Skip to main content

Advanced Approaches for Biofortification

  • Chapter
  • First Online:
Advances in Agri-Food Biotechnology

Abstract

Biofortification can be defined as the enhancement of minerals and vitamins in order to elevate the nutritional value of any food crop. This can be achieved by increasing the content of provitamin A, carotenoids, zinc, and iron. Around 50% of the world’s populations suffer from micronutrient deficiency of zinc, iron, selenium, calcium, and iodine. Among the many interventions, like dietary modification and diversification, supplementary nutrient supply, etc., biofortification is presently one of the best mediation to combat micronutrient malnutrition. Deficiencies of iron, iodine, vitamin A, vitamin B12, vitamin D, calcium, and magnesium are incredibly common worldwide. Besides, there also exist other nutrient deficiencies that come under the category of macronutrients, including carbohydrates, proteins (essential amino acids), fats (essential fatty acids), macrominerals, and water. Plant crops are an indispensable source of nutrition. Therefore a couple of years back, the idea of enhancing the nutrient qualities of plants emerged as a vital strategy to combat the prevailing nutrient deficiencies. Though, agronomic methods involved in developing crops with enhanced micronutrients have been traditionally practiced for years but are not sufficient. Later on, the conventional breeding approach was commonly followed and considered the best means of biofortification in crops. Decades later, transgene methods were developed and significantly gained popularity as a means to develop biofortified crops. Recently genome editing methods like TALENS, ZNFs, and CRISPR based technologies have also shown a huge advancement in the revolution of biofortifying plants. While there are other struggles related to acceptance and approval of such crops from both regulatory bodies as well as consumers and farmers. Nevertheless, recent years have seen the development and release of many micronutrient biofortified crops, for example, rice, maize, wheat, etc. and have proven to have a bright future as a nobel strategy essentially required for the health of humans worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alagoz Y, Gurkok T, Zhang B, Unver T (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6:30910. https://doi.org/10.1038/srep30910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson M, Turesson H, Nicolia A, Fält A-S, Samuelsson M, Hofvander P (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36(1):117–128

    CAS  PubMed  Google Scholar 

  • Andersson M, Turesson H, Olsson N, Fält A-S, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164(4):378–384

    CAS  PubMed  Google Scholar 

  • Ascherio A, Katan MB, Zock PL, Stampfer MJ, Willett WC (1999) Trans fatty acids and coronary heart disease. N Engl J Med 340(25):1994–1998

    CAS  PubMed  Google Scholar 

  • Asp N-G, Björck I (1992) Resistant starch. Trends Food Sci Technol 3:111–114

    CAS  Google Scholar 

  • Aznar-Moreno JA, Durrett TP (2017) Simultaneous targeting of multiple gene homeologs to alter seed oil production in Camelina sativa. Plant Cell Physiol 58:1260–1267. https://doi.org/10.1093/pcp/pcx058

    Article  CAS  PubMed  Google Scholar 

  • Bansal R, Rana N, Kumawat S, Kumar N, Preeti P, Bhatt V, Waqar A, Altaf N, Katara JL, Samantaray S et al (2019) Advances in induced mutagenesis and mutation mapping approaches in rice. Oryza 56(Special issue):8

    Google Scholar 

  • Banziger M, Long J (2000) The potential for increasing the iron and zinc density of maize through plant-breeding. Food Nutr Bull 21:397–400

    Google Scholar 

  • Belide S, Petrie JR, Shrestha P, Singh SP (2012) Modification of seedoil composition in Arabidopsis by artificial microRNA-mediated genesilencing. Front Plant Sci 3:168–178

    PubMed  PubMed Central  Google Scholar 

  • Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R et al (2002) Golden Rice: introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering. J Nutr 132:S506–S510

    Google Scholar 

  • Bhullar NK, Gruissem W (2013) Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol Adv 31:50–57

    CAS  PubMed  Google Scholar 

  • Birol E, Meenakshi JV, Oparinde A, Perez S, Tomlins K (2015) Developing country consumers’ acceptance of biofortified foods: a synthesis. Food Secur 7(3):555–568

    Google Scholar 

  • Brooks S (2010) Rice biofortification: lessons for global science and development. Earthscan, London

    Google Scholar 

  • Chaudhary J, Alisha A, Bhatt V, Chandanshive S, Kumar N, Mir Z, Kumar A, Yadav SK, Shivaraj S, Sonah H (2019a) Mutation breeding in tomato: advances, applicability and challenges. Plan Theory 8:128

    CAS  Google Scholar 

  • Chaudhary J, Deshmukh R, Mir ZA, Bhat JA (2019b) Metabolomics: an emerging technology for soybean improvement. In: Biotechnology products in everyday life. Springer, New York, pp 175–186

    Google Scholar 

  • Chaudhary J, Deshmukh R, Sonah H (2019c) Mutagenesis approaches and their role in crop improvement. Plan Theory 8:467

    CAS  Google Scholar 

  • Chaudhary J, Shivaraj S, Khatri P, Ye H, Zhou L, Klepadlo M, Dhakate P, Kumawat G, Patil G, Sonah H (2019d) Approaches, applicability, and challenges for development of climate-smart soybean. In: Genomic designing of climate-smart oilseed crops. Springer, New York, pp 1–74

    Google Scholar 

  • Chen K, Gao C (2013) TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics 40(6):271–279

    PubMed  Google Scholar 

  • Cheng L, Gilbert RG (2016) Progress in controlling starch structure by modifying starch-branching enzymes. Planta 243(1):13–22

    Google Scholar 

  • Cheng Q, Su P, Hu Y, He Y, Gao W, Huang L (2014) RNA interference-mediated repression of SmCPS (copalyl diphosphate synthase) expression in hairy roots of Salvia miltiorrhiza causes a decrease of tanshinones and sheds light on the functional role of SmCPS. Biotechnol Lett 36:363–369

    CAS  PubMed  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14(1):169–176

    CAS  PubMed  Google Scholar 

  • Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crocoll C, Mirza N, Reichelt M, Gershenzon J, Halkier BA (2016) Optimization of engineered production of the glucoraphanin precursor dihomomethionine in Nicotiana benthamiana. Front Bioeng Biotechnol 4:14

    PubMed  PubMed Central  Google Scholar 

  • Cui G, Duan L, Jin B, Qian J, Xue Z, Shen G et al (2015) Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza Bunge. Plant Physiol 169:1607–1618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daud NSM, Zaidel DNA, Lai KS, Muhamad II, YM MJ (2016) Antioxidant properties of rice bran oil from different varieties extracted by solvent extraction methods. J Teknologi 78(6–12):107–110

    Google Scholar 

  • Daud NSM, Zaidel DNA, Lai KS, Jusoh YMM, Muhamad II, Ya’akob H (2017) Microwave assisted stabilisation and storage stability study of rice bran oil from different varieties. Chem Eng Trans 56:1285–1290

    Google Scholar 

  • Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK et al (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242

    CAS  PubMed  Google Scholar 

  • Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, Retterath A, Yabandith A, Gamo ME, Bissen J, Mathis L, Voytas DF, Zhang F (2016) Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol 16(1):225

    PubMed  PubMed Central  Google Scholar 

  • Dubock A (2017) An overview of agriculture, nutrition and fortification, supplementation and biofortification: Golden Rice as an example for enhancing micronutrient intake. Dubock Agric Food Secur 6:59. https://doi.org/10.1186/s40066-017-0135-3

    Article  Google Scholar 

  • Frolich A, Rice B (2005) Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind Crop Prod 21:25–31

    Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Hillwig ML, Huang L, Cui G, Wang X, Kong J et al (2009) A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org Lett 11:5170–5173

    CAS  PubMed  PubMed Central  Google Scholar 

  • GarcĂ­a-bañuelos ML, Sida-arreola JP (2014) Biofortification – Promising approach to increasing the content of iron and zinc in staple food crops. J Elem 19(3):865–888

    Google Scholar 

  • Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12. https://doi.org/10.3389/fnut.2018.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graef G, LaVallee BJ, Tenopir P, Tat M, Schweiger B, Kinney AJ et al (2009) A high-oleic-acid and low-palmitic-acid soybean: agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol J 7:411–421

    CAS  PubMed  Google Scholar 

  • Hanania U, Ariel T, Tekoah Y, Fux L, Sheva M, Gubbay Y et al (2017) Establishment of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins. Plant Biotechnol J 15:1120–1129. https://doi.org/10.1111/pbi.12702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • HarvestPlus (2009) Breeding crops for better nutrition. International Food Policy Research Institute (IFPRI), Washington, DC

    Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    CAS  PubMed  Google Scholar 

  • Hefferon K (2013) Plant-derived pharmaceuticals for the developing world. Biotechnol J 8:1193–1202

    CAS  PubMed  Google Scholar 

  • Hefferon KL (2015) Nutritionally enhanced food crops; progress and perspectives. Int J Mol Sci 16:3895–3914. https://doi.org/10.3390/ijms16023895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensel G, Floss DM, Arcalis E, Sack M, Melnik S, Altmann F et al (2015) Transgenic production of an anti HIV antibody in the barley endosperm. PLoS One 10:e0140476. https://doi.org/10.1371/journal.pone.0140476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge J (2016) Hidden hunger: approaches to tackling micronutrient deficiencies. In: Gillespie S, Hodge J, Yosef S, Pandya-Lorch R (eds) Nourishing millions: stories of change in nutrition. International Food Policy Research Institute (IFPRI), Washington, DC, pp 35–43

    Google Scholar 

  • Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK et al (2010) Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol 10:233–248

    PubMed  PubMed Central  Google Scholar 

  • Iskandarov U, Kim HJ, Cahoon EB (2014) Chapter 8: Camelina: an emerging oilseed platform for improved biofuels and bio-based materials. In: Carpita N, McCann M, Buckeridge MS (eds) Plants and BioEnergy. Springer, New York, pp 131–140

    Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    PubMed  PubMed Central  Google Scholar 

  • Jansing J, Sack M, Augustine SM, Fischer R, Bortesi L (2019) CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose. Plant Biotechnol J 17(2):350–361

    CAS  PubMed  Google Scholar 

  • Jeng TL, Lin YW, Wang CS, Sung JM (2012) Comparisons and selection of rice mutants with high iron and zinc contents in their polished grains that were mutated from the indica type cultivar IR64. J Food Compos Anal 28:149–154

    CAS  Google Scholar 

  • Jiang H, Horner HT, Pepper TM, Blanco M, Campbell M, Jane J-l (2010) Formation of elongated starch granules in high-amylose maize. Carbohydr Polym 80(2):533–538

    CAS  Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Donald P (2017) Weeks. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU et al (2011) Identification of functional BrFAD2-1 gene encoding microsomaldelta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep 30:1881–1892

    CAS  PubMed  Google Scholar 

  • Kang J, Snapp AR, Lu C (2011) Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiol Biochem 49:223–229

    CAS  PubMed  Google Scholar 

  • Kapusi E, Corcuera-GĂłmez M, Melnik S, Stoger E (2017) Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00540

  • Kok AD, Yoon LL, Sekeli R, Yeong WC, Yusof ZNB, Song LK (2018) Iron biofortification of rice: progress and prospects. https://doi.org/10.5772/intechopen.73572

  • Kumawat S, Rana N, Bansal R, Vishwakarma G, Mehetre ST, Das BK, Kumar M, Kumar Yadav S, Sonah H, Sharma TR (2019) Expanding avenue of fast neutron mediated mutagenesis for crop improvement. Plan Theory 8:164

    CAS  Google Scholar 

  • Lai H, He J, Engle M, Diamond MS, Chen Q (2012) Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol J 10:95–104

    CAS  PubMed  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-LainĂ© AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48. https://doi.org/10.1023/A:1006012005654

    Article  CAS  PubMed  Google Scholar 

  • Levitt T (2011) Can GM-free biofortifed crops succeed after Golden Rice controversy? Ecologist. http://www.theecologist.org/News/news_analysis/1159571/can_gmfree_biofortifed_crop

  • Li B, Cui G, Shen G, Zhan Z, Huang L, Chen J, Qi X (2017) Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep 7(1):43320

    PubMed  PubMed Central  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41(2):63–68

    CAS  PubMed  Google Scholar 

  • Luo H, Zhu Y, Song J, Xu L, Sun C, Zhang X et al (2014) Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation. Physiol Plant 152:241–255

    CAS  PubMed  Google Scholar 

  • Maqsood MA, Kanwal RS, Aziz T, Ashraf M (2009) Evaluation of Zn distribution among grain and straw of twelve indigenous wheat (Triticumaestivum L.) genotypes. Pak J Bot 41:225–231

    CAS  Google Scholar 

  • McGuire S (2015) FAO, IFAD, WFP. The state of food insecurity in the world 2015: meeting the 2015 international hunger targets: taking stock of uneven progress. Rome: FAO. Adv Nutr 6(5):623–624. https://doi.org/10.3945/an.115.009936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercx S, Smargiasso N, Chaumont F, Pauw ED, Boutry M, Navarre C (2017) Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 cells by a multiplex CRISPR/Cas9 strategy results in glycoproteins without plant-specific glycans. Front Plant Sci 8:403. https://doi.org/10.3389/fpls.2017.00403

