Skip to main content

Abstract

From the perspective of artificial intelligence, evolutionary computation belongs to computation intelligence. The origins of evolutionary computation can be traced back to the late 1950s (see, e.g., the influencing works (Friedberg, IBM J 2(1):2–13, 1958; Friedberg, et al. IBM J 3(7):282–287, 1959; Box, Appl Stat VI(2):81–101, 1957; Bremermann, Optimization through evolution and recombination. In: Yovits MC et al (eds) Self-organizing systems. Spartan, Washington, 1962)), and has started to receive significant attention during the 1970s (see, e.g., Fogel (Ind Res 4:14–19, 1962); Holland (J Assoc Comput Mach 3:297–314, 1962); Rechenberg (Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, Library translation No. 1122, Farnborough, Hants, 1965)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD International Conference on the Management of Data, pp. 207–216 (1992)

    Google Scholar 

  2. Bäck, T., Hammel, U.: Evolution strategies applied to perturbed objective functions. In: Proceedings of 1st IEEE Conference Evolutionary Computation, vol. 1, pp. 40–45 (1994)

    Google Scholar 

  3. Bäck, T., Schwefel H.-P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)

    Article  Google Scholar 

  4. Baker, J.E.: Adaptive selection methods for genetic algorithms. In: Proceedings of the First International Conference on Genetic Algorithms and their Applications, Pittsburgh, pp. 101–111 (1985)

    Google Scholar 

  5. Bandyopdhyay, S., Maulik, U.: An evolutionary technique based on K-means algorithm for optimal clustering in \(\mathbb {R}^N\). Inform. Sci. 146(1–4), 221–237 (2002)

    Google Scholar 

  6. Bandyopadhyay, S., Maulik, U., Holder, L.B., Cook, D.J.: Advanced Methods for Knowledge Discovery From Complex Data (Advanced Information and Knowledge Processing). Springer, London (2005)

    Book  MATH  Google Scholar 

  7. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans. Evol. Comput. 12(3), 269–283 (2008)

    Article  Google Scholar 

  8. Basu, M.: Dynamic economic emission dispatch using non-dominated sorting genetic algorithm-II. Electr. Power Energy Syst. 30, 140–149 (2008)

    Article  Google Scholar 

  9. Beckers, R., Deneubourg, J.L., Goss, S.: Trails and U-turns in the selection of the shortest path by the ant Lasius Niger. J. Theor. Biol. 159, 397–415 (1992)

    Article  Google Scholar 

  10. Benson, H.P., Sayin, S.: Towards finding global representations of the efficient set in multiple objective mathematical programming. Naval Res. Logist. 44, 47–67 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  12. Box, G.E.P.: Evolutionary operation: a method for increasing industrial productivity. Appl. Stat. VI(2), 81–101 (1957)

    Article  Google Scholar 

  13. Branke, J.: Multi-objective evolutionary algorithms and MCDA. European Working Group “Multiple Criteria Decision Aiding”, ser. 3, vol. 25, pp. 1–3 (2012)

    Google Scholar 

  14. Branke, J., Schmidt, C., Schmeck, H.: Efficient fitness estimation in noisy environments. In: Proceedings of the Genetic and Evolutionary Computation, pp. 243–250 (2001)

    Google Scholar 

  15. Bremermann, H.J.: Optimization through evolution and recombination. In: Yovits M.C., et al. (eds.) Self-Organizing Systems. Spartan, Washington (1962)

    Google Scholar 

  16. Chang, D.X., Zhang, X.D., Zheng, C.W.: A genetic algorithm with gene rearrangement for K-means clustering. Pattern Recognit. 42, 1210–1222 (2009)

    Article  Google Scholar 

  17. Charnes, A., Cooper, W., Niehaus, R., Stredry, A.: Static and dynamic model with multiple objectives and some remarks on organisational design. Manag. Sci. 15B, 365–375 (1969)

    Article  Google Scholar 

  18. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)

    Article  Google Scholar 

  19. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  20. Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation), 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  21. Cordon, O., Herrera, F., Stutzle, T.: A review on the ant colony optimization metaheuristic: basis, models and new trends. Mathware Soft Comput. 9(2–3), 141–175 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-Crit. Decis. Anal. 7, 34–47 (1998)

    Article  MATH  Google Scholar 

  23. Deb, K.: Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol. Comput. 7(3), 205–230 (1999)

    Article  Google Scholar 

  24. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, London (2001)

