Skip to main content

ESAE: Evolutionary Strategy-Based Architecture Evolution

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1159))

  • 968 Accesses

Abstract

Although deep neural networks (DNNs) play important roles in many fields, the architecture design of DNNs can be challenging due to the difficulty of input data representation, the huge number of parameters and the complex layer relationships. To overcome the obstacles of architecture design, we developed a new method to generate the optimal structure of DNNs, named Evolutionary Strategy-based Architecture Evolution (ESAE), consisting of a bi-level representation and a probability distribution learning approach. The bi-level representation encodes architectures in the gene and parameter levels. The probability distribution learning approach ensures the efficient convergence of the architecture searching process. By using Fashion-MNIST and CIFAR-10, the effectiveness of the proposed ESAS is verified. The evolved DNNs, starting from a trivial initial architecture with one single convolutional layer, achieved the accuracies of 94.48% and 93.49% on Fashion-MNIST and CIFAR-10, respectively, and require remarkably less hardware costs in terms of GPUs and running time, compared with the existing state-of-the-art manual screwed architectures.

Supported by organizations of the National Natural Science Foundation of China (61972174, 61876069 and 61876207), the Key Development Project of Jilin Province (20180201045GX and 20180201067GX), the Guangdong Key-Project for Applied Fundamental Research (2018KZDXM076), and the Guangdong Premier Key-Discipline Enhancement Scheme (2016GDYSZDXK036).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.-E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2012)

    Article  Google Scholar 

  2. Hinton, G., Deng, L., Yu, D., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  3. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  4. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Boston, pp. 1–9 (2015)

    Google Scholar 

  5. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  6. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Las Vegas, pp. 770–778 (2016)

    Google Scholar 

  7. Huang, G., Liu, Z., Van, D.M.L., et al.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Puerto Rico, pp. 2261–2269 (2017)

    Google Scholar 

  8. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Snoek, J., Rippel, O., Swersky, K., et al.: Scalable Bayesian optimization using deep neural networks. Statistics 37, 1861–1869 (2015)

    Google Scholar 

  10. Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic algorithms. In: Proceedings of the Third International Conference on Genetic Algorithms, ICGA, San Francisco, pp. 379–384 (1989)

    Google Scholar 

  11. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Netw. 8(3), 694–713 (1997)

    Article  Google Scholar 

  12. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  13. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.-A.: Hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  14. Suganuma, M., Shirakawa, S., Nagao, T.A.: Genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 497–504. ACM, Berlin (2017)

    Google Scholar 

  15. Miikkulainen, R., et al.: Evolving deep neural networks. In: Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 293–312. Academic Press (2017)

    Google Scholar 

  16. Real, E., Aggarwal, A., Huang, Y., et al.: Aging evolution for image classifier architecture search. In: Thirty-Third AAAI Conference on Artificial Intelligence, pp. 5048–5056. AAAI, Hawaii (2019)

    Google Scholar 

  17. Real, E., Moore, S., Selle, A., et al.: Large-scale evolution of image classifiers. In: 34th International Conference on Machine Learning, ICML, Sydney, pp. 2902–2911 (2017)

    Google Scholar 

  18. Assunção, F., et al.: DENSER: deep evolutionary network structured representation. Genet. Program. Evolvable Mach. 20(1), 5–35 (2019)

    Article  Google Scholar 

  19. Zoph, B., Vasudevan, V., Shlens, J., et al.: Learning transferable architectures for scalable image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Salt Lake, pp. 8697–8710 (2018)

    Google Scholar 

  20. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: International Conference on Learning Representations, ICLR, New Orleans (2019)

    Google Scholar 

  21. Hundt, A., Jain, V., Hager, G.-D.: sharpDARTS: faster and more accurate differentiable architecture search. arXiv preprint arXiv:1903.09900 (2019)

  22. Zhang, J.-R., Zhang, J., Lok, T.-M., et al.: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training. Appl. Math. Comput. 185(2), 1026–1037 (2007)

    MATH  Google Scholar 

  23. Wang, G.G., Deb, S., et al.: Monarch butterfly optimization. Neural Comput. Appl. 31(7), 1–20 (2015)

    Google Scholar 

  24. Ge, W.G., Suash, D., Santos, C.L.D.: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. Int. J. Bio-Inspir. Comput. 12(1), 1–17 (2018)

    Article  Google Scholar 

  25. Wang, G.G., et al.: Elephant herding optimization. In: 2015 3rd International Symposium on Computational and Business Intelligence. IEEE, Bali Indonesia (2015)

    Google Scholar 

  26. Wang, G.-G., et al.: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Mem. Comput. 10(2), 151–164 (2016)

    Article  Google Scholar 

  27. Kiranyaz, S., Ince, T., et al.: Evolutionary artificial neural networks by multi-dimensional particle swarm optimization. Neural Netw. 22(10), 1448–1462 (2009)

    Article  Google Scholar 

  28. Das, G., Pattnaik, P.-K., Padhy, S.-K.: Artificial neural network trained by particle swarm optimization for non-linear channel equalization. Expert Syst. Appl. 41(7), 3491–3496 (2014)

    Article  Google Scholar 

  29. Salama, K.-M., Abdelbar, A.-M.: Learning neural network structures with ant colony algorithms. Swarm Intell. 9(4), 229–265 (2015)

    Article  Google Scholar 

  30. Zhou, X.-H., Zhang, M.X., et al.: Shallow and deep neural network training by water wave optimization. Swarm Evol. Comput. 50, 100561 (2019)

    Article  Google Scholar 

  31. LeCun, Y., Boser, B.E., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in neural Information Processing Systems, pp. 396–404 (1990)

    Google Scholar 

  32. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  33. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)

    Google Scholar 

  34. Gaier, A., et al.: Weight agnostic neural networks. arXiv preprint arXiv:1906.04358 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunguo Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, X. et al. (2020). ESAE: Evolutionary Strategy-Based Architecture Evolution. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1159. Springer, Singapore. https://doi.org/10.1007/978-981-15-3425-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3425-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3424-9

  • Online ISBN: 978-981-15-3425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics