Skip to main content

Neuroprosthesis and Functional Electrical Stimulation (Peripheral)

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

A neuroprosthesis (NP) externally controls sensory and motor systems in persons with diminished sensation and movement control after a central nervous system injury or disease. An NP, based on peripheral functional electrical stimulation (FES) activates the ascending and descending neural pathways, thereby activates directly and reflexively muscles and activates centers in the CNS. The FES has an orthotic effect on paralyzed muscles and a carryover effect by decreasing the sensory and motor impairment. The carryover effect is maximized when FES is integrated into the mental and physical exercise of functional tasks during the acute phase of the disability. FES-based NP sends bursts of electrical charge pulses via electrodes and creates the pulsating electrical field in the targeted zones of the body. The externally generated pulsatile electrical field activates peripheral nerves that pass through these zones. These externally generated action potentials travel along the peripheral nerves to muscles and to the central nervous system. The most apparent FES results when applied to the peripheral nervous system (PNS) are the restoration of the standing and walking (postural control), generation of cyclic movements suitable for pedaling, and manipulation and grasping. The activation of afferent neural pathways contributes to the increased inflow of action potentials to the central nervous system and increases the central nervous system (CNS) excitability. The significant effect of FES of peripheral nerves is the prevention and reduction of secondary complications of paralysis (e.g., cardiovascular deterioration, loss of muscle bulk and strength, decubitus, diminished gastric and urinary functioning, reduced range of movement in joints, spasticity, etc.).

Dejan B. Popovic has been deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADC:

Analog to digital converter

CNS:

Central Nervous System

DAC:

Digital to analog converter

DC/CD:

DC to DC converter

EEG:

Electroencephalography

EMG:

Electromyography

FES:

Functional electrical stimulation

HHC:

Hierarchical hybrid control

IPI:

Inter pulse interval

MBC:

Model based control

NP:

Neuroprosthesis

PNS:

Peripheral nervous system

PWM:

Pulse width modulation

References

  1. Reswick, J.B., Ko, W., Vodovnik, L., McLeod, W., Crochetiere, W.: On the cybernetic restoration of human function in paralysis. In: Advances in External Control of Human Extremities II, pp. 3–13. Published by ETAN, Belgrade. Available in Popović, D.B. (Ed.) “Advances in External Control of Human Extremities I–X”, CD, Aalborg University, 2002 (1967). ISBN 8790562089, 9788790562083

    Google Scholar 

  2. Offner, F.F., Liberson, W.T.: Method of muscular stimulation in human beings to aid in walking. US Patent 3,344,792 (1967)

    Google Scholar 

  3. Gračanin, F.: A study of excitability of spinal motoneurones in hemiplegia. Electroencephalogr. Clin. Neurophysiol. 27(7), 723–724 (1969)

    Article  Google Scholar 

  4. Bajd, T., Kralj, A., Turk, R., Benko, H., Šega, J.: Use of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injuries. J. Biomed. Eng. 11(2), 96–102 (1989)

    Article  Google Scholar 

  5. Kralj, A., Vodovnik, L.: Functional electrical stimulation of the extremities: part 1. J. Med. Eng. Technol. 1(1), 12–15 (1977)

    Article  Google Scholar 

  6. Strojnik, P., Kralj, A., Uršič, I.: Programmed six-channel electrical stimulator for complex stimulation of leg muscles during walking. IEEE Trans. Biomed. Eng. 2, 112–116 (1979)

    Article  Google Scholar 

  7. Kralj, A.R., Bajd, T.: Functional Electrical Stimulation: Standing and Walking after Spinal Cord Injury. CRC press (1989)

    Google Scholar 

  8. Marsolais, E.B., Kobetic, R.: Functional walking in paralyzed patients by means of electrical stimulation. Clin. Orthop. Relat. Res. 175, 30–36 (1983)

    Article  Google Scholar 

  9. Marsolais, E.B., Kobetic, R.: Functional electrical stimulation for walking in paraplegia. JBJS. 69(5), 728–733 (1987)

    Article  Google Scholar 

  10. Kobetic, R., Marsolais, E.B.: Synthesis of paraplegic gait with multi-channel functional neuromuscular stimulation. IEEE Trans. Rehabil. Eng. 2(2), 66–79 (1994)

    Article  Google Scholar 

  11. Long II, C., Masciarelli, V.D.: An electrophysiologic splint for the hand. Arch. Phys. Med. Rehabil. 44, 499 (1963)

    Google Scholar 

  12. Keith, M.W., Peckham, P.H., Thrope, G.B., Stroh, K.C., Smith, B., Buckett, J.R., Kilgore, K.L., Jatich, J.W.: Implantable functional neuromuscular stimulation in the tetraplegic hand. J. Hand Surg. Am. 14(3), 524–530 (1989)

    Article  Google Scholar 

  13. Peckham, P.H., Keith, M.W., Kilgore, K.L., Grill, J.H., Wuolle, K.S., Thrope, G.B., Gorman, P., Hobby, J., Mulcahey, M.J., Carroll, S., Hentz, V.R.: Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch. Phys. Med. Rehabil. 82(10), 1380–1388 (2001)

    Article  Google Scholar 

  14. Smith, B., Peckham, P.H., Keith, M.W., Roscoe, D.D.: An externally powered, multi-channel, implantable stimulator for versatile control of paralyzed muscle. IEEE Trans. Biomed. Eng. 7, 499–508 (1987)

    Article  Google Scholar 

  15. Triolo, R., Nathan, R., Handa, Y., Keith, M., Betz, R.R., Carroll, S., Kantor, C.: Challenges to clinical deployment of upper limb neuroprostheses. J. Rehabil. Res. Dev. 33, 111–122 (1996)

    Google Scholar 

  16. Stein, R.: Nerve and Muscle: Membranes, Cells, and Systems. Springer Science & Business Media (2012)

    Google Scholar 

  17. Popović, D.B., Sinkjær, T.: Control of Movement for the Physically Disabled: Control for Rehabilitation Technology. Springer (2000)

    Book  Google Scholar 

  18. Grill, W.M., Mortimer, J.T.: Stimulus waveforms for selective neural stimulation. IEEE Eng. Med. Biol. Mag. 14(4), 375–385 (1995)

    Article  Google Scholar 

  19. Bajzek, T.J., Jaeger, R.J.: Characterization and control of muscle response to electrical stimulation. Ann. Biomed. Eng. 15(5), 485–501 (1987)

    Article  Google Scholar 

  20. Baratta, R., Ichie, M., Hwang, S.K., Solomonow, M.: Orderly stimulation of skeletal muscle motor units with tripolar nerve cuff electrode. IEEE Trans. Biomed. Eng. 36(8), 836–843 (1989)

    Article  Google Scholar 

  21. Solomonow, M., Baratta, R., Shoji, H., D'ambrosia, R.: The EMG-force relationships of skeletal muscle; dependence on contraction rate, and motor units control strategy. Electromyogr. Clin. Neurophysiol. 30(3), 141–152 (1990)

    Google Scholar 

  22. Crago, P.E., Peckham, P.H., Mortimer, J.T., Van Der Meulen, J.P.: The choice of pulse duration for chronic electrical stimulation via surface, nerve, and intramuscular electrodes. Ann. Biomed. Eng. 2(3), 252–264 (1974)

    Article  Google Scholar 

  23. Crago, P.E., Peckham, P.H., Thrope, G.B.: Modulation of muscle force by recruitment during intramuscular stimulation. IEEE Trans. Biomed. Eng. 12, 679–684 (1980)

    Article  Google Scholar 

  24. Gruner, J.A., Mason, C.P.: Nonlinear muscle recruitment during intramuscular and nerve stimulation. J. Rehabil. Res. Dev. 26(2), 1–16 (1989)

    Google Scholar 

  25. Popović, D.B., Gordon, T., Rafuse, V.F., Prochazka, A.: Properties of implanted electrodes for functional electrical stimulation. Ann. Biomed. Eng. 19(3), 303–316 (1991)

    Article  Google Scholar 

  26. Winters, J.M., Crago, P.E. (eds.): Biomechanics and Neural Control of Posture and Movement. Springer Science & Business Media (2012)

    Google Scholar 

  27. Axelgaard, J., Grussing, T.: Electrical stimulation electrode. US Patent 4,867,166 (1989)

    Google Scholar 

  28. Axelgaard, J.: Medical electrode system. US Patent 5,450,845 (1995)

    Google Scholar 

  29. Keller, T., Kuhn, A.: Electrodes for transcutaneous (surface) electrical stimulation. J. Autom. Control. 18(2), 35–45 (2008)

    Article  Google Scholar 

  30. Dar, A., Nathan, R.H.: NESS Neuromuscular Electrical Stimulation Systems Ltd. Scanning electrode system for a neuroprosthesis. US Patent 7,149,582 (2006)

    Google Scholar 

  31. O’Dwyer, S.B., O’Keeffe, D.T., Coote, S., Lyons, G.M.: An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems. Med. Eng. Phys. 28(2), 166–176 (2006)

    Article  Google Scholar 

  32. Heller, B.W., Clarke, A.J., Good, T.R., Healey, T.J., Nair, S., Pratt, E.J., Reeves, M.L., van der Meulen, J.M., Barker, A.T.: Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: results from a gait-lab based study. Med. Eng. Phys. 35(1), 74–81 (2013)

    Article  Google Scholar 

  33. Kuhn, A., Keller, T., Micera, S., Morari, M.: Array electrode design for transcutaneous electrical stimulation: a simulation study. Med. Eng. Phys. 31(8), 945–951 (2009)

    Article  Google Scholar 

  34. Malešević, N.M., Popović Maneski, L., Ilić, V., Jorgovanović, N., Bijelić, G., Keller, T., Popović, D.B.: A multi-pad electrode based functional electrical stimulation system for restoration of grasp. J. Neuroeng. Rehabil. 9(1), 66 (2012)

    Article  Google Scholar 

  35. Popović-Bijelić, A., Bijelić, G., Jorgovanović, N., Bojanić, D., Popović, M.B., Popović, D.B.: Multi-field surface electrode for selective electrical stimulation. Artif. Organs. 29(6), 448–452 (2005)

    Article  Google Scholar 

  36. Popović-Maneski, L., Kostić, M., Bijelić, G., Keller, T., Mitrović, S., Konstantinović, L., Popović, D.B.: Multi-pad electrode for effective grasping: design. IEEE Trans. Neural Syst. Rehabil. Eng. 21(4), 648–654 (2013)

    Article  Google Scholar 

  37. Popović, L.Z., Malešević, N.M.: Muscle fatigue of quadriceps in paraplegics: comparison between single vs. multi-pad electrode surface stimulation. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6785–6788. IEEE (2009)

    Chapter  Google Scholar 

  38. Popović, L., Malešević, N.: Muscle fatigue of quadriceps in paraplegics: comparison between single vs. multi-pad electrode surface stimulation. In: Proc of IEEE EMBC, Minneapolis, MN, Sept 2–6, 2009, pp. 6785–6788 (2009)

    Google Scholar 

  39. Malešević, N.M., Popović, L.Z., Schwirtlich, L., Popović, D.B.: Distributed low-frequency functional electrical stimulation delays muscle fatigue compared to conventional stimulation. Muscle Nerve. 42(4), 556–562 (2010)

    Article  Google Scholar 

  40. Popović Maneski, L., Malešević, N.M., Savić, A.M., Keller, T., Popović, D.B.: Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles. Muscle Nerve. 48(6), 930–937 (2013)

    Article  Google Scholar 

  41. Thrasher, A., Graham, G.M., Popović, M.R.: Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters. Artif. Organs. 29(6), 453–458 (2005)

    Article  Google Scholar 

  42. Popović, D.B., Popović, M.B.: Automatic determination of the optimal shape of a surface electrode: selective stimulation. J. Neurosci. Methods. 178(1), 174–181 (2009)

    Article  Google Scholar 

  43. Crema, A., Malešević, N., Furfaro, I., Raschellà, F., Pedrocchi, A., Micera, S.: A wearable multi-site system for NMES-based hand function restoration. IEEE Trans. Neural Syst. Rehabil. Eng. 26(2), 428–440 (2017)

    Article  Google Scholar 

  44. Popović Maneski, L.P., Topalović, I., Jovičić, N., Dedijer, S., Konstantinović, L., Popović, D.B.: Stimulation map for control of functional grasp based on multi-channel EMG recordings. Med. Eng. Phys. 38(11), 1251–1259 (2016)

