Skip to main content

From Waste to Chemicals: Bio-Oils Production Through Microwave-Assisted Pyrolysis

  • Chapter
  • First Online:
Book cover Production of Biofuels and Chemicals with Pyrolysis

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 10))

Abstract

In the last decades, sustainable chemical productions have gained remarkable attention due to the increased accountability for environmentally issues leading to an intensification on the use of biomasses based platforms. Biorefinery has been prooved as a sound approach for the conversion of biomasses to raw chemicals integrating several processes ranging from fermentation to thermochemical treatments. Among them, pyrolysis represents a valuable tool for biomass conversion: as a matter of fact, high-quality oil with proprieties like a fuel can be recovered by fast processes run on lignocellulosic biomasses using different reactors designs and process parameters. In the same field, an innovative approach is represented by the use of microwaves as a heating source for pyrolytic conversion. Microwave (MW) induces very fast and volumetric heating but usually require a susceptor able to adsorb MW and dissipate heat after the interaction with the electromagnetic field. Microwave-assisted pyrolysis has been largely used for biomass conversion with a particular emphasis on the production of liquid fractions also known as bio-oils. It finds also a lot of applications as a source of chemicals such as pesticides, mixtures for chemical treatments or employed after purification procedures (i.e. extraction or a fractionating process to isolate the more interesting compounds present, such as acetic acid, levoglucosane, aromatics, and furans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karl TR, Trenberth KE. Modern global climate change. Science. 2003;302(5651):1719–23.

    Article  CAS  Google Scholar 

  2. Hill MK. Understanding environmental pollution. Cambridge: Cambridge University Press; 2010.

    Book  Google Scholar 

  3. Qualman D. Global plastics production, 1917 to 2050. https://www.darrinqualman.com/global-plastics-production/. Accessed 7 Jan 2020.

  4. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. https://doi.org/10.1126/sciadv.1700782.

    Article  CAS  Google Scholar 

  5. De Castro C, Miguel LJ, Mediavilla M. The role of non conventional oil in the attenuation of peak oil. Energy Policy. 2009;37(5):1825–33. https://doi.org/10.1016/j.enpol.2009.01.022.

    Article  Google Scholar 

  6. Artz J, Palkovits R. Cellulose-based platform chemical: the path to application. Curr Opin Green Sustainable Chem. 2018;14:14–8. https://doi.org/10.1016/j.cogsc.2018.05.005.

    Article  Google Scholar 

  7. Scheirs J, Kaminsky W. Feedstock recycling and pyrolysis of waste plastics. Chichester: Wiley; 2006.

    Book  Google Scholar 

  8. Ferrero G, Maniatis K, Buekens A, Bridgwater A. Pyrolysis and gasification. London: Elsevier; 1989.

    Google Scholar 

  9. Faravelli T, Pinciroli M, Pisano F, Bozzano G, Dente M, Ranzi E. Thermal degradation of polystyrene. J Anal Appl Pyrolysis. 2001;60(1):103–21. https://doi.org/10.1016/S0165-2370(00)00159-5.

    Article  CAS  Google Scholar 

  10. Kunwar B, Cheng H, Chandrashekaran SR, Sharma BK. Plastics to fuel: a review. Renew Sust Energ Rev. 2016;54:421–8. https://doi.org/10.1016/j.rser.2015.10.015.

    Article  CAS  Google Scholar 

  11. Bridgwater AV, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Org Geochem. 1999;30(12):1479–93. https://doi.org/10.1016/S0146-6380(99)00120-5.

    Article  CAS  Google Scholar 

  12. Weber K, Quicker P. Properties of biochar. Fuel. 2018;217:240–61. https://doi.org/10.1016/j.fuel.2017.12.054.

    Article  CAS  Google Scholar 

  13. Kaminsky W. Thermal recycling of polymers. J Anal Appl Pyrolysis. 1985;8:439–48. https://doi.org/10.1016/0165-2370(85)80042-5.

    Article  CAS  Google Scholar 

  14. Aguado R, Olazar M, Gaisán B, Prieto R, Bilbao J. Kinetic study of polyolefin pyrolysis in a conical spouted bed reactor. Ind Eng Chem Res. 2002;41(18):4559–66. https://doi.org/10.1021/ie0201260.

    Article  CAS  Google Scholar 

  15. Laurent E, Pierret C, Keymeulen O, Delmon B. Hydrodeoxygenation of oxygenated model compounds: simulation of the hydro-purification of bio-oils. In: Bridgewater AV, editor. Advances in thermochemical biomass conversion. Dordrecht: Springer; 1993. p. 1403–14, https://link.springer.com/content/pdf/10.1007%2F978-94-011-1336-6_110.pdf.

    Chapter  Google Scholar 

  16. Wang S, Gu Y, Liu Q, Yao Y, Guo Z, Luo Z, Cen K. Separation of bio-oil by molecular distillation. Fuel Process Technol. 2009;90(5):738–45. https://doi.org/10.1016/j.fuproc.2009.02.005.

    Article  CAS  Google Scholar 

  17. Undri A, Rosi L, Frediani M, Frediani P. Microwave heating. In: Microwave pyrolysis of polymeric materials. London: IntechOpen; 2011. https://doi.org/10.5772/24008.

    Chapter  Google Scholar 

  18. Mutsengerere S, Chihobo C, Musademba D, Nhapi I. A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass. Renew Sust Energ Rev. 2019;104:328–36. https://doi.org/10.1016/j.rser.2019.01.030.

    Article  CAS  Google Scholar 

  19. Pozar DM. Microwave engineering. Hamilton: Wiley; 2009.

    Google Scholar 

  20. Rosenkranz PW. Water vapor microwave continuum absorption: a comparison of measurements and models. Radio Sci. 1998;33(4):919–28. https://doi.org/10.1029/98RS01182.

    Article  Google Scholar 

  21. Guo X, Deng Y, Gu D, Che R, Zhao D. Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites. J Mater Chem. 2009;19(37):6706–12. https://doi.org/10.1039/B910606E.

    Article  CAS  Google Scholar 

  22. Clark DE, Folz DC, West JK. Processing materials with microwave energy. Mater Sci Eng A. 2000;287(2):153–8. https://doi.org/10.1016/S0921-5093(00)00768-1.

    Article  Google Scholar 

  23. Wu R, Zhou K, Yang Z, Qian X, Wei J, Liu L, Huang Y, Kong L, Wang L. Molten-salt-mediated synthesis of SiC nanowires for microwave absorption applications. CrystEngComm. 2013;15(3):570–6. https://doi.org/10.1039/C2CE26510A.

    Article  CAS  Google Scholar 

  24. Ni Z, Masel RI. Rapid production of metal–organic frameworks via microwave-assisted solvothermal synthesis. J Am Chem Soc. 2006;128(38):12394–5. https://doi.org/10.1021/ja0635231.

    Article  CAS  Google Scholar 

  25. Kingman S, Rowson N. Microwave treatment of minerals—a review. Miner Eng. 1998;11(11):1081–7. https://doi.org/10.1016/S0892-6875(98)00094-6.

    Article  CAS  Google Scholar 

  26. Motasemi F, Afzal MT, Salema AA. Microwave dielectric characterization of hay during pyrolysis. Ind Crop Prod. 2014;61:492–8. https://doi.org/10.1016/j.indcrop.2014.07.046.

    Article  CAS  Google Scholar 

  27. Pepke E. Global, wood markets: consumption, production and trade. Preseted at International Forestry and Global Issues, Nancy, FR, 18 May 2010.

    Google Scholar 

  28. Thelandersson S, Larsen HJ. Timber engineering. Hamilton: Wiley; 2003.

    Google Scholar 

  29. Parikka M. Global biomass fuel resources. Biomass Bioenergy. 2004;27(6):613–20. https://doi.org/10.1016/j.biombioe.2003.07.005.

    Article  Google Scholar 

  30. Kaplinsky R, Memedovic O, Morris M, Readman J. The global wood furniture value chain: what prospects for upgrading by developing countries. UNIDO Sectoral Studies Series Working Paper; 2003.

    Google Scholar 

  31. Smook GA. Handbook for pulp & paper technologists. Montreal: Canadian Pulp and Paper Association; 1992.

    Google Scholar 

  32. Peksa-Blanchard M, Dolzan P, Grassi A, Heinimö J, Junginger M, Ranta T, Walter A. Global wood pellets markets and industry: policy drivers, market status and raw material potential. IEA Bioenergy Task 40; 2007.

    Google Scholar 

  33. Lamlom S, Savidge R. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy. 2003;25(4):381–8. https://doi.org/10.1016/S0961-9534(03)00033-3.

    Article  CAS  Google Scholar 

  34. Demeyer A, Nkana JV, Verloo M. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol. 2001;77(3):287–95. https://doi.org/10.1016/S0960-8524(00)00043-2.

    Article  CAS  Google Scholar 

  35. Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege H, Webb CO. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl. 2006;16(6):2356–67. https://doi.org/10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2.

    Article  Google Scholar 

  36. Pereira H. Variability in the chemical composition of plantation eucalypts (Eucalyptus globulus Labill.). Wood Fiber Sci. 2007;20(1):82–90.

    Google Scholar 

  37. Undri A, Zaid M, Briens C, Berruti F, Rosi L, Bartoli M, Frediani M, Frediani P. Bio-oil from pyrolysis of wood pellets using a microwave multimode oven and different microwave absorbers. Fuel. 2015;153:464–82. https://doi.org/10.1016/j.fuel.2015.02.081.

    Article  CAS  Google Scholar 

  38. Bartoli M, Rosi L, Giovannelli A, Frediani P, Frediani M. Bio-oil from residues of short rotation coppice of poplar using a microwave assisted pyrolysis. J Anal Appl Pyrolysis. 2016;119:224–32. https://doi.org/10.1016/j.jaap.2016.03.001.

    Article  CAS  Google Scholar 

  39. Bartoli M, Rosi L, Giovannelli A, Frediani P, Frediani M. Pyrolysis of a-cellulose in a microwave multimode batch reactor. J Anal Appl Pyrolysis. 2016;120:284–96. https://doi.org/10.1016/j.jaap.2016.05.016.

    Article  CAS  Google Scholar 

  40. Metaxas AC, Meredith RJ. Industrial microwave heating, vol. 4. London: Peter Peregrinus; 1983.

    Google Scholar 

  41. Macquarrie DJ, Clark JH, Fitzpatrick E. The microwave pyrolysis of biomass. Biofuels Bioprod Biorefin. 2012;6(5):549–60. https://doi.org/10.1002/bbb.1344.

    Article  CAS  Google Scholar 

  42. Zhang X, Yang W, Dong C. Levoglucosan formation mechanisms during cellulose pyrolysis. J Anal Appl Pyrolysis. 2013;104:19–27. https://doi.org/10.1016/j.jaap.2013.09.015.

    Article  CAS  Google Scholar 

  43. Kotake T, Kawamoto H, Saka S. Mechanisms for the formation of monomers and oligomers during the pyrolysis of a softwood lignin. J Anal Appl Pyrolysis. 2014;105:309–16. https://doi.org/10.1016/j.jaap.2013.11.018.

    Article  CAS  Google Scholar 

  44. Asomaning J, Haupt S, Chae M, Bressler DC. Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals. Renew Sust Energ Rev. 2018;92:642–57. https://doi.org/10.1016/j.rser.2018.04.084.

    Article  CAS  Google Scholar 

  45. O’sullivan AC. Cellulose: the structure slowly unravels. Cellulose. 1997;4(3):173–207. https://doi.org/10.1023/a:1018431705579.

    Article  Google Scholar 

  46. Sjostrom E. Wood chemistry: fundamentals and applications. London: Elsevier; 2013.

    Google Scholar 

  47. Kraemer EO. Molecular weights of celluloses and cellulose derivates. Ind Eng Chem. 1938;30(10):1200–3. https://doi.org/10.1021/ie50346a023.

    Article  CAS  Google Scholar 

  48. Myers D, Stolton S. Organic cotton: from field to final product. London: Intermediate Technology; 1999.

    Book  Google Scholar 

  49. Goetze K. Viscose rayon production (Russian translation). Khimiya, Moscow; 1972, p. 234.

    Google Scholar 

  50. Carroll A, Somerville C. Cellulosic biofuels. Annu Rev Plant Biol. 2009;60:165–82. https://doi.org/10.1146/annurev.arplant.043008.092125.

    Article  CAS  Google Scholar 

  51. Kline JE. Paper and paperboard: manufacturing and converting fundamentals, A pulp & paper book. San Francisco: Miller Freeman Publications; 1982.

    Google Scholar 

  52. Kunioka M, Inuzuka Y, Ninomiya F, Funabashi M. Biobased contents of biodegradable poly (ε-caprolactone) composites polymerized and directly molded using aluminium triflate from caprolactone with cellulose and inorganic filler. Macromol Biosci. 2006;6(7):517–23. https://doi.org/10.1002/mabi.200600037.

    Article  CAS  Google Scholar 

  53. Dufresne A, Vignon MR. Improvement of starch film performances using cellulose microfibrils. Macromolecules. 1998;31(8):2693–6. https://doi.org/10.1021/ma971532b.

    Article  CAS  Google Scholar 

  54. Zhang W, Zhang X, Liang M, Lu C. Mechanochemical preparation of surface-acetylated cellulose powder to enhance mechanical properties of cellulose-filler-reinforced NR vulcanizates. Compos Sci Technol. 2008;68(12):2479–84. https://doi.org/10.1016/j.compscitech.2008.05.005.

    Article  CAS  Google Scholar 

  55. Ishikawa A, Shffiata T. Cellulosic chiral stationary phase under reversed-phase condition. J Liq Chromatogr Relat Technol. 1993;16(4):859–78. https://doi.org/10.1080/10826079308020939.

    Article  CAS  Google Scholar 

  56. Breum N, Schneider T, Jørgensen O, Rasmussen TV, Eriksen SS. Cellulosic building insulation versus mineral wool, fiberglass or perlite: installer’s exposure by inhalation of fibers, dust, endotoxin and fire-retardant additives. Ann Occup Hyg. 2003;47(8):653–69. https://doi.org/10.1093/annhyg/meg090.

    Article  CAS  Google Scholar 

  57. Camino G, Costa L, Martinasso G. Intumescent fire-retardant systems. Polym Degrad Stab. 1989;23(4):359–76. https://doi.org/10.1016/0141-3910(89)90058-X.

    Article  CAS  Google Scholar 

  58. Kurtz EF. Gunpowder substituted composition and method. US patent 4,497,676; 1985.

    Google Scholar 

  59. Budarin VL, Clark JH, Lanigan BA, Shuttleworth P, Macquarrie DJ. Microwave assisted decomposition of cellulose: a new thermochemical route for biomass exploitation. Bioresour Technol. 2010;101(10):3776–9. https://doi.org/10.1016/j.biortech.2009.12.110.

    Article  CAS  Google Scholar 

  60. Zhang X, Li J, Yang W, Blasiak W. Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis. Energy Fuel. 2011;25(8):3739–46. https://doi.org/10.1021/ef2005139.

    Article  CAS  Google Scholar 

  61. Miura M, Kaga H, Yoshida T, Ando K. Microwave pyrolysis of cellulosic materials for the production of anhydrosugars. J Wood Sci. 2001;47(6):502–6. https://doi.org/10.1007/BF00767906.

    Article  CAS  Google Scholar 

  62. Al Shra’ah A, Helleur R. Microwave pyrolysis of cellulose at low temperature. J Anal Appl Pyrolysis. 2014;105:91–9. https://doi.org/10.1016/j.jaap.2013.10.007.

    Article  CAS  Google Scholar 

  63. Grath MC, Thomas E, Chan W, Hajaligol G, Mohammad R. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J Anal Appl Pyrolysis. 2003;66(1-2):51–70. https://doi.org/10.1016/S0165-2370(02)00105-5.

    Article  Google Scholar 

  64. Wang W, Wang M, Huang J, Tang N, Dang Z, Shi Y, Zhaohe M. Microwave-assisted catalytic pyrolysis of cellulose for phenol-rich bio-oil production. J Energy Inst. 2018;92:1997. https://doi.org/10.1016/j.joei.2018.10.012.

    Article  CAS  Google Scholar 

  65. Zhang Z, Matharu AS. Chapter 23 - Thermochemical valorization of paper deinking residue through microwave-assisted pyrolysis. In: Bhaskar T, Pandey A, Mohan SV, Lee D-J, Khanal SK, editors. Waste biorefinery. Amsterdam: Elsevier; 2018. p. 671–92. https://doi.org/10.1016/B978-0-444-63992-9.00023-9.

    Chapter  Google Scholar 

  66. Undri A, Rosi L, Frediani M, Frediani P. Fuel from microwave assisted pyrolysis of waste multilayer packaging beverage. Fuel. 2014;133:7–16. https://doi.org/10.1016/j.fuel.2014.04.092.

    Article  CAS  Google Scholar 

  67. Nanda S, Dalai AK, Berruti F, Kozinski JA. Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valoriz. 2016;7(2):201–35. https://doi.org/10.1007/s12649-015-9459-z.

    Article  CAS  Google Scholar 

  68. Zhang J, An Y, Borrion A, He W, Wang N, Chen Y, Li G. Process characteristics for microwave assisted hydrothermal carbonization of cellulose. Bioresour Technol. 2018;259:91–8. https://doi.org/10.1016/j.biortech.2018.03.010.

    Article  CAS  Google Scholar 

  69. Omoriyekomwan JE, Tahmasebi A, Zhang J, Yu J. Mechanistic study on direct synthesis of carbon nanotubes from cellulose by means of microwave pyrolysis. Energy Convers Manag. 2019;192:88–99. https://doi.org/10.1016/j.enconman.2019.04.042.

    Article  CAS  Google Scholar 

  70. Patwardhan PR, Brown RC, Shanks BH. Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem. 2011;4(5):636–43. https://doi.org/10.1002/cssc.201000425.

    Article  CAS  Google Scholar 

  71. Li T, Remón J, Shuttleworth PS, Jiang Z, Fan J, Clark JH, Budarin VL. Controllable production of liquid and solid biofuels by doping-free, microwave-assisted, pressurised pyrolysis of hemicellulose. Energy Convers Manag. 2017;144:104–13. https://doi.org/10.1016/j.enconman.2017.04.055.

    Article  CAS  Google Scholar 

  72. Namazi AB, Allen DG, Jia CQ. Probing microwave heating of lignocellulosic biomasses. J Anal Appl Pyrolysis. 2015;112:121–8. https://doi.org/10.1016/j.jaap.2015.02.009.

    Article  CAS  Google Scholar 

  73. Huang Y-F, Chiueh P-T, Kuan W-H, Lo S-L. Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis. Energy. 2015;89:974–81. https://doi.org/10.1016/j.energy.2015.06.035.

    Article  CAS  Google Scholar 

  74. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuel. 2006;20(1):388–93. https://doi.org/10.1021/ef0580117.

    Article  CAS  Google Scholar 

  75. Hatakeyama H, Hatakeyama T. Lignin structure, properties, and applications. In: Abe A, Dusek K, Kobayashi S, editors. Biopolymers. Berlin: Springer; 2009. p. 1–63.

    Google Scholar 

  76. Felby C, Nielsen B, Olesen P, Skibsted L. Identification and quantification of radical reaction intermediates by electron spin resonance spectrometry of laccase-catalyzed oxidation of wood fibers from beech (Fagus sylvatica). Appl Microbiol Biotechnol. 1997;48(4):459–64. https://doi.org/10.1007/s002530051080.

    Article  CAS  Google Scholar 

  77. Chakar FS, Ragauskas AJ. Review of current and future softwood kraft lignin process chemistry. Ind Crop Prod. 2004;20(2):131–41. https://doi.org/10.1016/j.indcrop.2004.04.016.

    Article  CAS  Google Scholar 

  78. Pye EK. Industrial lignin production and applications. In: Biorefineries-industrial processes and products: status quo and future directions. Weinheim: Wiley; 2008. p. 165–200. https://doi.org/10.1002/9783527619849.ch22.

  79. Lebo SE, Gargulak JD, McNally TJ. Lignin. In: Kirk-Othmer encyclopedia of chemical technology. New York: Wiley; 2000. https://doi.org/10.1002/0471238961.12090714120914.a01.pub2.

    Chapter  Google Scholar 

  80. Berlin A, Balakshin M. Chapter 18 - Industrial lignins: analysis, properties, and applications. In: Gupta VK, Kubicek MGTP, Xu JS, editors. Bioenergy research: advances and applications. Amsterdam: Elsevier; 2014. p. 315–36. https://doi.org/10.1016/B978-0-444-59561-4.00018-8.

    Chapter  Google Scholar 

  81. Li Y, Zhu H, Yang C, Zhang Y, Xu J, Lu M. Synthesis and super retarding performance in cement production of diethanolamine modified lignin surfactant. Constr Build Mater. 2014;52:116–21. https://doi.org/10.1016/j.conbuildmat.2013.09.024.

    Article  Google Scholar 

  82. Li Z, Kong Y, Ge Y. Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution. Chem Eng J. 2015;270:229–34. https://doi.org/10.1016/j.cej.2015.01.123.

    Article  CAS  Google Scholar 

  83. Bu Q, Lei H, Zacher AH, Wang L, Ren S, Liang J, Wei Y, Liu Y, Tang J, Zhang Q, Ruan R. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour Technol. 2012;124:470–7. https://doi.org/10.1016/j.biortech.2012.08.089.

    Article  CAS  Google Scholar 

  84. Kawamoto H. Lignin pyrolysis reactions. J Wood Sci. 2017;63(2):117. https://doi.org/10.1007/s10086-016-1606-z.

    Article  CAS  Google Scholar 

  85. Farag S, Fu D, Jessop PG, Chaouki J. Detailed compositional analysis and structural investigation of a bio-oil from microwave pyrolysis of kraft lignin. J Anal Appl Pyrolysis. 2014;109:249–57. https://doi.org/10.1016/j.jaap.2014.06.005.

    Article  CAS  Google Scholar 

  86. Farag S, Kouisni L, Chaouki J. Lumped approach in kinetic modeling of microwave pyrolysis of kraft lignin. Energy Fuel. 2014;28(2):1406–17. https://doi.org/10.1021/ef4023493.

    Article  CAS  Google Scholar 

  87. Fan L, Song H, Lu Q, Leng L, Li K, Liu Y, Wang Y, Chen P, Ruan R, Zhou W. Screening microwave susceptors for microwave-assisted pyrolysis of lignin: comparison of product yield and chemical profile. J Anal Appl Pyrolysis. 2019;142:104623. https://doi.org/10.1016/j.jaap.2019.05.012.

    Article  CAS  Google Scholar 

  88. Brebu M, Vasile C. Thermal degradation of lignin—a review. Cellul Chem Technol. 2010;44(9):353.

    CAS  Google Scholar 

  89. Yerrayya A, Suriapparao DV, Natarajan U, Vinu R. Selective production of phenols from lignin via microwave pyrolysis using different carbonaceous susceptors. Bioresour Technol. 2018;270:519–28. https://doi.org/10.1016/j.biortech.2018.09.051.

    Article  CAS  Google Scholar 

  90. Farag S, Mudraboyina BP, Jessop PG, Chaouki J. Impact of the heating mechanism on the yield and composition of bio-oil from pyrolysis of kraft lignin. Biomass Bioenergy. 2016;95:344–53. https://doi.org/10.1016/j.biombioe.2016.07.005.

    Article  CAS  Google Scholar 

  91. Duan D, Wang Y, Dai L, Ruan R, Zhao Y, Fan L, Tayier M, Liu Y. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating. Bioresour Technol. 2017;241:207–13. https://doi.org/10.1016/j.biortech.2017.04.104.

    Article  CAS  Google Scholar 

  92. Fan L, Chen P, Zhang Y, Liu S, Liu Y, Wang Y, Dai L, Ruan R. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality. Bioresour Technol. 2017;225:199–205. https://doi.org/10.1016/j.biortech.2016.11.072.

    Article  CAS  Google Scholar 

  93. Fan L, Chen P, Zhou N, Liu S, Zhang Y, Liu Y, Wang Y, Omar MM, Peng P, Addy M, Cheng Y, Ruan R. In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin. Bioresour Technol. 2018;247:851–8. https://doi.org/10.1016/j.biortech.2017.09.200.

    Article  CAS  Google Scholar 

  94. Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C. Characterization of bio-oils in chemical families. Biomass Bioenergy. 2007;31(4):222–42. https://doi.org/10.1016/j.biombioe.2006.02.006.

    Article  CAS  Google Scholar 

  95. Ingram L, Mohan D, Bricka M, Steele P, Strobel D, Crocker D, Mitchell B, Mohammad J, Cantrell K, Pittman CU Jr. Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils. Energy Fuel. 2007;22(1):614–25. https://doi.org/10.1021/ef700335k.

    Article  CAS  Google Scholar 

  96. Lu Q, Yang X-l, Zhu X-f. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrolysis. 2008;82(2):191–8. https://doi.org/10.1016/j.jaap.2008.03.003.

    Article  CAS  Google Scholar 

  97. Özbay N, Pütün AE, Pütün E. Structural analysis of bio-oils from pyrolysis and steam pyrolysis of cottonseed cake. J Anal Appl Pyrolysis. 2001;60(1):89–101. https://doi.org/10.1016/S0165-2370(00)00161-3.

    Article  Google Scholar 

  98. Djokic MR, Dijkmans T, Yildiz G, Prins W, Van Geem KM. Quantitative analysis of crude and stabilized bio-oils by comprehensive two-dimensional gas-chromatography. J Chromatogr A. 2012;1257:131–40. https://doi.org/10.1016/j.chroma.2012.07.035.

    Article  CAS  Google Scholar 

  99. Bartoli M, Rosi L, Frediani M, Frediani P. A simple protocol for quantitative analysis of bio-oils through gas-chromatography/mass spectrometry. Eur J Mass Spectrom. 2016;22(4):199–212. https://doi.org/10.1255/ejms.1432.

    Article  CAS  Google Scholar 

  100. Undri A, Abou-Zahid M, Briens C, Berruti F, Rosi L, Bartoli M, Frediani M, Frediani P. A simple procedure for chromatographic analysis of pyrolysis bio-oils. J Anal Appl Pyrolysis. 2015;114:208–21. https://doi.org/10.1016/j.jaap.2015.05.019.

    Article  CAS  Google Scholar 

  101. Huang Y-F, Chiueh P-T, Kuan W-H, Lo S-L. Product distribution and heating performance of lignocellulosic biomass pyrolysis using microwave heating. Energy Procedia. 2018;152:910–5. https://doi.org/10.1016/j.egypro.2018.09.092.

    Article  CAS  Google Scholar 

  102. Gao Q, Budarin VL, Cieplik M, Gronnow M, Jansson S. PCDDs, PCDFs and PCNs in products of microwave-assisted pyrolysis of woody biomass – distribution among solid, liquid and gaseous phases and effects of material composition. Chemosphere. 2016;145:193–9. https://doi.org/10.1016/j.chemosphere.2015.11.110.

    Article  CAS  Google Scholar 

  103. Stieglitz L. Selected topics on the de novo synthesis of PCDD/PCDF on fly ash. Environ Eng Sci. 1998;15(1):5–18. https://doi.org/10.1089/ees.1998.15.5.

    Article  CAS  Google Scholar 

  104. Born JG, Mulder P, Louw R. Fly ash mediated reactions of phenol and monochlorophenols: oxychlorination, deep oxidation, and condensation. Environ Sci Technol. 1993;27(9):1849–63. https://doi.org/10.1021/es00046a013.

    Article  CAS  Google Scholar 

  105. Harvey RG. Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity. New York: CUP Archive; 1991.

    Google Scholar 

  106. Ravikumar C, Senthil Kumar P, Subhashni SK, Tejaswini PV, Varshini V. Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: experimental investigation on bio-oil yield and high heating values. Sustain Mater Technol. 2017;11:19–27. https://doi.org/10.1016/j.susmat.2016.12.003.

    Article  CAS  Google Scholar 

  107. Martín MT, Sanz AB, Nozal L, Castro F, Alonso R, Aguirre JL, González SD, Matía MP, Novella JL, Peinado M, Vaquero JJ. Microwave-assisted pyrolysis of Mediterranean forest biomass waste: bioproduct characterization. J Anal Appl Pyrolysis. 2017;127:278–85. https://doi.org/10.1016/j.jaap.2017.07.024.

    Article  CAS  Google Scholar 

  108. Rajasekhar Reddy B, Vinu R. Microwave-assisted co-pyrolysis of high ash Indian coal and rice husk: product characterization and evidence of interactions. Fuel Process Technol. 2018;178:41–52. https://doi.org/10.1016/j.fuproc.2018.04.018.

    Article  CAS  Google Scholar 

  109. Liu Y, Ran C, Siddiqui AR, Mao X, Kang Q, Fu J, Deng Z, Song Y, Jiang Z, Zhang T, Dai J. Pyrolysis of textile dyeing sludge in fluidized bed and microwave-assisted auger reactor: comparison and characterization of pyrolysis products. J Hazard Mater. 2018;359:454–64. https://doi.org/10.1016/j.jhazmat.2018.07.055.

    Article  CAS  Google Scholar 

  110. Salema AA, Ani FN. Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. J Anal Appl Pyrolysis. 2012;96:162–72. https://doi.org/10.1016/j.jaap.2012.03.018.

    Article  CAS  Google Scholar 

  111. Wang Y, Zeng Z, Tian X, Dai L, Jiang L, Zhang S, Wu Q, Wen P, Fu G, Liu Y, Ruan R. Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system. Bioresour Technol. 2018;269:162–8. https://doi.org/10.1016/j.biortech.2018.08.067.

    Article  CAS  Google Scholar 

  112. Hussain K, Bashir N, Hussain Z, Sulaiman SA. Cement catalyzed conversion of biomass into upgraded bio-oil through microwave metal interaction pyrolysis in aluminum coil reactor. J Anal Appl Pyrolysis. 2018;129:37–42. https://doi.org/10.1016/j.jaap.2017.12.006.

    Article  CAS  Google Scholar 

  113. Bashir N, Hussain K, Hussain Z, Naz MY, Ibrahim KA, Abdel-Salam NM. Effect of metal coil on product distribution of highly upgraded bio-oil produced by microwave-metal interaction pyrolysis of biomass. Chem Eng Process Process Intensif. 2018;130:140–7. https://doi.org/10.1016/j.cep.2018.05.024.

    Article  CAS  Google Scholar 

  114. Beneroso D, Monti T, Kostas ET, Robinson J. Microwave pyrolysis of biomass for bio-oil production: scalable processing concepts. Chem Eng J. 2017;316(Supplement C):481–98. https://doi.org/10.1016/j.cej.2017.01.130.

    Article  CAS  Google Scholar 

  115. Salema AA, Afzal MT, Bennamoun L. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresour Technol. 2017;233:353–62. https://doi.org/10.1016/j.biortech.2017.02.113.

    Article  CAS  Google Scholar 

  116. Jamaluddin MA, Ismail K, Mohd Ishak MA, Ab Ghani Z, Abdullah MF, Safian MTU, Idris SS, Tahiruddin S, Mohammed Yunus MF, Mohd Hakimi NIN. Microwave-assisted pyrolysis of palm kernel shell: optimization using response surface methodology (RSM). Renew Energy. 2013;55:357–65. https://doi.org/10.1016/j.renene.2012.12.042.

    Article  CAS  Google Scholar 

  117. Kadlimatti HM, Raj Mohan B, Saidutta MB. Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology. Biomass Bioenergy. 2019;123:25–33. https://doi.org/10.1016/j.biombioe.2019.01.014.

    Article  CAS  Google Scholar 

  118. Undri A, Abou-Zaid M, Briens C, Berruti F, Rosi L, Bartoli M, Frediani M, Frediani P. Bio-oil from pyrolysis of wood pellets using a microwave multimode oven and different microwave absorbers. Fuel. 2015;153:464–82. https://doi.org/10.1016/j.fuel.2015.02.081.

    Article  CAS  Google Scholar 

  119. Halim SA, Swithenbank J. Characterisation of Malaysian wood pellets and rubberwood using slow pyrolysis and microwave technology. J Anal Appl Pyrolysis. 2016;122:64–75. https://doi.org/10.1016/j.jaap.2016.10.021.

    Article  CAS  Google Scholar 

  120. Nhuchhen DR, Afzal MT, Dreise T, Salema AA. Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor. Biomass Bioenergy. 2018;119:293–303. https://doi.org/10.1016/j.biombioe.2018.09.035.

    Article  CAS  Google Scholar 

  121. Bartoli M, Rosi L, Giovannelli A, Frediani P, Passaponti M, Frediani M. Microwave assisted pyrolysis of crop residues from Vitis vinifera. J Anal Appl Pyrolysis. 2018;130:305–13. https://doi.org/10.1016/j.jaap.2017.12.018.

    Article  CAS  Google Scholar 

  122. Bartoli M, Rosi L, Giovannelli A, Frediani P, Frediani M. Characterization of bio-oil and bio-char produced by low-temperature microwave-assisted pyrolysis of olive pruning residue using various absorbers. Waste Manag Res. 2019;38:213. https://doi.org/10.1177/0734242X19865342.

    Article  Google Scholar 

  123. Abas FZ, Ani FN, Zakaria ZA. Microwave-assisted production of optimized pyrolysis liquid oil from oil palm fiber. J Clean Prod. 2018;182:404–13. https://doi.org/10.1016/j.jclepro.2018.02.052.

    Article  CAS  Google Scholar 

  124. Mushtaq F, Abdullah TAT, Mat R, Ani FN. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber. Bioresour Technol. 2015;190:442–50. https://doi.org/10.1016/j.biortech.2015.02.055.

    Article  CAS  Google Scholar 

  125. Bartoli M, Rosi L, Giovannelli A, Frediani P, Frediani M. Production of bio-oils and bio-char from Arundo donax through microwave assisted pyrolysis in a multimode batch reactor. J Anal Appl Pyrolysis. 2016;122:479–89. https://doi.org/10.1016/j.jaap.2016.10.016.

    Article  CAS  Google Scholar 

  126. Dong Q, Li H, Niu M, Luo C, Zhang J, Qi B, Li X, Zhong W. Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst. Bioresour Technol. 2018;266:284–90. https://doi.org/10.1016/j.biortech.2018.06.104.

    Article  CAS  Google Scholar 

  127. Dong Q, Li X, Wang Z, Bi Y, Yang R, Zhang J, Luo H, Niu M, Qi B, Lu C. Effect of iron(III) ion on moso bamboo pyrolysis under microwave irradiation. Bioresour Technol. 2017;243(Supplement C):755–9. https://doi.org/10.1016/j.biortech.2017.07.009.

    Article  CAS  Google Scholar 

  128. Dong Q, Niu M, Bi D, Liu W, Gu X, Lu C. Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production. Bioresour Technol. 2018;256:145–51. https://doi.org/10.1016/j.biortech.2018.02.018.

    Article  CAS  Google Scholar 

  129. Tarves PC, Serapiglia MJ, Mullen CA, Boateng AA, Volk TA. Effects of hot water extraction pretreatment on pyrolysis of shrub willow. Biomass Bioenergy. 2017;107:299–304. https://doi.org/10.1016/j.biombioe.2017.10.024.

    Article  CAS  Google Scholar 

  130. Feng Y, Li G, Li X, Zhu N, Xiao B, Li J, Wang Y. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment. Bioresour Technol. 2016;214:520–7. https://doi.org/10.1016/j.biortech.2016.04.137.

    Article  CAS  Google Scholar 

  131. Grycova B, Pryszcz A, Lestinsky P, Chamradova K. Influence of potassium hydroxide and method of carbonization treatment in garden and corn waste microwave pyrolysis. Biomass Bioenergy. 2018;118:40–5. https://doi.org/10.1016/j.biombioe.2018.07.022.

    Article  CAS  Google Scholar 

  132. Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol. 2016;46(4):406–33. https://doi.org/10.1080/10643389.2015.1096880.

    Article  CAS  Google Scholar 

  133. Cha JS, Park SH, Jung S-C, Ryu C, Jeon J-K, Shin M-C, Park Y-K. Production and utilization of biochar: a review. J Ind Eng Chem. 2016;40:1–15. https://doi.org/10.1016/j.jiec.2016.06.002.

    Article  CAS  Google Scholar 

  134. Choi J, Nam H, Capareda SC. Effect of metal salts impregnation and microwave-assisted solvent pretreatment on selectivity of levoglucosenone and levoglucosan from vacuum pyrolysis of ashe juniper waste. J Environ Chem Eng. 2019;7(1):102796. https://doi.org/10.1016/j.jece.2018.11.041.

    Article  CAS  Google Scholar 

  135. Wan Y, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R. Microwave-assisted pyrolysis of biomass: catalysts to improve product selectivity. J Anal Appl Pyrolysis. 2009;86(1):161–7. https://doi.org/10.1016/j.jaap.2009.05.006.

    Article  CAS  Google Scholar 

  136. Mohamed BA, Ellis N, Kim CS, Bi X. Microwave-assisted catalytic biomass pyrolysis: effects of catalyst mixtures. Appl Catal B Environ. 2019;253:226–34. https://doi.org/10.1016/j.apcatb.2019.04.058.

    Article  CAS  Google Scholar 

  137. Mohamed BA, Kim CS, Ellis N, Bi X. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties. Bioresour Technol. 2016;201:121–32. https://doi.org/10.1016/j.biortech.2015.10.096.

    Article  CAS  Google Scholar 

  138. Shang H, Lu R-R, Shang L, Zhang W-H. Effect of additives on the microwave-assisted pyrolysis of sawdust. Fuel Process Technol. 2015;131:167–74. https://doi.org/10.1016/j.fuproc.2014.11.025.

    Article  CAS  Google Scholar 

  139. Chitnis GK, Herbst JA; ExxonMobil Oil Corp. Cracking catalysts containing phosphate treated zeolites, and method of preparing the same. US patent 5,110,776; 1992.

    Google Scholar 

  140. Emig G, Hofmann H. Action of zirconium phosphate as a catalyst for the oxydehydrogenation of ethylbenzene to styrene. J Catal. 1983;84(1):15–26. https://doi.org/10.1016/0021-9517(83)90081-7.

    Article  CAS  Google Scholar 

  141. Swift HE, Stanulonis JJ, Reynolds EH; Gulf Research, Development Co. Alumina-aluminum phosphate-silica-zeolite catalyst. US patent 4,228,036; 1980.

    Google Scholar 

  142. Vitolo S, Seggiani M, Frediani P, Ambrosini G, Politi L. Catalytic upgrading of pyrolytic oils to fuel over different zeolites. Fuel. 1999;78(10):1147–59. https://doi.org/10.1016/S0016-2361(99)00045-9.

    Article  CAS  Google Scholar 

  143. Zhang B, Zhong Z, Xie Q, Liu S, Ruan R. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst. J Environ Sci. 2016;45:240–7. https://doi.org/10.1016/j.jes.2015.12.019.

    Article  CAS  Google Scholar 

  144. Zhang B, Zhong Z, Li T, Xue Z, Wang X, Ruan R. Biofuel production from distillers dried grains with solubles (DDGS) co-fed with waste agricultural plastic mulching films via microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst. J Anal Appl Pyrolysis. 2018;130:1–7. https://doi.org/10.1016/j.jaap.2018.02.007.

    Article  CAS  Google Scholar 

  145. Zhang B, Zhong Z, Chen P, Ruan R. Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5. J Anal Appl Pyrolysis. 2017;127:246–57. https://doi.org/10.1016/j.jaap.2017.07.027.

    Article  CAS  Google Scholar 

  146. Zhang B, Zhong Z, Chen P, Ruan R. Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst. Bioresour Technol. 2015;197:79–84. https://doi.org/10.1016/j.biortech.2015.08.063.

    Article  CAS  Google Scholar 

  147. Zhang B, Zhang J, Zhong Z, Zhang Y, Song M, Wang X, Ding K, Ruan R. Conversion of poultry litter into bio-oil by microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst. J Anal Appl Pyrolysis. 2018;130:233–40. https://doi.org/10.1016/j.jaap.2018.01.002.

    Article  CAS  Google Scholar 

  148. Zhang B, Tan G, Zhong Z, Ruan R. Microwave-assisted catalytic fast pyrolysis of spent edible mushroom substrate for bio-oil production using surface modified zeolite catalyst. J Anal Appl Pyrolysis. 2017;123:92–8. https://doi.org/10.1016/j.jaap.2016.12.022.

    Article  CAS  Google Scholar 

  149. Wang J, Zhong Z, Song Z, Ding K, Deng A. Modification and regeneration of HZSM-5 catalyst in microwave assisted catalytic fast pyrolysis of mushroom waste. Energy Convers Manag. 2016;123:29–34. https://doi.org/10.1016/j.enconman.2016.06.024.

    Article  CAS  Google Scholar 

  150. Sun J, Wang K, Song Z, Lv Y, Chen S. Enhancement of bio-oil quality: metal-induced microwave-assisted pyrolysis coupled with ex-situ catalytic upgrading over HZSM-5. J Anal Appl Pyrolysis. 2019;137:276–84. https://doi.org/10.1016/j.jaap.2018.12.006.

    Article  CAS  Google Scholar 

  151. Liu S, Xie Q, Zhang B, Cheng Y, Liu Y, Chen P, Ruan R. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresour Technol. 2016;204:164–70. https://doi.org/10.1016/j.biortech.2015.12.085.

    Article  CAS  Google Scholar 

  152. Dai L, Fan L, Duan D, Ruan R, Wang Y, Liu Y, Zhou Y, Yu Z, Liu Y, Jiang L. Production of hydrocarbon-rich bio-oil from soapstock via fast microwave-assisted catalytic pyrolysis. J Anal Appl Pyrolysis. 2017;125:356–62. https://doi.org/10.1016/j.jaap.2017.03.003.

    Article  CAS  Google Scholar 

  153. Zhang B, Zhong Z, Li T, Xue Z, Ruan R. Bio-oil production from sequential two-step microwave-assisted catalytic fast pyrolysis of water hyacinth using Ce-doped γ-Al2O3/ZrO2 composite mesoporous catalyst. J Anal Appl Pyrolysis. 2018;132:143–50. https://doi.org/10.1016/j.jaap.2018.03.006.

    Article  CAS  Google Scholar 

  154. Undri A, Rosi L, Frediani M, Frediani P. Upgraded fuel from microwave assisted pyrolysis of waste tire. Fuel. 2014;115:600–8. https://doi.org/10.1016/j.fuel.2013.07.058.

    Article  CAS  Google Scholar 

  155. Undri A, Rosi L, Frediani M, Frediani P. Efficient disposal of waste polyolefins through microwave assisted pyrolysis. Fuel. 2014;116:662–71. https://doi.org/10.1016/j.fuel.2013.08.037.

    Article  CAS  Google Scholar 

  156. Undri A, Frediani M, Rosi L, Frediani P. Reverse polymerization of waste polystyrene through microwave assisted pyrolysis. J Anal Appl Pyrolysis. 2014;105:35–42. https://doi.org/10.1016/j.jaap.2013.10.001.

    Article  CAS  Google Scholar 

  157. Frediani P, Rosi L, Frediani M, Undri A, Occhialini S, Meini S. Production of hydrocarbons from pyrolysis of tyres Search Results Web results European patent PCT/IB2012/050748; 2012.

    Google Scholar 

  158. Frediani P, Rosi L, Frediani M, Undri A, Occhialini S; Cooperativa autotrasportatori fiorentini CAF-società cooperativa arl. Production of hydrocarbons from copyrolysis of plastic and tyre material with microwave heating. US patent application 14/007,236; 2014.

    Google Scholar 

  159. Bartoli M, Rosi L, Frediani M, Undri A, Frediani P. Depolymerization of polystyrene at reduced pressure through a microwave assisted pyrolysis. J Anal Appl Pyrolysis. 2015;113:281–7. https://doi.org/10.1016/j.jaap.2015.01.026.

    Article  CAS  Google Scholar 

  160. Chen W, Shi S, Zhang J, Chen M, Zhou X. Co-pyrolysis of waste newspaper with high-density polyethylene: synergistic effect and oil characterization. Energy Convers Manag. 2016;112:41–8. https://doi.org/10.1016/j.enconman.2016.01.005.

    Article  CAS  Google Scholar 

  161. Zhao Y, Wang Y, Duan D, Ruan R, Fan L, Zhou Y, Dai L, Lv J, Liu Y. Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production. Bioresour Technol. 2018;249:69–75. https://doi.org/10.1016/j.biortech.2017.09.184.

    Article  CAS  Google Scholar 

  162. Suriapparao DV, Boruah B, Raja D, Vinu R. Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production. Fuel Process Technol. 2018;175:64–75. https://doi.org/10.1016/j.fuproc.2018.02.019.

    Article  CAS  Google Scholar 

  163. Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen K, Jensen AD. A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A Gen. 2011;407(1–2):1–19. https://doi.org/10.1016/j.apcata.2011.08.046.

    Article  CAS  Google Scholar 

  164. Gooty AT, Li D, Briens C, Berruti F. Fractional condensation of bio-oil vapors produced from birch bark pyrolysis. Sep Purif Technol. 2014;124:81–8. https://doi.org/10.1016/j.seppur.2014.01.003.

    Article  CAS  Google Scholar 

  165. Westerhof RJ, Brilman DWF, Garcia-Perez M, Wang Z, Oudenhoven SR, van Swaaij WP, Kersten SR. Fractional condensation of biomass pyrolysis vapors. Energy Fuel. 2011;25(4):1817–29. https://doi.org/10.1021/ef2000322.

    Article  CAS  Google Scholar 

  166. Dai L, Wang Y, Liu Y, Ruan R, Yu Z, Jiang L. Comparative study on characteristics of the bio-oil from microwave-assisted pyrolysis of lignocellulose and triacylglycerol. Sci Total Environ. 2019;659:95–100. https://doi.org/10.1016/j.scitotenv.2018.12.241.

    Article  CAS  Google Scholar 

  167. Wang Y, Dai L, Shan S, Zeng Q, Fan L, Liu Y, Ruan R, Zhao Y, Zhou Y. Effect of unsaturation degree on microwave-assisted pyrolysis of fatty acid salts. J Anal Appl Pyrolysis. 2016;120:247–51. https://doi.org/10.1016/j.jaap.2016.05.012.

    Article  CAS  Google Scholar 

  168. Ng J-H, Leong SK, Lam SS, Ani FN, Chong CT. Microwave-assisted and carbonaceous catalytic pyrolysis of crude glycerol from biodiesel waste for energy production. Energy Convers Manag. 2017;143:399–409. https://doi.org/10.1016/j.enconman.2017.04.024.

    Article  CAS  Google Scholar 

  169. Omar R, Robinson JP. Conventional and microwave-assisted pyrolysis of rapeseed oil for bio-fuel production. J Anal Appl Pyrolysis. 2014;105:131–42. https://doi.org/10.1016/j.jaap.2013.10.012.

    Article  CAS  Google Scholar 

  170. Du Z, Li Y, Wang X, Wan Y, Chen Q, Wang C, Lin X, Liu Y, Chen P, Ruan R. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol. 2011;102(7):4890–6. https://doi.org/10.1016/j.biortech.2011.01.055.

    Article  CAS  Google Scholar 

  171. Zhang R, Li L, Tong D, Hu C. Microwave-enhanced pyrolysis of natural algae from water blooms. Bioresour Technol. 2016;212:311–7. https://doi.org/10.1016/j.biortech.2016.04.053.

    Article  CAS  Google Scholar 

  172. Hu Z, Ma X, Chen C. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresour Technol. 2012;107:487–93. https://doi.org/10.1016/j.biortech.2011.12.095.

    Article  CAS  Google Scholar 

  173. Budarin VL, Zhao Y, Gronnow MJ, Shuttleworth PS, Breeden SW, Macquarrie DJ, Clark JH. Microwave-mediated pyrolysis of macro-algae. Green Chem. 2011;13(9):2330–3. https://doi.org/10.1039/C1GC15560A.

    Article  CAS  Google Scholar 

  174. Xie Q, Addy M, Liu S, Zhang B, Cheng Y, Wan Y, Li Y, Liu Y, Lin X, Chen P, Ruan R. Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production. Fuel. 2015;160:577–82. https://doi.org/10.1016/j.fuel.2015.08.020.

    Article  CAS  Google Scholar 

  175. Dai M, Xu H, Yu Z, Fang S, Chen L, Gu W, Ma X. Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride. Appl Therm Eng. 2018;136:9–15. https://doi.org/10.1016/j.applthermaleng.2018.02.102.

    Article  CAS  Google Scholar 

  176. Duan D, Ruan R, Lei H, Liu Y, Wang Y, Zhang Y, Zhao Y, Dai L, Wu Q, Zhang S. Microwave-assisted co-pyrolysis of pretreated lignin and soapstock for upgrading liquid oil: effect of pretreatment parameters on pyrolysis behavior. Bioresour Technol. 2018;258:98–104. https://doi.org/10.1016/j.biortech.2018.02.119.

    Article  CAS  Google Scholar 

  177. Wang Y, Wu Q, Duan D, Ruan R, Liu Y, Dai L, Zhou Y, Zhao Y, Zhang S, Zeng Z. Ex-situ catalytic upgrading of vapors from fast microwave-assisted co-pyrolysis of Chromolaena odorata and soybean soapstock. Bioresour Technol. 2018;261:306–12. https://doi.org/10.1016/j.biortech.2018.04.042.

    Article  CAS  Google Scholar 

  178. Wang Y, Tian X, Zeng Z, Dai L, Zhang S, Jiang L, Wu Q, Yang X, Liu Y, Zhang B, Yu Z, Wen P, Fu G, Ruan R. Catalytic co-pyrolysis of Alternanthera philoxeroides and peanut soapstock via a new continuous fast microwave pyrolysis system. Waste Manag. 2019;88:102–9. https://doi.org/10.1016/j.wasman.2019.03.029.

    Article  CAS  Google Scholar 

  179. Borges FC, Xie Q, Min M, Muniz LAR, Farenzena M, Trierweiler JO, Chen P, Ruan R. Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresour Technol. 2014;166:518–26. https://doi.org/10.1016/j.biortech.2014.05.100.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Frediani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bartoli, M., Rosi, L., Frediani, M. (2020). From Waste to Chemicals: Bio-Oils Production Through Microwave-Assisted Pyrolysis. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of Biofuels and Chemicals with Pyrolysis. Biofuels and Biorefineries, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-2732-6_8

Download citation

Publish with us

Policies and ethics