Skip to main content

Production of Phenols by Lignocellulosic Biomass Pyrolysis

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Pyrolysis

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 10))

Abstract

Phenols are a class of aromatic compounds that have at least one benzene ring joined with a hydroxyl group. Phenols are widely used in the manufacture of chemicals, resins, synthetic fibers, pesticides, and dyes and products made from phenols have become an indispensable part of modern life. The simplest form of phenols is phenol, which is industrially prepared on a very large scale from petroleum. Fossil-based chemicals like fossil phenol, however, face depletion in the near future. Hence, the demand for renewable chemicals is increasing, and this will also enhance opportunities of sustainable products. Biomass pyrolysis is an attractive route to produce valuable bio-chemicals. Representative bio-chemicals made via pyrolysis of lignocellulosic biomass are phenols, acetic acid, levoglucosan, and furfural. This chapter deals with the production of renewable phenols, especially phenol, from lignocellulosic biomass pyrolysis. Types of lignocellulosic biomass used in pyrolysis processes, and effect of reaction conditions on the production of phenols are discussed along with applications of phenolic-rich bio-oils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amen-Chen C, Pakdel H, Roy C. Separation of phenols from Eucalyptus wood tar. Biomass Bioenergy. 1997;13:25–37. https://doi.org/10.1016/S0961-9534(97)00021-4.

    Article  CAS  Google Scholar 

  2. Luo G, Lv X, Wang X, Yan S, Gao X, Xu J, Ma H, Jiao Y, Li F, Chen J. Direct hydroxylation of benzene to phenol with molecular oxygen over vanadium oxide nanospheres and study of its mechanism. RCS Advances. 2015;5:94164–70. https://doi.org/10.1039/C5RA17287J.

    Article  CAS  Google Scholar 

  3. Li J, Wang C, Yang Z. Production and separation of phenols from biomass-derived bio-petroleum. J Anal Appl Pyrolysis. 2010;89:218–24. https://doi.org/10.1016/j.jaap.2010.08.004.

    Article  CAS  Google Scholar 

  4. Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I. Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour Technol. 2007;98:1655–63. https://doi.org/10.1016/j.biortech.2006.05.042.

    Article  CAS  Google Scholar 

  5. Sharifzadeh M, Sadeqzadeh M, Guo M, Borhani TN, Konda NM, Garcia MC, Wang L, Hallett J, Shah N. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Prog Energy Combust Sci. 2019;71:1–80. https://doi.org/10.1016/j.pecs.2018.10.006.

    Article  Google Scholar 

  6. Rowell RM, Pettersen R, Tshabalala MA. Cell wall chemistry. In: Rowell RM, editor. Handbook of wood chemistry and wood composites. 2nd ed. Boca Raton: CRC press; 2012. p. 35–76. https://doi.org/10.1201/b12487.

    Chapter  Google Scholar 

  7. Butterfield B. The structure of wood: form and function. In: Walker JCF, editor. Primary Wood Process: Principles and Practice. 2nd ed. Dordrecht: Springer; 2006. p. 1–22. https://doi.org/10.1007/1-4020-4393-7_1.

    Chapter  Google Scholar 

  8. Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci. 2017;62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004.

    Article  Google Scholar 

  9. Guimarães JL, Frollini E, Da Silva CG, Wypych F, Satyanarayana KG. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind Crop Prod. 2009;30:407–15. https://doi.org/10.1016/j.indcrop.2009.07.013.

    Article  CAS  Google Scholar 

  10. Godin B, Lamaudière S, Agneessens R, Schmit T, Goffart J-P, Stilmant D, Gerin PA, Delcarte J. Chemical composition and biofuel potentials of a wide diversity of plant biomasses. Energy Fuel. 2013;27:2588–98. https://doi.org/10.1021/ef3019244.

    Article  CAS  Google Scholar 

  11. Goenka R, Parthasarathy P, Gupta NK, Biyahut NK, Narayanan S. Kinetic analysis of biomass and comparison of its chemical compositions by thermogravimetry, wet and experimental furnace methods. Waste Biomass Valorization. 2015;6:989–1002. https://doi.org/10.1007/s12649-015-9402-3.

    Article  CAS  Google Scholar 

  12. Rabemanolontsoa H, Saka S. Comparative study on chemical composition of various biomass species. RSC Adv. 2013;3:3946–56. https://doi.org/10.1039/C3RA22958K.

    Article  CAS  Google Scholar 

  13. Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lidén G. Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res. 1997;36:4659–65. https://doi.org/10.1021/ie9700831.

    Article  CAS  Google Scholar 

  14. Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels. Bioprod Biorefining. 2012;6:465–82. https://doi.org/10.1002/bbb.1331.

    Article  CAS  Google Scholar 

  15. Mattonai M, Licursi D, Antonetti C, Galletti AMR, Ribechini E. Py-GC/MS and HPLC-DAD characterization of hazelnut shell and cuticle: Insights into possible re-evaluation of waste biomass. J Anal Appl Pyrolysis. 2017;127:321–8. https://doi.org/10.1016/j.jaap.2017.07.019.

    Article  CAS  Google Scholar 

  16. Di Blasi C, Branca C, Galgano A. Biomass screening for the production of furfural via thermal decomposition. Ind Eng Chem Res. 2010;49:2658–71. https://doi.org/10.1021/ie901731u.

    Article  CAS  Google Scholar 

  17. Collard F-X, Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev. 2014;38:594–608. https://doi.org/10.1016/j.rser.2014.06.013.

    Article  CAS  Google Scholar 

  18. Choi G-G, Oh S-J, Lee S-J, Kim J-S. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells. Bioresour Technol. 2015;178:99–107. https://doi.org/10.1016/j.biortech.2014.08.053.

    Article  CAS  Google Scholar 

  19. Holladay JE, White JF, Bozell JJ, Johnson D. Top value-added chemicals from biomass-Volume II—Results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Lab.(PNNL), Richland, WA (United States). 2007; https://doi.org/10.2172/921839.

  20. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344(6185):709–19. https://doi.org/10.1126/science.1246843.

    Article  CAS  Google Scholar 

  21. Mohan D, Pittman CU Jr, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel. 2006;20(3):848–89. https://doi.org/10.1021/ef0502397.

    Article  CAS  Google Scholar 

  22. Effendi A, Gerhauser H, Bridgwater AV. Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sust Energ Rev. 2008;12:2092–116. https://doi.org/10.1016/j.rser.2007.04.008.

    Article  CAS  Google Scholar 

  23. Schlosberg RH, Szajowski PF, Dupre GD, Danik JA, Kurs A, Ashe TR, Olmstead WI. Pyrolysis studies of organic oxygenates: 3. High temperature rearrangement of aryl alkyl ethers. Fuel. 1983;62(6):690–4. https://doi.org/10.1016/0016-2361(83)90308-3.

    Article  CAS  Google Scholar 

  24. Couhert C, Commandre JM, Salvador S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel. 2009;88(3):408–17. https://doi.org/10.1016/j.fuel.2008.09.019.

    Article  CAS  Google Scholar 

  25. Hilbers TJ, Wang Z, Pecha B, Westerhof RJ, Kersten SR, Pelaez-Samaniego MR, Garcia-Perez M. Cellulose-Lignin interactions during slow and fast pyrolysis. J Anal Appl Pyrolysis. 2015;114:197–207. https://doi.org/10.1016/j.jaap.2015.05.020.

    Article  CAS  Google Scholar 

  26. Zhao S, Liu M, Zhao L, Zhu L. Influence of interactions among three biomass components on the pyrolysis behavior. Ind Eng Chem Res. 2018;57(15):5241–9. https://doi.org/10.1021/acs.iecr.8b00593.

    Article  CAS  Google Scholar 

  27. Chen Y, Fang Y, Yang H, Xin S, Zhang X, Wang X, Chen H. Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures. Fuel. 2019;248:1–7. https://doi.org/10.1016/j.fuel.2019.03.070.

    Article  CAS  Google Scholar 

  28. Horne PA, Williams PT. Influence of temperature on the products from the flash pyrolysis of biomass. Fuel. 1996;75(9):1051–9. https://doi.org/10.1016/0016-2361(96)00081-6.

    Article  CAS  Google Scholar 

  29. Hoekstra E, Westerhof RJ, Brilman W, Van Swaaij WP, Kersten SR, Hogendoorn KJ, Windt M. Heterogeneous and homogeneous reactions of pyrolysis vapors from pine wood. AICHE J. 2012;58(9):2830–42. https://doi.org/10.1002/aic.12799.

    Article  CAS  Google Scholar 

  30. Bai X, Kim KH, Brown RC, Dalluge E, Hutchinson C, Lee YJ, Dalluge D. Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel. 2014;128:170–9. https://doi.org/10.1016/j.fuel.2014.03.013.