    MATH  Google Scholar 

  25. Deb, K., Agarwal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  26. del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.-C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)

    Article  Google Scholar 

  27. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. J. Insect Behav. 3, 159 (1990)

    Article  Google Scholar 

  28. Dorigo, M.: Optimization, learning and natural algorithms, Ph.D.Thesis, Politecnico diMilano (1992)

    Google Scholar 

  29. Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 37–40. Springer, Berlin (2011)

    Google Scholar 

  30. Dorigo, M., Blumb, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344, 243–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dorigo, M., Caro, G.D.: The ant colony optimization meta-heuristic. In: Corne, D., Dorigo, M, Glover, F. (eds.) New Ideas in Optimization, chap. 2. McGraw-Hill, New York (1999)

    Google Scholar 

  32. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  33. Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: algorithms, applications, and advances. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, chap. 9. Kluwer Academic, New York (2003)

    Google Scholar 

  34. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26(2), 29–41 (1996)

    Article  Google Scholar 

  35. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithms. Theor. Comput. Sci. 276, 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science (MHS), pp. 39–43 (1995)

    Google Scholar 

  37. Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  38. Engelbrecht, A.P.: Particle swarm optimization: where does it belong? In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pp. 48–54 (2006)

    Google Scholar 

  39. Engrand, P.: A multi-objective approach based on simulated annealing and its application to nuclear fuel management. In: 5th International Conference on Nuclear Engineering, Nice, pp. 416–423 (1997)

    Google Scholar 

  40. Ergezer, M., Simon, D., Du, D.: Oppositional biogeography-based optimization. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics (SMC), San Antonio, pp. 1009–1014 (2009)

    Google Scholar 

  41. Fogel, L.J.: Autonomous automata. Ind. Res. 4, 14–19 (1962)

    Google Scholar 

  42. Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Trans. Neural Netw. 5, 3–14 (1994)

    Article  Google Scholar 

  43. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway (1995)

    MATH  Google Scholar 

  44. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. Wiley, New York (1966)

    MATH  Google Scholar 

  45. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3(1), 1–16 (1995)

    Article  Google Scholar 

  46. Friedberg, R.M.: A learning machine: part I. IBM J. 2(1), 2–13 (1958)

    Article  MathSciNet  Google Scholar 

  47. Friedberg, R.M., Dunham, B., North, J.H.: A learning machine: part II. IBM J. 3(7), 282–287 (1959)

    Article  MathSciNet  Google Scholar 

  48. Gao, W.F., Liu, S.Y.: Improved artificial bee colony algorithm for global optimization. Inf. Process. Lett. 111(17), 871–882 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gao, W.F., Liu, S.Y., Huang, L.L.: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans. Cybern. 43(3), 1011–1024 (2013)

    Article  Google Scholar 

  50. Geman, A., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  51. Gendreau, M., Potvin, J.-Y.: Metaheuristics in combinatorial optimization. Ann. Oper. Res. 140(1), 189–213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Glover, F.: Tabu search — Part I. ORSA J. Comput. 1, 190–206 (1989)

    Article  MATH  Google Scholar 

  53. Goh, C.K., Tan, K.C.: An investigation on noisy environments in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 11(3), 354–381 (2007)

    Article  Google Scholar 

  54. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  55. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Article  Google Scholar 

  56. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application, Cambridge, pp. 41–49 (1987)

    Google Scholar 

  57. Gong, Y.-J., Li, J.-J., Zhou, Y., Li, Y.,, Chung, H.S., Shi, Y.-H., Zhang, J.: Genetic learning particle swarm optimization. IEEE Trans. Cybern. 46(10), 2277–2290 (2016)

    Article  Google Scholar 

  58. Gong, D., Sun, J., Miao, Z.: A set-based genetic algorithm for interval many-objective optimization problems. IEEE Trans. Evol. Comput. 22(1), 47–60 (2018)

    Article  Google Scholar 

  59. Grasse, P.P.: La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natalensis et cubitermes sp. la theorie de la stigmergie: Essai dinterpretation du comportement des termites constructeurs. Insectes Sociaux 6, 41–81 (1959)

    Article  Google Scholar 

  60. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv. Appl. Probab. 14(3), 502–525 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  61. Hajela, P., Lin, C.-Y.: Genetic search strategies in multicriterion optimal design. Struct. Optim. 4, 99–107 (1992)

    Article  Google Scholar 

  62. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)

