seydoux C, Goy J-J, Burnier M (1998) Uricosuric effect of the angiotensin ii receptor antagonist losartan in heart transplant recipients1. Transplantation 66:268–271

    Article  CAS  Google Scholar 

  • Mizuno K, Niimura S, Tani M, Saito I, Sanada H, Takahashi M, Okazaki K, Yamaguchi M, Fukuchi S (1992) Hypotensive activity of TCV-116, a newly developed angiotensin II receptor antagonist, in spontaneously hypertensive rats. Life Sci 51:PL183–PL187

    CAS  Google Scholar 

  • Moore TJ, Williams GH (1982) Angiotensin II receptors on human platelets. Circ Res 51:314–320

    Article  CAS  Google Scholar 

  • Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ (1993) Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 268:24539–24542

    CAS  Google Scholar 

  • Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236

    Article  CAS  Google Scholar 

  • Naftilan AJ (1992) The role of angiotensin II in vascular smooth muscle cell growth. J Cardiovasc Pharmacol 20(Suppl 1):S37–S40

    Article  CAS  Google Scholar 

  • Nakamaru M, Misono KS, Naruse M, Workman RJ, Inagami T (1985) A role for the adrenal renin-angiotensin system in the regulation of potassium-stimulated aldosterone production. Endocrinology 117:1772–1778

    Article  CAS  Google Scholar 

  • Ogihara T, Higashimori K, Masuo K, Mikami H (1993) Pilot study of a new angiotensin II receptor antagonist, TCV-116: effects of a single oral dose on blood pressure in patients with essential hypertension. Clin Ther 15:684–691

    CAS  Google Scholar 

  • Peach MJ (1977) Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev 57:313–370

    Article  CAS  Google Scholar 

  • Re RN (1993) Myocardial hypertrophy, angiotensin, and ACE inhibitors. Angiology 44:875–881

    Article  CAS  Google Scholar 

  • Saavedra JM, Israel A, Plunkett LM, Kurihara M, Shigematsu K, Correa FM (1986) Quantitative distribution of angiotensin II binding sites in rat brain by autoradiography. Peptides 7:679–687

    Article  CAS  Google Scholar 

  • Sabbah ZA, Mansoor A, Kaul U (2013) Angiotensin receptor blockers - advantages of the new sartans. J Assoc Physicians India 61:464–470

    Google Scholar 

  • Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T (1991) Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351:230–233

    Article  CAS  Google Scholar 

  • Schiavone MT, Khosla MC, Ferrario CM (1990) Angiotensin-[1-7]: evidence for novel actions in the brain. J Cardiovasc Pharmacol 16(Suppl 4):S19–S24

    Article  CAS  Google Scholar 

  • Siebers MJ, Goodfriend TL (1986) Platelet angiotensin receptors in young and old humans. J Gerontol 41:574–578

    Article  CAS  Google Scholar 

  • Simpson RU, Campanile CP, Goodfriend TL (1980) Specific inhibition of receptors for angiotensin II and angiotensin III in adrenal glomerulosa. Biochem Pharmacol 29:927–933

    Article  CAS  Google Scholar 

  • Skeggs LT Jr, Lentz KE, Kahn JR, Shumway NP, Woods KR (1956) The amino acid sequence of hypertensin. II. J Exp Med 104:193–197

    Article  CAS  Google Scholar 

  • Speth RC, Kim KH (1990) Discrimination of two angiotensin II receptor subtypes with a selective agonist analogue of angiotensin II, p-aminophenylalanine6 angiotensin II. Biochem Biophys Res Commun 169:997–1006

    Article  CAS  Google Scholar 

  • Speth RC, Rowe BP, Grove KL, Carter MR, Saylor D (1991) Sulfhydryl reducing agents distinguish two subtypes of angiotensin II receptors in the rat brain. Brain Res 548:1–8

    Article  CAS  Google Scholar 

  • Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251

    CAS  Google Scholar 

  • Tufro-Mcreddie A, Johns DW, Geary KM, Dagli H, Everett AD, Chevalier RL, Carey RM, Gomez RA (1994) Angiotensin II type 1 receptor: role in renal growth and gene expression during normal development. Am J Phys 266:F911–F918

    Article  CAS  Google Scholar 

  • Weber K, Sun Y, Cleutjens J (1995a) Structural remodeling of the myocardium postinfarction: potential mechanisms and influence of therapy. Cardiol Rev 3:53–65

    Article  Google Scholar 

  • Weber KT, Sun Y, Campbell SE (1995b) Structural remodelling of the heart by fibrous tissue: role of circulating hormones and locally produced peptides. Eur Heart J 16 Suppl N:12–18

    Article  CAS  Google Scholar 

  • Weber KT, Sun Y, Katwa LC, Cleutjens JP (1995c) Connective tissue: a metabolic entity? J Mol Cell Cardiol 27:107–120

    Article  CAS  Google Scholar 

  • Whitebread S, Mele M, Kamber B, De Gasparo M (1989) Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163:284–291

    Article  CAS  Google Scholar 

  • Wright JW, Harding JW (1995) Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions. Regul Pept 59:269–295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Tripura University (A Central University), Suryamaninagar-799022, for providing the library facility to write this manuscript. The authors express gratitude to UGC, New Delhi [(F.30376/2017(BSR)], CSIR, New Delhi [02(0329)/17/EMR], and DBT, New Delhi [No. BT/PR24783/NER/95/851/2017], for their research funding. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratap Chandra Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswal, S., Ghosh, R., Acharya, P.C. (2020). Pharmacology of Angiotensin and Its Receptors. In: Kumar, P., Deb, P.K. (eds) Frontiers in Pharmacology of Neurotransmitters. Springer, Singapore. https://doi.org/10.1007/978-981-15-3556-7_11

Download citation

Publish with us

Policies and ethics