    Article  CAS  Google Scholar 

  31. Liaw SS, Perez VH, Zhou S, Rodriguez-Justo O, Garcia-Perez M. Py-GC/MS studies and principal component analysis to evaluate the impact of feedstock and temperature on the distribution of products during fast pyrolysis. J Anal Appl Pyrolysis. 2014;109:140–51. https://doi.org/10.1016/j.jaap.2014.06.018.

    Article  CAS  Google Scholar 

  32. Liu C, Hu J, Zhang H, Xiao R. Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors. Fuel. 2016;182:864–70. https://doi.org/10.1016/j.fuel.2016.05.104.

    Article  CAS  Google Scholar 

  33. Safdari MS, Amini E, Weise DR, Fletcher TH. Heating rate and temperature effects on pyrolysis products from live wildland fuels. Fuel. 2019;242:295–304. https://doi.org/10.1016/j.fuel.2019.01.040.

    Article  CAS  Google Scholar 

  34. Greenhalf CE, Nowakowski DJ, Harms AB, Titiloye JO, Bridgwater AV. Sequential pyrolysis of willow SRC at low and high heating rates–Implications for selective pyrolysis. Fuel. 2012;93:692–702. https://doi.org/10.1016/j.fuel.2011.11.050.

    Article  CAS  Google Scholar 

  35. Wang B, Xu F, Zong P, Zhang J, Tian Y, Qiao Y. Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS. Renew Energ. 2019;132:486–96. https://doi.org/10.1016/j.renene.2018.08.021.

    Article  CAS  Google Scholar 

  36. Zhou S, Garcia-Perez M, Pecha B, McDonald AG, Westerhof RJ. Effect of particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech wood. Fuel. 2014;125:15–9. https://doi.org/10.1016/j.fuel.2014.01.016.

    Article  CAS  Google Scholar 

  37. Zhang H, Xiao R, Wang D, He G, Shao S, Zhang J, Zhong Z. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Bioresour Technol. 2011;102(5):4258–64. https://doi.org/10.1016/j.biortech.2010.12.075.

    Article  CAS  Google Scholar 

  38. Amutio M, Lopez G, Aguado R, Artetxe M, Bilbao J, Olazar M. Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel. 2012;95:305–11. https://doi.org/10.1016/j.fuel.2011.10.008.

    Article  CAS  Google Scholar 

  39. Britt PF, Buchanan Iii AC, Thomas KB, Lee. Pyrolysis mechanisms of lignin: surface-immobilized model compound investigation of acid-catalyzed and free-radical reaction pathways. J Anal Appl Pyrolysis. 1995;33:1–19. https://doi.org/10.1016/0165-2370(94)00846-S.

    Article  Google Scholar 

  40. Zhou J, Jin W, Shen D, Gu S. Formation of aromatic hydrocarbons from co-pyrolysis of lignin-related model compounds with hydrogen-donor reagents. J Anal Appl Pyrolysis. 2018;134:143–9. https://doi.org/10.1016/j.jaap.2018.06.002.

    Article  CAS  Google Scholar 

  41. Zhang B, Zhang J. Influence of reaction atmosphere (N2, CO, CO2, and H2) on ZSM-5 catalyzed microwave-induced fast pyrolysis of medicinal herb residue for biofuel production. Energy Fuel. 2017;31(9):9627–32. https://doi.org/10.1021/acs.energyfuels.7b02106.

    Article  CAS  Google Scholar 

  42. Butt DA. Formation of phenols from the low-temperature fast pyrolysis of Radiata pine (Pinus radiata): Part I. Influence of molecular oxygen. J Anal Appl Pyrolysis. 2006;76(1–2):38–47. https://doi.org/10.1016/j.jaap.2005.07.003.

    Article  CAS  Google Scholar 

  43. Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energ. 2018;129:695–716. https://doi.org/10.1016/j.renene.2017.04.035.

    Article  CAS  Google Scholar 

  44. Kim SJ, Jung SH, Kim JS. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresour Technol. 2010;101:9294–300. https://doi.org/10.1016/j.biortech.2010.06.110.

    Article  CAS  Google Scholar 

  45. Bertero M, Gorostegui HA, Orrabalis CJ, Guzmán C, Calandri EL, Sedran U. Characterization of the liquid products in the pyrolysis of residual chañar and palm fruit biomasses. Fuel. 2014;116:409–14. https://doi.org/10.1016/j.fuel.2013.08.027.

    Article  CAS  Google Scholar 

  46. Morgan HM Jr, Bu Q, Liang J, Liu Y, Mao H, Shi A, Lei H, Ruan R. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresour Technol. 2017;230:112–21. https://doi.org/10.1016/j.biortech.2017.01.059.

    Article  CAS  Google Scholar 

  47. Kim J-S. Production, separation and applications of phenolic-rich bio-oil—a review. Bioresour Technol. 2015;178:90–8. https://doi.org/10.1016/j.biortech.2014.08.121.

    Article  CAS  Google Scholar 

  48. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048.

    Article  CAS  Google Scholar 

  49. Aziz SMA, Wahi R, Ngaini Z, Hamdan S. Bio-oils from microwave pyrolysis of agricultural wastes. Fuel Process Technol. 2013;106:744–50. https://doi.org/10.1016/j.fuproc.2012.10.011.

    Article  CAS  Google Scholar 

  50. Yerrayya A, Suriapparao DV, Natarajan U, Vinu R. Selective production of phenols from lignin via microwave pyrolysis using different carbonaceous susceptors. Bioresour Technol. 2018;270:519–28. https://doi.org/10.1016/j.biortech.2018.09.051.

    Article  CAS  Google Scholar 

  51. Wang Y, Zeng Z, Tian X, Dai L, Jiang L, Zhang S, Wu Q, Wen P, Fu G, Liu Y, Ruan R. Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system. Bioresour Technol. 2018;269:162–8. https://doi.org/10.1016/j.biortech.2018.08.067.

    Article  CAS  Google Scholar 

  52. Murwanashyaka JN, Pakdel H, Roy C. Step-wise and one-step vacuum pyrolysis of birch-derived biomass to monitor the evolution of phenols. J Anal Appl Pyrolysis. 2001;60(2):219–31. https://doi.org/10.1016/S0165-2370(00)00206-0.

    Article  CAS  Google Scholar 

  53. Zhang L, Li S, Li K, Zhu X. Two-step pyrolysis of corncob for value-added chemicals and high quality bio-oil: Effects of pyrolysis temperature and residence time. Energ Convers Manage. 2018;166:260–7. https://doi.org/10.1016/j.enconman.2018.04.002.

    Article  CAS  Google Scholar 

  54. Oh SJ, Choi GG, Kim JS. Characteristics of bio-oil from the pyrolysis of palm kernel shell in a newly developed two-stage pyrolyzer. Energy. 2016;113:108–15. https://doi.org/10.1016/j.energy.2016.07.044.

    Article  CAS  Google Scholar 

  55. Gamliel DP, Du S, Bollas GM, Valla JA. Investigation of in situ and ex situ catalytic pyrolysis of miscanthus× giganteus using a PyGC–MS microsystem and comparison with a bench-scale spouted-bed reactor. Bioresour Technol. 2015;191:187–96. https://doi.org/10.1016/j.biortech.2015.04.129.

    Article  CAS  Google Scholar 

  56. Liu C, Wang H, Karim AM, Sun J, Wang Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev. 2014;43(22):7594–623. https://doi.org/10.1039/C3CS60414D.

    Article  CAS  Google Scholar 

  57. Lu Q, Zhang ZF, Dong CQ, Zhu XF. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study. Energies. 2010;3(11):1805–20. https://doi.org/10.3390/en3111805.

    Article  CAS  Google Scholar 

  58. Ma Z, Custodis V, van Bokhoven JA. Selective deoxygenation of lignin during catalytic fast pyrolysis. Cat Sci Technol. 2014;4(3):766–72. https://doi.org/10.1039/C3CY00704A.

    Article  CAS  Google Scholar 

  59. Nair V, Vinu R. Production of guaiacols via catalytic fast pyrolysis of alkali lignin using titania, zirconia and ceria. J Anal Appl Pyrolysis. 2016;119:31–9. https://doi.org/10.1016/j.jaap.2016.03.020.

    Article  CAS  Google Scholar 

  60. Dong Z, Yang H, Chen P, Liu Z, Chen Y, Wang L, Wang X, Chen H. Lignin Characterization and Catalytic Pyrolysis for Phenol-Rich Oil with TiO2-Based Catalysts. Energy Fuel. 2019;33(10):9934–41. https://doi.org/10.1021/acs.energyfuels.9b02341.

    Article  CAS  Google Scholar 

  61. Zhang X, Sun L, Chen L, Xie X, Zhao B, Si H, Meng G. Comparison of catalytic upgrading of biomass fast pyrolysis vapors over CaO and Fe (III)/CaO catalysts. J Anal Appl Pyrolysis. 2014;108:35–40. https://doi.org/10.1016/j.jaap.2014.05.020.

    Article  CAS  Google Scholar 

  62. Xu L, Zhang Y, Fu Y. Advances in upgrading lignin pyrolysis vapors by ex situ catalytic fast pyrolysis. Energ Technol. 2017;5(1):30–51. https://doi.org/10.1002/ente.201600107.

    Article  CAS  Google Scholar 

  63. Lu Q, Zhang Y, Tang Z, Li WZ, Zhu XF. Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts. Fuel. 2010;89(8):2096–103. https://doi.org/10.1016/j.fuel.2010.02.030.

    Article  CAS  Google Scholar 

  64. Jongerius AL, Gosselink RW, Dijkstra J, Bitter JH, Bruijnincx PC, Weckhuysen BM. Carbon nanofiber supported transition-metal carbide catalysts for the hydrodeoxygenation of guaiacol. Chem Cat Chem. 2013;5(10):2964–72. https://doi.org/10.1002/cctc.201300280.

    Article  CAS  Google Scholar 

  65. Filley J, Roth C. Vanadium catalyzed guaiacol deoxygenation. J Mol Catal A-Chem. 1999;139(2–3):245–52. https://doi.org/10.1016/S1381-1169(98)00202-7.

    Article  CAS  Google Scholar 

  66. Sun J, Karim AM, Zhang H, Kovarik L, Li XS, Hensley AJ, McEwen J, Wang Y. Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J Catal. 2013;306:47–57. https://doi.org/10.1016/j.jcat.2013.05.020.

    Article  CAS  Google Scholar 

  67. González-Borja MÁ, Resasco DE. Anisole and guaiacol hydrodeoxygenation over monolithic Pt–Sn catalysts. Energy Fuel. 2011;25(9):4155–62. https://doi.org/10.1021/ef200728r.

    Article  CAS  Google Scholar 

  68. Jakab E, Faix O, Till F, Székely T. The effect of cations on the thermal decomposition of lignins. J Anal Appl Pyrolysis. 1993;25:185–94. https://doi.org/10.1016/0165-2370(93)80039-3.

    Article  CAS  Google Scholar 

  69. Zhang ZB, Lu Q, Ye XN, Li WT, Hu B, Dong CQ. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. Energ Convers Manage. 2015;106:1309–17. https://doi.org/10.1016/j.enconman.2015.10.063.

    Article  CAS  Google Scholar 

  70. Strassberger Z, Tanase S, Rothenberg G. Reductive dealkylation of anisole and phenetole: towards practical lignin conversion. Eur J Org Chem. 2011;27:5246–9. https://doi.org/10.1002/ejoc.201101015.

    Article  CAS  Google Scholar 

  71. Li C, Zhao X, Wang A, Huber GW, Zhang T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev. 2015;115(21):11559–624. https://doi.org/10.1021/acs.chemrev.5b00155.

    Article  CAS  Google Scholar 

  72. Li X, Su L, Wang Y, Yu Y, Wang C, Li X, Wang Z. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Front Env Sci Eng. 2012;6(3):295–303. https://doi.org/10.1007/s11783-012-0410-2.

    Article  CAS  Google Scholar 

  73. Ma Z, Ghosh A, Asthana N, van Bokhoven J. Optimization of the reaction conditions for catalytic fast pyrolysis of pretreated lignin over zeolite for the production of phenol. Chem Cat Chem. 2017;9(6):954–61. https://doi.org/10.1002/cctc.201601674.

    Article  CAS  Google Scholar 

  74. Xue X, Liu Y, Wu L, Pan X, Liang J, Sun Y. Catalytic fast pyrolysis of maize straw with a core–shell ZSM-5@ SBA-15 catalyst for producing phenols and hydrocarbons. Bioresour Technol. 2019;289:121691. https://doi.org/10.1016/j.biortech.2019.121691.

    Article  CAS  Google Scholar 

  75. Ma Z, Ghosh A, Asthana N, Van Bokhoven J. Visualization of structural changes during deactivation and regeneration of fau zeolite for catalytic fast pyrolysis of lignin using nmr and electron microscopy techniques. Chem Cat Chem. 2018;10(19):4431–7. https://doi.org/10.1002/cctc.201800670.

    Article  CAS  Google Scholar 

  76. Lazaridis PA, Fotopoulos AP, Karakoulia SA, Triantafyllidis KS. Catalytic fast pyrolysis of kraft lignin with conventional, mesoporous and nanosized ZSM-5 zeolite for the production of alkyl-phenols and aromatics. Front Chem. 2018;6:1–21. https://doi.org/10.3389/fchem.2018.00295.

    Article  CAS  Google Scholar 

  77. Ma Z, Troussard E, van Bokhoven JA. Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl Catal A-Gen. 2012;423:130–6. https://doi.org/10.1016/j.apcata.2012.02.027.

    Article  CAS  Google Scholar 

  78. Iliopoulou EF, Stefanidis SD, Kalogiannis KG, Delimitis A, Lappas AA, Triantafyllidis KS. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl Catal B-Environ. 2012;127:281–90. https://doi.org/10.1016/j.apcatb.2012.08.030.

    Article  CAS  Google Scholar 

  79. Jeon MJ, Kim SS, Jeon JK, Park SH, Kim JM, Sohn JM, Lee SH, Park YK. Catalytic pyrolysis of waste rice husk over mesoporous materials. Nanoscale Res Lett. 2012;7(1):1–5. https://doi.org/10.1186/1556-276X-7-18.

    Article  CAS  Google Scholar 

  80. Verboekend D, Liao Y, Schutyser W, Sels BF. Alkylphenols to phenol and olefins by zeolite catalysis: a pathway to valorize raw and fossilized lignocellulose. Green Chem. 2017;18:297–306. https://doi.org/10.1039/C5GC01868D.

    Article  Google Scholar 

  81. Liao Y, d’Halluin M, Makshina E, Verboekend D, Sels BF. Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: impact of acid properties and pore constraint. Appl Catal B Environ. 2018;234:117–29. https://doi.org/10.1016/j.apcatb.2018.04.001.

    Article  CAS  Google Scholar 

  82. Horne PA, Williams PT. The effect of zeolite ZSM-5 catalyst deactivation during the upgrading of biomass-derived pyrolysis vapours. J Anal Appl Pyrolysis. 1995;34(1):65–85. https://doi.org/10.1016/0165-2370(94)00875-2.

    Article  CAS  Google Scholar 

  83. Gayubo AG, Aguayo AT, Atutxa A, Prieto R, Bilbao J. Role of reaction-medium water on the acidity deterioration of a HZSM-5 zeolite. Ind Eng Chem Res. 2004;43(17):5042–8. https://doi.org/10.1021/ie0306630.

    Article  CAS  Google Scholar 

  84. Neumann GT, Hicks JC. Novel hierarchical cerium-incorporated MFI zeolite catalysts for the catalytic fast pyrolysis of lignocellulosic biomass. ACS Catal. 2012;2(4):642–6. https://doi.org/10.1021/cs200648q.

    Article  CAS  Google Scholar 

  85. Wang J, Zhong Z, Ding K, Xue Z. Catalytic fast pyrolysis of mushroom waste to upgraded bio-oil products via pre-coked modified HZSM-5 catalyst. Bioresour Technol. 2016;212:6–10. https://doi.org/10.1016/j.biortech.2016.04.005.

    Article  CAS  Google Scholar 

  86. Ma Z, van Bokhoven JA. Deactivation and regeneration of H-USY zeolite during lignin catalytic fast pyrolysis. Chem Cat Chem. 2012;4(12):2036–44. https://doi.org/10.1002/cctc.201200401.

    Article  CAS  Google Scholar 

  87. Murray JA. Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography. J Chromatogr A. 2012;1261:58–68. https://doi.org/10.1016/j.chroma.2012.05.012.

    Article  CAS  Google Scholar 

  88. Bicchi C, Liberto E, Matteodo M, Sgorbini B, Mondello L, Zellner BDA, Costa R, Rubiolo P. Quantitative analysis of essential oils: a complex task. Flavour Fragr J. 2008;23(6):382–91. https://doi.org/10.1002/ffj.1905.

    Article  CAS  Google Scholar 

  89. Fu Q, Argyropoulos DS, Tilotta DC, Lucia LA. Products and functional group distributions in pyrolysis oil of chromated copper arsenate (CCA)-treated wood, as elucidated by gas chromatography and a novel 31P NMR-based method. Ind Eng Chem Res. 2007;46(16):5258–64. https://doi.org/10.1021/ie0702274.

    Article  CAS  Google Scholar 

  90. Yang HM, Zhao W, Norinaga K, Fang JJ, Wang YG, Zong ZM, Wei XY. Separation of phenols and ketones from bio-oil produced from ethanolysis of wheat stalk. Sep Purif Technol. 2015;152:238–45.

    Article  CAS  Google Scholar 

  91. Thring RW, Breau J. Hydrocracking of solvolysis lignin in a batch reactor. Fuel. 1996;75(7):795–800. https://doi.org/10.1016/0016-2361(96)00036-1.

    Article  CAS  Google Scholar 

  92. Cesari L, Canabady-Rochelle L, Mutelet F. Separation of phenols from lignin pyrolysis oil using ionic liquid. Sep Purif Technol. 2019;209:528–34. https://doi.org/10.1016/j.seppur.2018.07.083.

    Article  CAS  Google Scholar 

  93. Wang D, Li D, Liu Y, Lv D, Ye Y, Zhu S, Zhang B. Study of a new complex method for extraction of phenolic compounds from bio-oils. Sep Purif Technol. 2014;134:132–8. https://doi.org/10.1016/j.seppur.2014.07.033.

    Article  CAS  Google Scholar 

  94. Wei Y, Lei H, Wang L, Zhu L, Zhang X, Liu Y, Chen S, Ahring B. Liquid–liquid extraction of biomass pyrolysis bio-oil. Energy Fuel. 2014;28(2):1207–12. https://doi.org/10.1021/ef402490s.

    Article  CAS  Google Scholar 

  95. Mantilla SV, Manrique AM, Gauthier-Maradei P. Methodology for extraction of phenolic compounds of bio-oil from agricultural biomass wastes. Waste Biomass Valori. 2015;6(3):371–83. https://doi.org/10.1007/s12649-015-9361-8.

    Article  CAS  Google Scholar 

  96. Žilnik LF, Jazbinšek A. Recovery of renewable phenolic fraction from pyrolysis oil. Sep Purif Technol. 2012;86:157–70. https://doi.org/10.1016/j.seppur.2011.10.040.

    Article  CAS  Google Scholar 

  97. Zhang M, Wu H. Pyrolytic lignin from fast pyrolysis bio-oil via cold-water precipitation: Optimal separation conditions and properties. Fuel. 2019;242:580–6. https://doi.org/10.1016/j.fuel.2019.01.092.

    Article  CAS  Google Scholar 

  98. Patel RN, Bandyopadhyay S, Ganesh A. Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction. Energy. 2011;36(3):1535–42. https://doi.org/10.1016/j.energy.2011.01.009.

    Article  CAS  Google Scholar 

  99. Chan YH, Yusup S, Quitain AT, Chai YH, Uemura Y, Loh SK. Extraction of palm kernel shell derived pyrolysis oil by supercritical carbon dioxide: Evaluation and modeling of phenol solubility. Biomass Bioenergy. 2018;116:106–12. https://doi.org/10.1016/j.biombioe.2018.06.009.

    Article  CAS  Google Scholar 

  100. Cao Z, Engelhardt J, Dierks M, Clough MT, Wang GH, Heracleous E, Lappas A, Rindaldi R, Schüth F. Catalysis meets nonthermal separation for the production of (alkyl) phenols and hydrocarbons from pyrolysis oil. Angew Chem Int Ed. 2017;56(9):2334–9. https://doi.org/10.1002/anie.201610405.

    Article  CAS  Google Scholar 

  101. Hao S, Chen K, Cao L, Zhu X, Luo G, Zhang S, Chen J. Separation of high-purity syringol and acetosyringone from rice straw-derived bio-oil by combining the basification-acidification process and column chromatography. Electrophoresis. 2016;37(19):2522–30. https://doi.org/10.1002/elps.201600126.

    Article  CAS  Google Scholar 

  102. Zeng F, Liu W, Jiang H, Yu HQ, Zeng RJ, Guo Q. Separation of phthalate esters from bio-oil derived from rice husk by a basification–acidification process and column chromatography. Bioresour Technol. 2011;102(2):1982–7. https://doi.org/10.1016/j.biortech.2010.09.024.

    Article  CAS  Google Scholar 

  103. Wang S, Gu Y, Liu Q, Yao Y, Guo Z, Luo Z, Cen K. Separation of bio-oil by molecular distillation. Fuel Process Technol. 2009;90(5):738–45. https://doi.org/10.1016/j.fuproc.2009.02.005.

    Article  CAS  Google Scholar 

  104. Elkasabi Y, Mullen CA, Boateng AA. Distillation and isolation of commodity chemicals from bio-oil made by tail-gas reactive pyrolysis. ACS Sustain Chem Eng. 2014;2(8):2042–52. https://doi.org/10.1021/sc5002879.

    Article  CAS  Google Scholar 

  105. Murwanashyaka JN, Pakdel H, Roy C. Seperation of syringol from birch wood-derived vacuum pyrolysis oil. Sep Purif Technol. 2001;24(1–2):155–65. https://doi.org/10.1016/S1383-5866(00)00225-2.

    Article  CAS  Google Scholar 

  106. Wang Y, Wang S, Leng F, Chen J, Zhu L, Luo Z. Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation. Sep Purif Technol. 2015;152:123–32. https://doi.org/10.1016/j.seppur.2015.08.011.

    Article  CAS  Google Scholar 

  107. Guo Z, Wang S, Gu Y, Xu G, Li X, Luo Z. Separation characteristics of biomass pyrolysis oil in molecular distillation. Sep Purif Technol. 2010;76(1):52–7. https://doi.org/10.1016/j.seppur.2010.09.019.

    Article  CAS  Google Scholar 

  108. Schulzke T, Conrad S, Westermeyer J. Fractionation of flash pyrolysis condensates by staged condensation. Biomass Bioenergy. 2016;95:287–95. https://doi.org/10.1016/j.biombioe.2016.05.022.

    Article  CAS  Google Scholar 

  109. Phenolic resin market by type (resol resin, novolac resin), application (wood adhesives, molding, insulation), end-use industry (automotive, building & construction, furniture)—Global forecasts to 2021. 2017. Accessed 6 Jan 2020. marketsandmarkets.com.

  110. Ľudmila H, Michal J, Andrea Š, Aleš H. Lignin, potential products and their market value. Wood Res. 2015;60(6):973–86.

    Google Scholar 

  111. Amen-Chen C, Riedl B, Wang XM, Roy C. Softwood bark pyrolysis oil-PF resols. Part 1. Resin synthesis and OSB mechanical properties. Holzforschung. 2002;56(2):167–75. https://doi.org/10.1515/HF.2002.028.

    Article  CAS  Google Scholar 

  112. Sukhbaatar B, Steele PH, Ingram LI, Kim MG. Use of lignin separated from bio-oil in oriented strand board binder phenol-formaldehyde resins. Bio Resour. 2009;4(2):789–804.

    CAS  Google Scholar 

  113. Chaouch M, Diouf PN, Laghdir A, Yin S. Bio-oil from whole-tree feedstock in resol-type phenolic resins. J Appl Polym Sci. 2014;131(6):40014. https://doi.org/10.1002/app.40014.

    Article  CAS  Google Scholar 

  114. Cui Y, Hou X, Wang W, Chang J. Synthesis and characterization of bio-oil phenol formaldehyde resin used to fabricate phenolic based materials. Materials. 2017;10(6):668. https://doi.org/10.3390/ma10060668.

    Article  CAS  Google Scholar 

  115. Wan H, Mao A, Xu W, Xi E, Li Q. Evaluation of phenol formaldehyde resins modified/blended with pyrolysis bio-oil for plywood. Forest Prod J. 2018;68(2):113–9. https://doi.org/10.13073/FPJ-D-17-00066.

    Article  Google Scholar 

  116. Mao A, Shi SQ, Steele P. Flakeboard bonded with polymeric diphenylmethane diisocyanate/bio-oil adhesive systems. Forest Prod J. 2011;61(3):240–5. https://doi.org/10.13073/0015-7473-61.3.240.

    Article  CAS  Google Scholar 

  117. Fini EH, Kalberer EW, Shahbazi A, Basti M, You Z, Ozer H, Aurangzeb Q. Chemical characterization of biobinder from swine manure: Sustainable modifier for asphalt binder. J Mater Civil Eng. 2011;23(11):1506–13. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000237.

    Article  CAS  Google Scholar 

  118. Mourant D, Yang DQ, Lu X, Roy C. Anti-fungal properties of the pyroligneous liquors from the pyrolysis of softwood bark. Wood Fiber Sci. 2007;37(3):542–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Sik Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, JS., Park, KB. (2020). Production of Phenols by Lignocellulosic Biomass Pyrolysis. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of Biofuels and Chemicals with Pyrolysis. Biofuels and Biorefineries, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-2732-6_11

Download citation

Publish with us

Policies and ethics