    Article  PubMed  PubMed Central  Google Scholar 

  • Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, NoguĂ© F et al (2016) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol 15:729–739. https://doi.org/10.1111/pbi.12671

    Article  CAS  Google Scholar 

  • Mugode L, Há B, Kaunda A, Sikombe T, Phiri S, Mutale R et al (2014) Carotenoid retention of biofortified provitamin a maize (Zea mays L.) after Zambian traditional methods of milling, cooking and storage. J Agric Food Chem 62:6317–6325

    CAS  PubMed  Google Scholar 

  • Mushtaq M, Mukhtar S, Sakina A, Dar AA, Bhat R, Deshmukh R, Molla K, Kundoo AA, Dar MS (2020) Tweaking genome-editing approaches for virus interference in crop plants. Plant Physiol Biochem 147:8

    Google Scholar 

  • Muthayya A, Rah JH, Sugimoto JD, Roos FF, Kraemer K, Black RE (2013) The global hidden hunger indices and maps: an advocacy tool for action. PLoS One 8(6):e67860. https://doi.org/10.1371/journal.pone.0067860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthoni J, Kabira J, Shimelis H, Melis R (2015) Tetrasomic inheritance in cultivated potato and implications in conventional breeding [online]. Aust J Crop Sci 9(3):185–190

    CAS  Google Scholar 

  • Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci 106(19):7762–7767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HT, Silva JE, Podicheti R, Macrander J, Yang W, Nazarenus TJ et al (2013) Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnol J 11:759–769

    CAS  PubMed  Google Scholar 

  • Oikeh SO, Menkir A, Maziya-Dixon B, Welch R, Glahn RP (2003) Genotypic differences in concentration and bioavailability of kernel-iron in tropical maize varieties grown under field conditions. J Plant Nutr 26:2307–2319

    CAS  Google Scholar 

  • Omodamilola OI, Ibrahim AU (2018) CRISPR technology: advantages, limitations and future direction. J Biomed Pharm Sci 1:115

    Google Scholar 

  • Peng S, Cassman KG, Virmani SS, Sheehy J, Khush GS (1999) Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci 39(6):1552–1559

    Google Scholar 

  • Petry N, Boy E, Wirth JP, Hurrell RF (2015) Review: the potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7(2):1144–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pham A-T, Lee J-D, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10:195

    PubMed  PubMed Central  Google Scholar 

  • Pham AT, Shannon JG, Bilyeu KD (2012) Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor Appl Genet 125:503–515

    CAS  PubMed  Google Scholar 

  • Pilgeram AL, Smith DC, Boss D, Dale N, Wichman S, Lamb P et al (2007) Camelina sativa: a Montana omega-3 and fuel crop. In: Janik J, Whipkey A (eds) Issues in new crops and new uses. ASHS Press, Alexandra, VA, pp 129–131

    Google Scholar 

  • Potrykus I (2008) Golden Rice – from idea to reality. In: Foundation Bertebos (ed) Golden Rice and other biofortified food crops for developing countries challenges and potential. KSLA, Slöige, pp 11–16

    Google Scholar 

  • Powell K (2007) Functional foods from biotech—an unappetizing prospect? Nat Biotechnol 25(5):525–531

    CAS  PubMed  Google Scholar 

  • Prasad R, Shivay YS, Kumar D (2014) Agronomic biofortification of cereal grains with iron and zinc. Adv Agron 125(1):55–91

    Google Scholar 

  • Prashanth L, Kattapagari KK, Chitturi RT, Baddam VR, Prasad LK (2015) A review on role of essential trace elements in health and disease. J NTR Univ Health Sci 4:75–85. https://doi.org/10.4103/2277-8632.158577

    Article  Google Scholar 

  • Pray C, Paaarlberg R, Unnevehr L (2007) Patterns of political response to biofortified varieties of crops produced with different breeding techniques and agronomic traits. J Agrobiotechnol Manag Econ 10(3):Article 2

    Google Scholar 

  • Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F et al (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6:189–201. https://doi.org/10.1111/j.1467-7652.2007.00306.x

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci 103(10):3546–3551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng 5(4):255–263

    CAS  PubMed  Google Scholar 

  • Richter LJ, Thanavala Y, Arntzen CJ, Mason HS (2000) Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat Biotechnol 18:1167–1171

    CAS  PubMed  Google Scholar 

  • Saltzman A, Birol E, Oparinde A, Andersson MS, Asare-Marfo D, Diressie MT et al (2017) Availability, production, and consumption of crops biofortified by plant breeding: Current evidence and future potential. Ann N Y Acad Sci 1390:104–114

    PubMed  Google Scholar 

  • Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops – bringing together genomics and genome editing. New Phytol 216(3):682–698

    CAS  PubMed  Google Scholar 

  • Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13(6):791–800

    CAS  PubMed  Google Scholar 

  • Shi J, Wang H, Wu Y, Hazebroek J, Meeley RB, Ertl DS (2003) The maize low-phytic acid mutant is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131(2):507–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25(8):930–937

    CAS  PubMed  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Waldow V, Fett JP (2012) Iron biofortification in rice: it’s a long way to the top. Plant Sci 190:24–39

    CAS  PubMed  Google Scholar 

  • Sun Y, Thompson M, Lin G, Butler H, Gao Z, Thornburgh S, Yau K, Smith DA, Shukla VK (2007) Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization. Plant Physiol 144(3):1278–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Wenming D, Jinlu D, Francis F, Zhao Y, Xia L (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    PubMed  PubMed Central  Google Scholar 

  • Talano MA, Oller AL, González PS, Agostini E (2012) Hairy roots, their multiple applications and recent patents. Recent Pat Biotechnol 6:115–133

    CAS  PubMed  Google Scholar 

  • Thambugala D, Duguid S, Loewen E, Rowland G, Booker H, You FM et al (2013) Genetic variation of six desaturase genes in flax and their impact on fatty acid composition. Theor Appl Gene 126:2627–2641

    CAS  Google Scholar 

  • Vamvaka E, Twyman RM, Murad AM, Melnik S, Teh AYH, Arcalis E et al (2016) Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12. Plant Biotechnol J 14:97–108. https://doi.org/10.1111/pbi.12360

    Article  CAS  PubMed  Google Scholar 

  • Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Sharma TR, Deshmukh R (2019) Genome editing in plants: exploration of technological advancements and challenges. Cell 8:1386

    CAS  Google Scholar 

  • Veillet F, Chauvin L, Kermarrec M-P, Sevestre F, Merrer M, Terret Z, Szydlowski N, Devaux P, Gallois J-L, Chauvin J-E (2019) The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. Plant Cell Rep 38(9):1065–1080

    CAS  PubMed  Google Scholar 

  • Virmani SS, Ilyas-Ahmed M (2008) Rice breeding for sustainable production. In: Breeding major food staples. Blackwell Publishing Ltd., Oxford, pp 141–191

    Google Scholar 

  • Wagner N, Mroczka A, Roberts PD, Schreckengost W, Voelker T (2011) RNAi trigger fragment truncation attenuates soybean FAD2-1 transcript suppression and yields intermediate oil phenotypes. Plant Biotechnol J 9:723–728

    CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    CAS  PubMed  Google Scholar 

  • Wells R, Trick M, Soumpourou E, Clissold L, Morgan C, Werner P et al (2014) The control of seed oil polyunsaturate content in the polyploid crop species Brassica napus. Mol Breed 33:349–362

    CAS  PubMed  Google Scholar 

  • White J, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593. https://doi.org/10.1016/j.tplants.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y et al (2016) Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 9:949–952

    CAS  PubMed  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P et al (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305

    CAS  PubMed  Google Scholar 

  • Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin H-C, Coe RA, Kretzschmar T, Gray JE, Quick PW, Bandyopadhyay A (2017) CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep 36(5):745–757

    CAS  PubMed  Google Scholar 

  • Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359

    CAS  PubMed  Google Scholar 

  • Zhu L, Minghong G, Meng X, Cheung SCK, Yu H, Huang J, Sun Y, Shi Y, Liu Q (2012) High-amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnol J 10(3):353–362

    CAS  PubMed  Google Scholar 

  • Zingore S, Delve RJ, Nyamangara J, Giller KE (2008) Multiple benefits of manure: The key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms. Nutr Cycl Agroecosyst 80(3):267–282

    Google Scholar 

  • Zubr J (1997) Oil seed crop: Camelina sativa. Ind Crop Prod 6:113–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiran, K. (2020). Advanced Approaches for Biofortification. In: Sharma, T.R., Deshmukh, R., Sonah, H. (eds) Advances in Agri-Food Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2874-3_2

Download citation

Publish with us

Policies and ethics