    MATH  Google Scholar 

  63. Hans, A.E.: Multicriteria optimization for highly accurate systems. In: Stadler, W. (ed.) Multicriteria Optimization in Engineering and Sciences, Mathematical concepts and methods in science and engineering, vol. 19, pp. 309–352. Plenum Press, New York (1988)

    Google Scholar 

  64. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the non-dominated set. Technical Report IMM-REP-1998-7, Technical University of Denmark (1998)

    Google Scholar 

  65. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  66. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127(1), 57–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  67. He, J., Yao, X.: Erratum to: drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 140, 245–248 (2002)

    Article  MATH  Google Scholar 

  68. Holland, J.H.: Outline for a logical theory of adaptive systems. J. Assoc. Comput. Mach. 3, 297–314 (1962)

    Article  MATH  Google Scholar 

  69. Holland, J.H.: Adaption in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

  70. Hoorfar, A.: Mutation-based evolutionary algorithms and their applications to optimization of antennas in layered media. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, Orlando, pp. 2876–2879 (1999)

    Google Scholar 

  71. Hoorfar, A.: Evolutionary programming in electromagnetic optimization: a review. IEEE Trans. Antennas Propag. 55(3), 523–537 (2007)

    Article  Google Scholar 

  72. Hoorfar, A., Liu, Y.: A study of Cauchy and Gaussian mutation operators in evolutionary programming optimization of antenna structures. In: Proceedings of 16th Annual Applied Computational Electromagnetics Conference, Monterey, pp. 63–69 (2000)

    Google Scholar 

  73. Horn, J.: Multicriterion decision making. In: Bäck, T., Fogel, D., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, vol. 1, pp. F1.9:1–F1.9:15. Oxford University Press, Oxford (1997)

    Google Scholar 

  74. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. 1, pp. 82–87. IEEE Press, Piscataway (1994)

    Google Scholar 

  75. Hughes, E.J.: Evolutionary multi-objective ranking with uncertainty and noise. In: Proceedings of first International Conference on Evolutionary Multi-Criterion Optimization, Zürich, pp. 329–343 (2001)

    Google Scholar 

  76. Hughes, E.J.: Constraint handling with uncertain and noisy multi-objective evolution. In: Proceedings of 2001 Congress on Evolutionary Computation, vol. 2, pp. 963–970 (2001)

    Google Scholar 

  77. Hutter, M., Legg, S.: Fitness uniform optimization. IEEE Trans. Evol. Comput. 10(5), 568–589 (2006)

    Article  Google Scholar 

  78. Hwang, C.-L., Masud, A.S.M.: Multiple Objective Decision Making-Methods and Applications. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  79. Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2), 264–283 (2015)

    Article  Google Scholar 

  80. Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms. IEEE Trans. Evol. Comput. 7(5), 503–515 (2003)

    Article  Google Scholar 

  81. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Erciyes University, Kayseri, Tech. Rep.-TR06 (2005)

    Google Scholar 

  82. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  83. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  84. Karaboga, D., Basturk, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  85. Kennedy, J.: Swarm intelligence. In: Zomaya, A.Y. (ed.) Handbook of Nature-Inspired and Innovative Computing, pp. 187–219. Springer, New York (2006)

    Chapter  Google Scholar 

  86. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks (ICNN), vol. IV, pp. 1942–1948 (1995)

    Google Scholar 

  87. Kim, J.-H., Han, J.-H., Kim, Y.-H., Choi, S.-H., Kim, E.-S.: Preference-based solution selection algorithm for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(1), 20–34 (2012)

    Article  Google Scholar 

  88. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  89. Knowles, J.D., Corne, D.W.: On metrics for comparing nondominated sets. In: Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 711–716 (2002)

    Google Scholar 

  90. Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P., Manner, R. Parallel Problem Solving from Nature, 193–197. Springer, Berlin (1991)

    Google Scholar 

  91. Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. Reidel, Dordrecht (1987)

    Book  MATH  Google Scholar 

  92. Laumanns, M., Rudolph, G., Schwefel, H.-P.: Mutation control and convergence in evolutionary multi-objective optimization. In: Proceedings of the 7th International Mendel Conference on Soft Computing (MENDEL 2001), Brno (2001)

    Google Scholar 

  93. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  94. Li, Y.-L., Zhou, Y.-R., Zhan, Z.-H., Zhang, J.: A primary theoretical study on decomposition-based multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 20(4), 563–576 (2016)

    Article  Google Scholar 

  95. Liao, T., Socha, K., Montes, M.A., Stützle, T., Dorigo, M.: Ant colony optimization for mixed-variable optimization problems. 18(4), 503–518 (2014)

    Google Scholar 

  96. Limbourg, P., Aponte, D.E.S.: An optimization algorithm for imprecise multi-objective problem function. In: Proceedings of IEEE Congress on Evolutionary Computation, Edinburgh, pp. 459–466 (2005)

    Google Scholar 

  97. López-Ioán̄ez, M., Stützle, T.: The automatic design of multiobjective ant colony optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

    Google Scholar 

  98. Luo, B., Zheng, J., Xie, J., Wu, J.: Dynamic crowding distance - a new diversity maintenance strategy for MOEAs. In: Fourth International Conference on Natural Computation, pp. 580–585 (2008)

    Google Scholar 

  99. Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. IEEE Trans. Evol. Comput. 11(5), 651–665 (2007)

    Article  Google Scholar 

  100. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  MATH  Google Scholar 

  101. Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: A comparative study of differential evolution variants for global optimization. In: Proceedings of the 2006 Conference on Genetic and Evolutionary Computation (GECCO-2006), Seattle, pp. 485–492 (2006)

    Google Scholar 

  102. Michalewicz, Z.: Genetic Algorithms+Data Structures= Evolution Programs. AI Series. Springer, New York (1994)

    Google Scholar 

  103. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Norwell (1999)

    MATH  Google Scholar 

  104. Mitra, D., Romeo, F., Sangiovanni-Vincentelli, A.: Convergence and finite-time behavior of simulated annealing. Adv. Appl. Probab. 18, 747–771 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  105. Mohan, B.C., Baskaran, R.: A survey: ant colony optimization based recent research and implementation on several engineering domain. Exp. Syst. Appl. 39, 4618–4627 (2012)

    Article  Google Scholar 

  106. Moradi, P., Gholampour, M.: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy. Appl. Soft Comput. 43, 117–130 (2016)

    Article  Google Scholar 

  107. Morse, J.N.: Reducing the size of the nondominated set: pruning by clustering. Comput. Oper. Res. 7(1–2), 55–66 (1980)

    Article  Google Scholar 

  108. Moulton, C.M., Roberts, S.A., Calatn, P.H.: Hierarchical clustering of multiobjective optimization results to inform land-use decision making. URISA J. 21(2), 25–38 (2009)

    Google Scholar 

  109. Mühlenbein, H., Schlierkamp-Voosen, D.: The science of breeding and its application to the breeder genetic algorithm (BGA). Evol. Comput. 1(4), 335–360 (1994)

    Article  Google Scholar 

  110. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.A.: A survey of multiobjective evolutionary algorithms for data mining: part I. IEEE Trans. Evol. Comput. 18(1), 4–19 (2014)

    Article  Google Scholar 

  111. Mullen, R.J., Monekosso, D., Barman, S., Remagnino, P.: A review of ant algorithms. Exp. Syst. Appl. 36, 9608–9617 (2009)

    Article  Google Scholar 

  112. Myung, H., Kim, J.-H.: Hybrid evolutionary programming for heavily constrained problems. BioSystems 38, 29–43 (1996)

    Article  Google Scholar 

  113. Myung, H., Kim, J.-H., Fogel, D.B.: Preliminary investigations into a two-stage method of evolutionary optimization on constrained problems. In: McDonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds.) Proceedings of the Fourth Annual Conference Evolutionary Programming, pp. 449–463. MIT Press, Cambridge (1995)

    Google Scholar 

  114. Nam, D.K., Park, C.H.: Multiobjective simulated annealing: a comparative study to evolutionary algorithms. Inf. J. Fuzzy Syst. 2(2), 87–97 (2000)

    Google Scholar 

  115. Neto, R.F.T., Filho, M.G.: A software model to prototype ant colony optimization algorithms. Exp. Syst. Appl. 38, 249–259 (2011)

    Article  Google Scholar 

  116. Nikulin, Y., Miettinen, K., Mäkelä, M.M.: A new achievement scalarizing function based on parameterization in multiobjective optimization. OR Spectr. 34, 69–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  117. Oberkampf, W.L., Helton, J.C., Joslyn, C.A., Wojtkiewicz, S.F., Ferson, S.: Challenge problems: uncertainty in system response given uncertain parameters. Reliab. Eng. Syst. Saf. 85, 11–19 (2004)

    Article  Google Scholar 

  118. Osman, I.H., Laporte, G.: Metaheuristics: a bibliography. Ann. Oper. Res. 63(5), 511–623 (1996)

    Article  MATH  Google Scholar 

  119. Palakonda, V., Mallipeddi, R.: Pareto dominance-based algorithms with ranking methods for many-objective optimization. IEEE Access 5, 11043–11053 (2017)

    Article  Google Scholar 

  120. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, New York (1982)

    MATH  Google Scholar 

  121. Park, S.-Y., Lee, J.-J.: Stochastic opposition-based learning using a Beta distribution in differential evolution. IEEE Trans. Cybern. 46(10), 2184–2194 (2016)

    Article  Google Scholar 

  122. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)

    Article  MATH  Google Scholar 

  123. Premalatha, K., Natarajan, A.M.: Hybrid PSO and GA for global maximization. Int. J. Open Problems Compt. Math. 2(4), 597–608 (2009)

    MathSciNet  Google Scholar 

  124. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  125. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785–1791 (2005)

    Google Scholar 

  126. Quagliarella, D., Vicini, A.: Coupling genetic algorithms and gradient based optimization techniques. In: Quagliarella, D., Periaux, J., Poloni, C., Winter, G. (eds.) Genetic Algorithms and Evolution Strategy in Engineering and Computer Science – Recent Advances and Industrial Applications. Wiley, Chichester (1997)

    MATH  Google Scholar 

  127. Radcliffe, N., Surry, P.: Fitness variance of formae and performance prediction. In: Foundations of Genetic Algorithms 3, pp. 51–72. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  128. Rahnamayan, S.: Opposition-based differential evolution. Thesis for Doctor of Philosophy, University of Waterloo (2007)

    Google Scholar 

  129. Rahnamayan, S., Wang, G.G.: Center-based sampling for population-based algorithms. In: 2009 IEEE Congress on Evolutionary Computation, pp. 933–938 (2009)

    Google Scholar 

  130. Rahnamayan, S., Tizhoosh, H.R., Salama, M.: Quasi-oppositional differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Singapore, pp. 2229–2236 (2007)

    Google Scholar 

  131. Rahnamayan, S., Tizhoosh, H.R., Salama, N.M.M.: Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12(1), 64–79 (2008)

    Article  Google Scholar 

  132. Rakshit, P., Konar, A.: Differential evolution for noisy multiobjective optimization. Artif. Intell. 227, 165–189 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  133. Rechenberg, I.: Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, Library translation No. 1122, Farnborough, Hants (1965)

    Google Scholar 

  134. Revelle, C., Cohon, J.L., Shobys, D.: Multiple objectives in facility location: a review. In: Beckmann, M., Kunzi, A.P. (eds.) Lecture Notes in Economics and Mathematical Systems, vol. 190, pp. 321–337. Springer, Berlin (1981)

    Google Scholar 

  135. Rojas-Morales, N., Riff Rojas, M.-C., Ureta, E.M.: A survey and classification of opposition-based metaheuristics. Comput. Ind. Eng. 110, 424–435 (2017)

    Article  Google Scholar 

  136. Rosenthal, R.E.: Principles of multiobjective optimization. Decis. Sci. 16, 133–152 (1985)

    Article  Google Scholar 

  137. Ruiz, F., Luque, M., Miguel, F., del Mar Muñoz, M.: An additive achievement scalarizing function for multiobjective programming problems. Eur. J. Oper. Res. 188(3), 683–694 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  138. Sakri, S., Rashid, N.A., Zain, Z.M.: Particle swarm optimization feature selection for breast cancer recurrence prediction. IEEE Access 6, 29637–29647 (2018)

    Article  Google Scholar 

  139. Santana, R.A., Pontes, M.R., Bastos-Filho, C.J.A.: A multiple objective particle Swarm optimization approach using crowding distance and roulette wheel. In: Ninth International Conference on Intelligent Systems Design and Applications, pp. 237–242 (2009)

    Google Scholar 

  140. Sastry, K., Goldberg, D., Kendall, G.: Genetic algorithms. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer, New York (2005)

    Google Scholar 

  141. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the First International Conference on Genetic Algorithms (ICGA’85), pp. 93–100 (1985)

    Google Scholar 

  142. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)

    Google Scholar 

  143. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, Hoboken (1981)

    MATH  Google Scholar 

  144. Slater, M.: Lagrange multipliers (revisited). Cowles Commission Discussion Paper: Mathematics 403 (1950)

    Google Scholar 

  145. Smith, K., Everson, R., Fieldsend, J.: Dominance measures for multi-objective simulated annealing. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp. 23–30 (2004)

    Google Scholar 

  146. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1995)

    Article  Google Scholar 

  147. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  148. Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Proceedings of the 8th ACM SIGKDD International Conference on KDD, pp. 32–41 (2002)

    Google Scholar 

  149. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark functions for the CEC’2010 special session and competition on large-scale global optimization. Tech. Rep. (2009)

    Google Scholar 

  150. Teich, J.: Pareto-front exploration with uncertain objectives. In: Zitzler, E. et al. (eds.) Evolutionary Multi-Criterion Optimization (EMO) 2001. Lecture Notes in Computer Science, vol. 1993, pp. 314–328 (2001)

    Article  MathSciNet  Google Scholar 

  151. Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, 28–30 November, Vienna, vol. 1, pp. 695–701 (2005)

    Google Scholar 

  152. Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a survey. J. MultiCrit. Decis. Anal. 3, 83–101 (1994)

    Article  MATH  Google Scholar 

  153. Ulungu, E.L., Teghem, J., Fortemps, P., Tuyttens, D.: MOSA method: a tool for solving multiobjective combinatorial optimization problems. J. MultiCrit. Decis. Anal. 8, 221–236 (1999)

    Article  MATH  Google Scholar 

  154. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  155. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol. Comput. 8(2), 125–147 (2000)

    Article  Google Scholar 

  156. Wang, R., Zhang, Q., Zhang, T.: Decomposition-based algorithms using Pareto adaptive scalarizing methods. IEEE Trans. Evol. Comput. 20(6), 821–837 (2016)

    Article  Google Scholar 

  157. Whitley, D.: The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best. In: Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, pp. 116–123 (1989)

    Google Scholar 

  158. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Applications. MCDM Theory and Applications Proceedings. Lecture Notes in Economics and Mathematical Systems, vol. 177. Springer, Berlin, pp. 468–486 (1980)

    Google Scholar 

  159. Wierzbicki, A.P.: A methodological approach to comparing parametric characterizations of efficient solutions. In: Fandel, G. et al. (eds.) Large-Scale Modeling and Interactive Decision Analysis. Lecture Notes in Economics and Mathematical Systems, vol. 273, pp. 27–45. Springer, Berlin (1986)

    Google Scholar 

  160. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectr. 8, 73–87 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  161. Xu, Q., Wang, L., Wang, N., Hei, X., Zhao, L.: A review of opposition-based learning from 2005 to 2012. Eng. Appl. Artif. Intell. 29, 1–12 (2014)

    Article  Google Scholar 

  162. Yang, Z., He, J., Yao, X.: Making a difference to differential evolution. In: Michalewicz, Z., Siarry, P. (eds.) Advances in Metaheuristics for Hard Optimization, pp. 397–414. Springer, Berlin (2008)

    Chapter  Google Scholar 

  163. Yang, L., Guan, Y., Sheng, W.: A novel dynamic crowding distance based diversity maintenance strategy for MOEAs. In: Proceedings of the 2017 International Conference on Machine Learning and Cybernetics, Ningbo, pp. 211–216 (2017)

    Google Scholar 

  164. Yang, D., Liu, Z., Shu, T., Yang, L., Ouyang, J., Shen, Z.: An improved genetic algorithm for multiobjective optimization of helical coil electromagnetic launchers. IEEE Trans. Plasma Sci. 46(1), 127–133 (2018)

    Article  Google Scholar 

  165. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  166. Yao, X., Liu, Y., Lin, G.: Self-adaptive differential evolution with neighborhood search. In: Proceedings of the 2008 Congress on Evolutionary Computation (CEC2008), pp. 1110–1116 (2008)

    Google Scholar 

  167. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  168. Zhu, G.P., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217(7), 3166–3173 (2010)

    MathSciNet  MATH  Google Scholar 

  169. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, V.A.E. et al. (eds.) Parallel Problem Solving From Nature. Springer, Berlin, 292–301 (1998)

    Chapter  Google Scholar 

  170. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  171. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  172. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems (EUROGEN), pp. 95–100 (2002)

    Google Scholar 

  173. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, XD. (2020). Evolutionary Computation. In: A Matrix Algebra Approach to Artificial Intelligence. Springer, Singapore. https://doi.org/10.1007/978-981-15-2770-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2770-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2769-2

  • Online ISBN: 978-981-15-2770-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics