Skip to main content

Hormone Regulation Based Approach for Distributed and On-line Scheduling of Machines and AGVs

  • Chapter
  • First Online:
Adaptive Control of Bio-Inspired Manufacturing Systems

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

  • 297 Accesses

Abstract

The scheduling of operations on machines as well as the scheduling of AGVs are essential factors contributing to the efficiency of the overall manufacturing systems. In this Chapter, a hormone regulation-based approach for online scheduling of machines and AGVs within a distributed system is proposed. In a real-time environment, the proposed approach assigns emergent tasks and generates feasible schedules implementing a task allocation approach based on hormonal regulation mechanism. This approach is tested on two scheduling problems. The results from the evaluation show that the proposed approach improves the scheduling quality compared with state-of-the-art on-line and off-line approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, L., Shinn, S. W., Gen, M., et al. (2006). Network model and effective evolutionary approach for AGV dispatching in manufacturing system. Journal of Intelligent Manufacturing, 17(4), 465–477.

    Article  Google Scholar 

  2. Qiu, L., Hsu, W. J., Huang, S. Y., et al. (2002). Scheduling and routing algorithms for AGVs: A survey. International Journal of Production Research, 40(3), 745–760.

    Article  MATH  Google Scholar 

  3. Dotoli, M., & Fanti, M. P. (2004). Coloured timed Petri net model for real-time control of automated guided vehicle systems. International Journal of Production Research, 42(9), 1787–1814.

    Article  MATH  Google Scholar 

  4. Mohammed, A., & Khan, W. U. (2010). Implementation issues of AGVs in flexible manufacturing system: A review. Global Journal of Flexible Systems Management, 11(1–2), 55–62.

    Google Scholar 

  5. Singh, N., Sarngadharan, P. V., & Pal, P. K. (2011). AGV scheduling for automated material distribution: A case study. Journal of Intelligent Manufacturing, 22(2), 219–228.

    Article  Google Scholar 

  6. Shah, M., Lin, L., & Nagi, R. (1997). A production order-driven AGV control model with object-oriented implementation. Computer Integrated Manufacturing Systems, 10(96), 35–48.

    Article  Google Scholar 

  7. Blazevicz, J., Eiselt, H. A., Finke, G., et al. (1991). Scheduling tasks and vehicles in a flexible manufacturing system. International Journal of Flexible Manufacturing System, 4(1), 5–16.

    Article  Google Scholar 

  8. Kesen, S. E., Das, S. K., & Güngör, Z. (2010). A genetic algorithm based heuristic for scheduling of virtual manufacturing cells (VMCs). Computers & Operations Research, 37(6), 1148–1156.

    Article  MATH  Google Scholar 

  9. Vijay Kumar, M., Murthy, A. N. N., & Chandrasekhara, K. (2011). Dynamic scheduling of flexible manufacturing system using heuristic approach. Opsearch, 48(1), 1–19.

    Article  MathSciNet  Google Scholar 

  10. Bülbül, K. (2011). A hybrid shifting bottleneck-tabu search heuristic for the job shop total weighted tardiness problem. Computers & Operations Research, 38(6), 967–983.

    Article  MathSciNet  MATH  Google Scholar 

  11. Babu, A. G., Jerald, J., Haq, A. N., et al. (2010). Scheduling of machines and automated guided vehicles in FMS using differential evolution. International Journal of Production Research, 48(16), 4683–4699.

    Article  MATH  Google Scholar 

  12. Confessore, G., Fabiano, M., & Liotta, G. (2013). A network flow based heuristic approach for optimising AGV movements. Journal of Intelligent Manufacturing, 24(2), 405–419.

    Article  Google Scholar 

  13. Bilge, U., & Ulusoy, G. (1995). A time window approach to simultaneous scheduling of machines and material handling system in an FMS. Operations Research, 43(6), 1058–1070.

    Article  MATH  Google Scholar 

  14. Ulusoy, G., Sivrikaya-Şerifoǧlu, F., & Bilge, U. (1997). A genetic algorithm approach to the simultaneous scheduling of machines and automated guided vehicles. Computers & Operations Research, 24(4), 335–351.

    Article  MathSciNet  MATH  Google Scholar 

  15. Abdelmaguid, T. F., Nassef, A. O., Kamal, B. A., et al. (2004). A hybrid GA/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles. International Journal of Production Research, 42(2), 267–281.

    Article  MATH  Google Scholar 

  16. Reddy, B. S. P., & Rao, C. S. P. (2006). A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS. International Journal of Advanced Manufacturing Technology, 31(5), 602–613.

    Article  Google Scholar 

  17. Lacomme, P., Larabi, M., & Tchernev, N. (2013). Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles. International Journal of Production Economics, 143(1), 24–34.

    Article  Google Scholar 

  18. Sabuncuoglu, I., & Hommertzheim, D. L. (1992). Dynamic dispatching algorithm for scheduling machines and automated guided vehicles in a flexible manufacturing system. International Journal of Production Research, 30(5), 1059–1079.

    Article  Google Scholar 

  19. Le-Anh, T., & De Koster, M. B. M. (2006). A review of design and control of automated guided vehicle systems. European Journal of Operational Research, 171(1), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  20. Vis, I. F. A. (2006). Survey of research in the design and control of automated guided vehicle systems. European Journal of Operational Research, 170(3), 677–709.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghasemzadeh, H., Behrangi, E., & Azgomi, M. A. (2009). Conflict-free scheduling and routing of automated guided vehicles in mesh topologies. Robotics & Autonomous Systems, 57(6–7), 738–748.

    Article  Google Scholar 

  22. Ho, Y., Liu, H., & Yih, Y. (2012). A multiple-attribute method for concurrently solving the pickup-dispatching problem and the load-selection problem of multiple-load AGVs. Journal of Manufacturing Systems, 31(3), 288–300.

    Article  Google Scholar 

  23. Lee, J., Choi, S., Lee, C., et al. (2001). A study for AGV steering control and identification using vision system. In Proceedings of IEEE International Symposium on Industrial Electronics, Pusan, Korea, 12–16 June 2001 (Vol. 3, pp. 1575–1578). IEEE.

    Google Scholar 

  24. Lau, Y. K., & Woo, H. S. O. (2007). An agent-based dynamic routing strategy for automated material handling systems. International Journal of Computer Integrated Manufacturing, 21(3), 269–288.

    Article  Google Scholar 

  25. Morten, L., & Olivier, R. D. (2011). Holonic shop-floor application for handling, feeding and transportation of workpieces. International Journal of Production Research, 49(5), 1441–1454.

    Article  Google Scholar 

  26. Babiceanu, R. F., Chen, F. F., et al. (2005). Real-time holonic scheduling of material handling operations in a dynamic manufacturing environment. Robotics and Computer-Integrated Manufacturing, 21(4–5), 328–337.

    Article  Google Scholar 

  27. Singh, P., & Tiwari, M. K. S. (2010). Intelligent agent framework to determine the optimal conflict-free path for an automated guided vehicles system. International Journal of Production Research, 40(16), 4195–4223.

    Article  MATH  Google Scholar 

  28. Breton, L., Maza, S., & Castagna, P. (2006). A multi-agent based conflict-free routing approach of bi-directional automated guided vehicles. In Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, 14–16 June 2006 (pp. 2825–2830). IEEE.

    Google Scholar 

  29. Wallace, A. (2007). Multi-agent negotiation strategies utilizing heuristics for the flow of AGVs. International Journal of Production Research, 45(2), 309–322.

    Article  MATH  Google Scholar 

  30. Erol, R., Sahin, C., Baykasoglu, A., et al. (2012). A multi-agent based approach to dynamic scheduling of machines and automated guided vehicles in manufacturing systems. Applied Soft Computing, 12(6), 1720–1732.

    Article  Google Scholar 

  31. Zahadat, P., & Schmickl, T. (2014). Generation of diversity in a reaction-diffusion-based controller. Artificial Life, 20(3), 319–342.

    Article  Google Scholar 

  32. Hamann, H., Stradner, J., Schmickl, T., et al. (2010). Artificial hormone reaction networks: Towards higher evolvability in evolutionary multi-modular robotics. In Proceedings of the ALife XII Conference, MIT Press, Cambridge, 2010 (pp. 773–780).

    Google Scholar 

  33. Zheng, K., Tang, D. B., Giret, A., et al. (2018). A hormone regulation–based approach for distributed and on-line scheduling of machines and automated guided vehicles. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(1), 99–113.

    Article  Google Scholar 

  34. Qin, L., & Kan, S. (2013). Production dynamic scheduling method based on improved contract net of multi-agent. In Z. Du (Ed.), Intelligence computation and evolutionary computation (pp. 929–936). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  35. Rajabinasab, A., & Mansour, S. (2011). Dynamic flexible job shop scheduling with alternative process plans: An agent-based approach. International Journal of Advanced Manufacturing Technology, 54(9), 1091–1107.

    Article  Google Scholar 

  36. Kouider, A., & Bouzouia, B. (2012). Multi-agent job shop scheduling system based on co-operative approach of idle time minimisation. International Journal of Production Research, 50(2), 409–424.

    Article  Google Scholar 

  37. Zheng, K., Tang, D., Giret, A., et al. (2015). Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(S1), 121–134.

    Article  Google Scholar 

  38. Budilova, E. V., & Teriokhin, A. T. (1992). Endocrine networks. IEEE Symposium on Neuroinformatics and Neurocomputers, 2, 729–737.

    Google Scholar 

  39. Farhy, L. S. (2004). Modeling of oscillations of endocrine networks with feedback. Methods Enzymology, 384, 54–81.

    Article  Google Scholar 

  40. Tang, D., Gu, W., Wang, L., et al. (2011). A neuroendocrine-inspired approach for adaptive manufacturing system control. International Journal of Production Research, 49(5), 1255–1268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunbing Tang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, D., Zheng, K., Gu, W. (2020). Hormone Regulation Based Approach for Distributed and On-line Scheduling of Machines and AGVs. In: Adaptive Control of Bio-Inspired Manufacturing Systems. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-15-3445-4_3

Download citation

Publish with us

Policies and ethics