    Article  Google Scholar 

  45. Botter, A., Oprandi, G., Lanfranco, F., Allasia, S., Maffiuletti, N.A., Minetto, M.A.: Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning. Eur. J. Appl. Physiol. 111(10), 2461 (2011)

    Article  Google Scholar 

  46. Marsolais, E.B., Kobetič, R.: Implantation techniques and experience with percutaneous intramuscular electrodes in the lower extremities. J. Rehabil. Res. Dev. 23(3), 1–8 (1986)

    Google Scholar 

  47. Shimada, Y., Sato, K., Kagaya, H., Konishi, N., Miyamoto, S., Matsunaga, T.: Clinical use of percutaneous intramuscular electrodes for functional electrical stimulation. Arch. Phys. Med. Rehabil. 77(10), 1014–1018 (1996)

    Article  Google Scholar 

  48. Grandjean, P.A., Mortimer, J.T.: Recruitment properties of monopolar and bipolar epimysial electrodes. Ann. Biomed. Eng. 14(1), 53–66 (1986)

    Article  Google Scholar 

  49. Waters, R.L., Campbell, J.M., Nakai, R.: Therapeutic electrical stimulation of the lower limb by epimysial electrodes. Clin. Orthop. Relat. Res. 233, 44–52 (1988)

    Article  Google Scholar 

  50. Grill, W.M., Mortimer, J.T.: Quantification of recruitment properties of multiple contact cuff electrodes. IEEE Trans. Rehabil. Eng. 4(2), 49–62 (1996)

    Article  Google Scholar 

  51. Loeb, G.E., Peck, R.A.: Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J. Neurosci. Methods. 64(1), 95–103 (1996)

    Article  Google Scholar 

  52. Naples, G.G., Mortimer, J.T., Scheiner, A., Sweeney, J.D.: A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans. Biomed. Eng. 35(11), 905–916 (1988)

    Article  Google Scholar 

  53. Stieglitz, T., Meyer, J.U.: Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung. Cuff electrode. US Patent 5,919,220 (1999)

    Google Scholar 

  54. Rijnbeek, E.H., Eleveld, N., Olthuis, W.: Update on peripheral nerve electrodes for closed-loop neuroprosthetics. Front. Neurosci. 12(350); 1–9 (2018)

    Google Scholar 

  55. Valle, G., Petrini, F.M., Strauss, I., Iberite, F., D’Anna, E., Granata, G., Controzzi, M., Cipriani, C., Stieglitz, T., Rossini, P.M., Mazzoni, A.: Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Sci. Rep. 8(1), 16666 (2018)

    Article  Google Scholar 

  56. Zhang, Y., Zheng, N., Cao, Y., Wang, F., Wang, P., Ma, Y., Lu, B., Hou, G., Fang, Z., Liang, Z., Yue, M.: Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci. Adv. 5(4), p.eaaw1066 (2019)

    Article  Google Scholar 

  57. Malagodi, M.S., Horch, K.W., Schoenberg, A.A.: An intrafascicular electrode for recording of action potentials in peripheral nerves. Ann. Biomed. Eng. 17(4), 397–410 (1989)

    Article  Google Scholar 

  58. Yoshida, K., Horch, K.: Selective stimulation of peripheral nerve fibers using dual intrafascicular electrodes. IEEE Trans. Biomed. Eng. 40(5), 492–494 (1993)

    Article  Google Scholar 

  59. Boretius, T., Badia, J., Pascual-Font, A., Schuettler, M., Navarro, X., Yoshida, K., Stieglitz, T.: A transverse intrafascicular multi-channel electrode (TIME) to interface with the peripheral nerve. Biosens. Bioelectron. 26(1), 62–69 (2010)

    Article  Google Scholar 

  60. Stieglitz, T., Beutel, H.M.J.U., Meyer, J.U.: A flexible, light-weight multi-channel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sensors Actuators A Phys. 60(1–3), 240–243 (1997)

    Article  Google Scholar 

  61. Loeb, G.E., Richmond, F.J., Baker, L.L.: The BION devices: injectable interfaces with peripheral nerves and muscles. Neurosurg. Focus. 20(5), 1–9 (2006)

    Article  Google Scholar 

  62. Whitehurst, T.K., Schulman, J.H., Jaax, K.N., Carbunaru, R.: The Bion® microstimulator and its clinical applications. In: Implantable Neural Prostheses 1, pp. 253–273. Springer, New York (2009)

    Chapter  Google Scholar 

  63. Popović, D.B.: Control of functional electrical stimulation for restoration of motor function. Facta Univ. Ser. Electron. Energetics. 30(3), 295–312 (2017)

    Article  Google Scholar 

  64. Gallasch, E., Rafolt, D., Kinz, G., Fend, M., Kern, H., Mayr, W.: Evaluation of FES-induced knee joint moments in paraplegics with denervated muscles. Artif. Organs. 29(3), 207–211 (2005)

    Article  Google Scholar 

  65. Kern, H., Carraro, U., Adami, N., Hofer, C., Loefler, S., Vogelauer, M., Mayr, W., Rupp, R., Zampieri, S.: One year of home-based daily FES in complete lower motor neuron paraplegia: recovery of tetanic contractility drives the structural improvements of denervated muscle. Neurol. Res. 32(1), 5–12 (2010)

    Article  Google Scholar 

  66. Mayr, W., Hofer, C., Bijak, M., Rafolt, D., Unger, E., Sauermann, S., Lanmueller, H., Kern, H.: Functional Electrical Stimulation (FES) of denervated muscles: existing and prospective technological solutions. Basic Appl. Myol. 12(6), 287–290 (2002)

    Google Scholar 

  67. https://www.3-x-f.com/products.php. Accessed 1 June 2020

  68. Davis, R., Houdayer, T., Andrews, B., Emmons, S., Patrick, J.: Paraplegia: prolonged closed-loop standing with implanted nucleus FES-22 stimulator and Andrews’ foot-ankle orthosis. Stereotact. Funct. Neurosurg. 69(1–4), 281–287 (1997)

    Article  Google Scholar 

  69. Donaldson, N., Yu, C.H.: A strategy used by paraplegics to stand up using FES. IEEE Trans. Rehabil. Eng. 6(2), 162–167 (1998)

    Article  Google Scholar 

  70. Kralj, A., Bajd, T., Turk, R., Benko, H.: Posture switching for prolonging functional electrical stimulation standing in paraplegic patients. Spinal Cord. 24(4), 221 (1986)

    Article  Google Scholar 

  71. Matjačić, Z., Hunt, K., Gollee, H., Sinkjaer, T.: Control of posture with FES systems. Med. Eng. Phys. 25(1), 51–62 (2003)

    Article  Google Scholar 

  72. Winter, D.A.: Human balance and posture control during standing and walking. Gait Posture. 3(4), 193–214 (1995)

    Article  Google Scholar 

  73. Cavagna, G.A., Margaria, R.: Mechanics of walking. J. Appl. Physiol. 21(1), 271–278 (1966)

    Article  Google Scholar 

  74. Cappozzo, A.: Movements and mechanical energy changes of the upper part of the human body during walking. Biomechanics. 6, 272–279 (1978)

    Google Scholar 

  75. Inman, V.T., Eberhart, H.D.: The major determinants in normal and pathological gait. JBJS. 35(3), 543–558 (1953)

    Article  Google Scholar 

  76. Vukobratović, M., Borovac, B., Potkonjak, V.: ZMP: a review of some basic misunderstandings. Int. J. Humanoid Rob. 3(02), 153–175 (2006)

    Article  Google Scholar 

  77. Vukobratović, M., Stepanenko, J.: On the stability of anthropomorphic systems. Math. Biosci. 15(1–2), 1–37 (1972)

    Article  MATH  Google Scholar 

  78. Graupe, D., Kohn, K.H.: Functional neuromuscular stimulator for short-distance ambulation by certain thoracic-level spinal-cord-injured paraplegics. Surg. Neurol. 50(3), 202–207 (1998)

    Article  Google Scholar 

  79. Marsolais, E.B., Kobetič, R.: Functional electrical stimulation for walking in paraplegia. JBJS. 69(5), 728–733 (1987)

    Article  Google Scholar 

  80. Kobetič, R., Marsolais, E.B.: Synthesis of paraplegic gait with multi-channel functional neuromuscular stimulation. IEEE Trans. Rehabil. Eng. 2(2), 66–79 (1994)

    Article  Google Scholar 

  81. Agarwal, S., Kobetič, R., Nandurkar, S., Marsolais, E.B.: Functional electrical stimulation for walking in paraplegia: 17-year follow-up of 2 cases. J. Spinal Cord Med. 26(1), 86–91 (2003)

    Article  Google Scholar 

  82. Popović, D.B.: Control of walking in disabled humans. J. Autom. Control. 13, 1–38 (2003)

    Google Scholar 

  83. https://www.odstockmedical.com/walking. Accessed 1 June 2020

  84. http://www.bioness.com/Products.php. Accessed 1 June 2020

  85. http://dsp.tecnalia.com/handle/11556/430. Accessed 1 June 2020

  86. Weber, D.J., Stein, R.B., Chan, K.M., Loeb, G., Richmond, F., Rolf, R., James, K., Chong, S.L.: Bionic WalkAide for correcting foot drop. IEEE Trans. Neural Syst. Rehabil. Eng. 13(2), 242–246 (2005)

    Article  Google Scholar 

  87. Popović, D.B., Popović Maneski, L.: The instrumented shoe insole for rule-based control of gait in persons with hemiplegia. EasyChair Preprint, 1345 (2019)

    Google Scholar 

  88. https://www.ottobock.com.hk/en/neurorehabilitation/solutions/solutions-with-functional-electrical-stimulation/actigait/. Accessed 1 June 2020

  89. Popović, D., Stein, R.B., Oguztoreli, M.N., Lebiedowska, M., Jonić, S.: Optimal control of walking with functional electrical stimulation: a computer simulation study. IEEE Trans. Rehabil. Eng. 7(1), 69–79 (1999)

    Article  Google Scholar 

  90. Popović, D.B., Radulović, M., Schwirtlich, L., Jauković, N.: Automatic vs. hand-controlled walking of paraplegics. Med. Eng. Phys. 25(1), 63–73 (2003)

    Article  Google Scholar 

  91. Popović, D.B., Tomović, R., Stein, R.B.: Finite state models for gait with hybrid assistive systems. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Volume 13, pp. 928–930. IEEE (1991)

    Google Scholar 

  92. Tomović, R., Popović, D.B., Stein, R.B.: Nonanalytical Methods for Motor Control. World Scientific, Singapore (1995)

    Book  Google Scholar 

  93. Pappas, I.P., Popović, M.R., Keller, T., Dietz, V., Morari, M.: A reliable gait phase detection system. IEEE Trans. Neural Syst. Rehabil. Eng. 9(2), 113–125 (2001)

    Article  Google Scholar 

  94. Kojović, J., Djurić-Jovičić, M., Došen, S., Popović, M.B., Popović, D.B.: Sensor-driven four-channel stimulation of paretic leg: functional electrical walking therapy. J. Neurosci. Methods. 181(1), 100–105 (2009)

    Article  Google Scholar 

  95. Dragin, A.S., Konstantinović, L.M., Veg, A., Schwirtlich, L.B.: Gait training of poststroke patients assisted by the Walkaround (body postural support). Int. J. Rehabil. Res. 37(1), 22–28 (2014)

    Article  Google Scholar 

  96. Milovanović, I.P., Popović, D.B.: Mapping of sensory representation of walking and EMG of prime joint movers: control of functional electrical stimulation. In: 10th Symposium on Neural Network Applications in Electrical Engineering, pp. 7–10. IEEE (2010)

    Chapter  Google Scholar 

  97. https://rehabshop.rs/PROJECTS.php. Accessed 1 June 2020

  98. Popović, D., Tomović, R., Tepavac, D., Schwirtlich, L.: Control aspects of active above-knee prosthesis. Int. J. Man Mach. Stud. 35(6), 751–767 (1991)

    Article  Google Scholar 

  99. Popović, M.B.: Control of neural prostheses for grasping and reaching. Med. Eng. Phys. 25(1), 41–50 (2003)

    Article  Google Scholar 

  100. Popović, M., Popović, D.: A new approach to reaching control for tetraplegic subjects. J. Electromyogr. Kinesiol. 4(4), 242–253 (1994)

    Article  Google Scholar 

  101. IJzerman, M.J., Stoffers, T.S., Klatte, M.A.P., Snoek, G.J., Vorsteveld, J.H.C., Nathan, R.H., Hermens, H.J.: The NESS Handmaster orthosis: restoration of hand function in C5 and stroke patients by means of electrical stimulation. J. Rehabil. Sci. 9(3), 86–89 (1996)

    Google Scholar 

  102. http://www.bioness.com/Products/H200_for_Hand_Paralysis.php. Accessed 1 June 2020

  103. Popović, M.B., Popović, D.B., Sinkjær, T., Stefanović, A., Schwirtlich, L.: Clinical evaluation of functional electrical therapy in acute hemiplegic subjects. J. Rehabil. Res. Dev. 40(5), 443–454 (2003)

    Article  Google Scholar 

  104. Popović, D.B., Popović, M.B., Sinkjær, T., Stefanović, A., Schwirtlich, L.: Therapy of paretic arm in hemiplegic subjects augmented with a neural prosthesis: a cross-over study. Can. J. Physiol. Pharmacol. 82(8–9), 749–756 (2004)

    Article  Google Scholar 

  105. https://scireproject.com/evidence/rehabilitation-evidence/upper-limb/neuroprostheses/types-of-neuroprostheses/freehand-system/. Accessed 1 June 2020

  106. Berkelmans, R.: FES cycling. J Autom Control. 18(2), 73–76 (2008)

    Article  Google Scholar 

  107. Metani, A., Popović-Maneski, L., Mateo, S., Lemahieu, L., Bergeron, V.: Functional electrical stimulation cycling strategies tested during preparation for the First Cybathlon Competition–a practical report from team ENS de Lyon. Eur J Translational Myol. 27(4), 7110 (2017)

    Google Scholar 

  108. Davoodi, R., Andrews, B.J., Wheeler, G.D., Lederer, R.: Development of an indoor rowing machine with manual FES controller for total body exercise in paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 10(3), 197–203 (2002)

    Article  Google Scholar 

  109. Gibbons, R.S., McCarthy, I.D., Gall, A., Stock, C.G., Shippen, J., Andrews, B.J.: Can FES-rowing mediate bone mineral density in SCI: a pilot study. Spinal Cord. 52(s3), S4 (2014)

    Article  Google Scholar 

  110. Hettinga, D.M., Andrews, B.J.: The feasibility of functional electrical stimulation indoor rowing for high-energy training and sport. Neuromodulation Technol. Neural Interface. 10(3), 291–297 (2007)

    Article  Google Scholar 

  111. Jacobs, P.L., Nash, M.S., Klose, K.J., Guest, R.S., Needham-Shropshire, B.M., Green, B.A.: Evaluation of a training program for persons with SCI paraplegia using the Parastep® 1 ambulation system: Part 2. Effects on physiological responses to peak arm ergometry. Arch. Phys. Med. Rehabil. 78(8), 794–798 (1997)

    Article  Google Scholar 

  112. Nash, M.S., Jacobs, P.L., Montalvo, B.M., Klose, K.J., Guest, R.S., Needham-Shropshire, B.M.: Evaluation of a training program for persons with SCI paraplegia using the Parastep® 1 ambulation system: Part 5. Lower extremity blood flow and hyperemic responses to occlusion are augmented by ambulation training. Arch. Phys. Med. Rehabil. 78(8), 808–814 (1997)

    Article  Google Scholar 

  113. Jacobs, P.L., Nash, M.S.: Modes, benefits, and risks of voluntary and electrically induced exercise in persons with spinal cord injury. J. Spinal Cord Med. 24(1), 10–18 (2001)

    Article  Google Scholar 

  114. Vodovnik, L., Bowman, B.R., Hufford, P.: Effects of electrical stimulation on spinal spasticity. Scand. J. Rehabil. Med. 16(1), 29–34 (1984)

    Google Scholar 

  115. Stefanovska, A., Vodovnik, L.: Change in muscle force following electrical stimulation. Dependence on stimulation waveform and frequency. Scand. J. Rehabil. Med. 17(3), 141–146 (1985)

    Google Scholar 

  116. Tashiro, T., Higashiyama, A.: The perceptual properties of electrocutaneous stimulation: sensory quality, subjective intensity, and intensity-duration relation. Percept. Psychophys. 30(6), 579–586 (1981)

    Article  Google Scholar 

  117. Perović, M., Stevanović, M., Jevtić, T., Štrbac, M., Bijelić, G., Vučetić, Č., Popović Maneski, L., Popović, D.B.: Electrical stimulation of the forearm: a method for transmitting sensory signals from the artificial hand to the brain. J. Autom. Control. 21, 13–18 (2013)

    Article  Google Scholar 

  118. Johnston, T.E., Betz, R.R., Smith, B.T., Benda, B.J., Mulcahey, M.J., Davis, R., Houdayer, T.P., Pontari, M.A., Barriskill, A., Creasey, G.H.: Implantable FES system for upright mobility and bladder and bowel function for individuals with spinal cord injury. Spinal Cord. 43(12), 713–723 (2005)

    Article  Google Scholar 

  119. Haugland, M., Sinkjær, T.: Interfacing the body’s own sensing receptors into neural prosthesis devices. Technol. Health Care. 7(6), 393–399 (1999)

    Article  Google Scholar 

  120. DiMarco, A.F., Onders, R.P., Ignagni, A., Kowalski, K.E., Mortimer, J.T.: Phrenic nerve pacing via intramuscular diaphragm electrodes in tetraplegic subjects. Chest. 127(2), 671–678 (2005)

    Article  Google Scholar 

  121. Bardy, G.H., Smith, W.M., Hood, M.A., Crozier, I.G., Melton, I.C., Jordaens, L., Theuns, D., Park, R.E., Wright, D.J., Connelly, D.T., Fynn, S.P.: An entirely subcutaneous implantable cardioverter–defibrillator. N. Engl. J. Med. 363(1), 36–44 (2010)

    Article  Google Scholar 

  122. Tjong, F.V., Reddy, V.Y.: Permanent leadless cardiac pacemaker therapy: a comprehensive review. Circulation. 135(15), 1458–1470 (2017)

    Article  Google Scholar 

  123. Zeng, F.G., Rebscher, S., Harrison, W., Sun, X., Feng, H.: Cochlear implants: system design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115–142 (2008)

    Article  Google Scholar 

  124. Weiland, J.D., Humayun, M.S.: Visual prosthesis. Proc. IEEE. 96(7), 1076–1084 (2008)

    Article  Google Scholar 

  125. Lewis, P.M., Ackland, H.M., Lowery, A.J., Rosenfeld, J.V.: Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 1595, 51–73 (2015)

    Article  Google Scholar 

  126. Popović Maneski, L., Metani, A.: FES Cycling in Persons with Paralyzed Legs: Force Feedback for Setup and Control. In 13th Vienna FES Workshop, September 23rd–25th, 2019. Vienna: Medical University of Vienna

    Google Scholar 

  127. Cavanagh, P.R., Komi, P.V.: Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 42(3), 159–163 (1979)

    Article  Google Scholar 

  128. Patla, A.E., Prentice, S.D., Robinson, C., Neufeld, J.: Visual control of locomotion: strategies for changing direction and for going over obstacles. J. Exp. Psychol. Hum. Percept. Perform. 17(3), 603 (1991)

    Article  Google Scholar 

  129. Raspopović, S., Capogrosso, M., Petrini, F.M., Bonizzato, M., Rigosa, J., Di Pino, G., Carpaneto, J., Controzzi, M., Boretius, T., Fernandez, E., Granata, G.: Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6(222), 222ra19 (2014)

    Article  Google Scholar 

  130. Del-Ama, A.J., Gil-Agudo, Á., Pons, J.L., Moreno, J.C.: Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroeng. Rehabil. 11(1), 27 (2014)

    Article  Google Scholar 

  131. Crochetiere, W.J., Vodovnik, L., Reswick, J.B.: Electrical stimulation of skeletal muscle – a study of muscle as an actuator. Med. Biol. Eng. 5, 111–125 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lana Popović-Maneski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Popović, D.B., Popović-Maneski, L. (2022). Neuroprosthesis and Functional Electrical Stimulation (Peripheral). In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics