Skip to main content

Molecular Recognition with Helical Receptors

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

This chapter summarizes the research advance in the construction of polymeric aromatic helices and their applications as synthetic receptors for molecular or recognition and transport. Conjugated folded polymers possess relatively high rigidity and predictable helical conformations. They can be induced by discrete non-covalent interactions, such as solvophobicity and intra- and/or intermolecular hydrogen bonding. Among others, m-arylene ethynylene, aromatic amide, hydrazide, and urea units have been developed as repeating segments to form conjugated polymeric helices. Typically, such kinds of polymeric helices possess a tubular cavity with well-defined inner diameter, and their length or depth is defined by the degree of polymerization. Many of such aromatic polymeric helices form a tubular cavity which is large enough to host guests of varying size and length. Through such guest binding, a number of polymeric helices have been revealed to function as transmembrane channels for transmembrane transport of different ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gellman SH (2008) Foldamers: A Manifesto. Acc Chem Res 31:173

    Google Scholar 

  2. Gong B (2001) Crescent Oligoamides: From Acyclic "Macrocycles" to Folding Nanotubes. Chem Eur J 7:4336

    Google Scholar 

  3. Huc I (2004) Aromatic Oligoamide Foldamers. Eur J Org Chem 17

    Google Scholar 

  4. Zhang DW, Zhao X, Hou JL, Li ZT (2012) Aromatic Amide Foldamers: Structures, Properties, and Functions. Chem Rev 112:5271

    Google Scholar 

  5. Yang L, Zhao W, Che YK, Wang Y, Jiang H (2017) Influence of terminal substituents on the halide anion binding of foldamer-based receptors. Chin Chem Lett 28:1659

    Google Scholar 

  6. Liu CZ, Yan M, Wang H, Zhang DW, Li ZT (2018) Making Molecular and Macromolecular Helical Tubes: Covalent and Noncovalent Approaches. ACS Omega 3:5165

    Google Scholar 

  7. Zhang DW, Wang H, Li ZT (2017) Polymeric Tubular Aromatic Amide Helices. Macromol Rapid Commun 38:1700179

    Google Scholar 

  8. Hecht S, Khan A (2003) Intramolecular Cross-Linking of Helical Folds: An Approach to Organic Nanotubes. Angew Chem Int Ed 42:6021

    Google Scholar 

  9. Stone MT, Heemstra JM, Moore JS (2006) The Chain-Length Dependence Test. Acc Chem Res 39:11

    Google Scholar 

  10. Hua Y, Flood AH (2010) Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chem Soc Rev 39:1262

    Google Scholar 

  11. Sun G, Nie C, Zhao X, Li Z (2017) Intramolecular C—H...O Hydrogen Bonding-Driven 1,2,3-Trazole Foldamers: Assessment of Intermolecular C—H...X-(X=Cl, Br, I) and C—H...N Hydrogen Bonding. Chin J Org Chem 37:1757

    Google Scholar 

  12. Zhu J, Dong Z, Lei S, Cao L, Yang B, Li W, Zhang Y, Liu J, Shen J (2015) Design of Aromatic Helical Polymers for STM Visualization: Imaging of Single and Double Helices with a Pattern of pi–pi Stacking. Angew Chem Int Ed 54:3097

    Google Scholar 

  13. Nelson JC, Saven JG, Moore JS, Wolynes PG (1997) Solvophobically Driven Folding of Nonbiological Oligomers. Science 277:1793

    Google Scholar 

  14. Block MAB, Hecht S (2008) Poly(propylene oxide)-Poly(phenylene ethynylene) Block and Graft Copolymers. Macromolecules 41:3219

    Google Scholar 

  15. Inouye M, Waki M, Abe H (2004) Saccharide-Dependent Induction of Chiral Helicity in Achiral Synthetic Hydrogen-Bonding Oligomers. J Am Chem Soc 126:2022

    Google Scholar 

  16. Abe H, Okada K, Makida H, Inouye M (2012) Formation of higher-order structures of chiral poly(ethynylpyridine)s depending on size, temperature, and saccharide recognition. Org Biomol Chem 10:6930

    Google Scholar 

  17. Abe H, Masuda N, Waki M, Inouye M (2005) Regulation of Saccharide Binding with Basic Poly(ethynylpyridine)s by Proton-Induced Helix Formation. J Am Chem Soc 127:16189

    Google Scholar 

  18. Abe H, Takashima S, Inouye M (2017) Kinetic Switching of Achirality/Chirality Memorization of meta-Ethynylpyridine Polymer by Coordination of Cu(II) Outside the Polymer. Heterocycles 95:730

    Google Scholar 

  19. Wackerly JW, Moore JS (2006) Cooperative Self-Assembly of Oligo(m-phenyleneethynylenes) into Supramolecular Coordination Polymers. Macromolecules 39:7269

    Google Scholar 

  20. Zhao D, Moore JS (2003) Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chem Commun 807

    Google Scholar 

  21. Zhao D, Moore JS (2002) Reversible Polymerization Driven by Folding. J Am Chem Soc 124:9996

    Google Scholar 

  22. Yu Z, Hecht S (2015) Influence of Linkage Chemistry on Folding, Self-Assembly, and Photoresponse of Amphiphilic Azobenzene Main Chain Polymers. J Polym Sci Part A Polym Chem 53:313

    Google Scholar 

  23. Banno M, Yamaguchi T, Nagai K, Kaiser C, Hecht S, Yashima E (2012) Optically Active, Amphiphilic Poly(meta-phenylene ethynylene)s:Synthesis, Hydrogen-Bonding Enforced Helix Stability, and Direct AFM Observation of Their Helical Structures. J Am Chem Soc 134:8718

    Google Scholar 

  24. Li C, Xu X, Xu L, Liu N (2018) A Facile Synthetic Route to Amphiphilic Poly(Meta-Phenylene Ethynylene) and Poly(Meta-Phenylene Ethynylene)-Block-Polyisocyanide Using a Single Catalyst. Polymers 10:936

    Google Scholar 

  25. Wang S, Zeman CJ, Jiang J, Pan Z, Schanze KS (2017) Intercalation of Alkynylplatinum(II) Terpyridine Complexes into a Helical Poly(phenylene ethynylene) Sulfonate: Application to Protein Sensing. ACS Appl Mater Interfaces 9:33461

    Google Scholar 

  26. Maeda K, Hong L, Nishihara T, Nakanishi Y, Miyauchi Y, Kitaura R, Ousaka N, Yashima E, Ito H, Itami K (2016) Construction of Covalent Organic Nanotubes by Light-Induced Cross-Linking of Diacetylene-Based Helical Polymers. J Am Chem Soc 138:11001

    Google Scholar 

  27. Zhang C, Shoji Y, Higashihara T, Tsukuda A, Ochi T, Ueda M (2011) Synthesis of poly(m‐phenyleneisophthalamide) by solid‐state polycondensation of isophthalic acid with m‐phenylenediamine. J Polym Sci Part A Polym Chem 49:4725

    Google Scholar 

  28. Garcia JM, Garcia FC, Serna F, de la Pena JL (2010) High-performance aromatic polyamides. Progr Polym Sci 35:623

    Google Scholar 

  29. Lu YX, Shi ZM, Li ZT, Guan Z (2010) Helical polymers based on intramolecularly hydrogen-bonded aromatic polyamides. Chem Commun 46:9019

    Google Scholar 

  30. Cao J, Kline M, Chen Z, Luan B, Lv M, Zhang W, Lian C, Wang Q, Huang Q, Wei X, Deng J, Zhu J, Gong B (2012) Preparation and helical folding of aromatic polyamides. Chem Commun 48:11112

    Google Scholar 

  31. Xu YX, Zhan TG, Zhao X, Li ZT (2014) Hydrogen bonding-driven highly stable homoduplexes formed by benzene/naphthalene amide oligomers. Org Chem Front 1:73

    Google Scholar 

  32. Zhang P, Zhang L, Wang H, Zhang DW, Li ZT (2015) Helical folding of an arylamide polymer in water and organic solvents of varying polarity. Polym Chem 6:2955

    Google Scholar 

  33. Zhang P, Zhang L, Wang ZK, Zhang YC, Guo R, Wang H, Zhang DW, Li ZT (2016) Guest-Induced Arylamide Polymer Helicity: Twist-Sense Bias andSolvent-Dependent Helicity Inversion. Chem Asian J 11:1725

    Google Scholar 

  34. Zhang P, Wang Z, Zhang L, Wang H, Zhang D, Hou J, Li Z (2016) Aromatic Amide Polymers that Form Two Helical Conformations with Twist Sense Bias in Water. Chin J Chem 34:678

    Google Scholar 

  35. Hou JL, Shao XB, Chen GJ, Zhou YX, Jiang XK, Li ZT (2004) Hydrogen Bonded Oligohydrazide Foldamers and Their Recognition for Saccharides. J Am Chem Soc 126:12386

    Google Scholar 

  36. Guo R, Zhang L, Wang H, Zhang DW, Li ZT (2015) Hydrophobically driven twist sense bias of hollow helical foldamers of aromatic hydrazide polymers in water. Polym Chem 6:2382

    Google Scholar 

  37. Li W, Zhang C, Qi S, Deng X, Wang W, Yang B, Liu J, Dong Z (2017) A folding-directed catalytic microenvironment in helical dynamic covalent polymers formed by spontaneous configuration control. Polym Chem 8:1294

    Google Scholar 

  38. Xin P, Zhu P, Su P, Hou JL, Li ZT (2014) Hydrogen-Bonded Helical Hydrazide Oligomers and Polymer That Mimic the Ion Transport of Gramicidin A. J Am Chem Soc 136:13078

    Google Scholar 

  39. Sinkeldam RW, Hoeben FJM, Pouderoijen MJ, De Cat I, Zhang J, Furukawa S, De Feyter S, Vekemans JAJM, Meijer EW (2006) Chiral Alignment of OPV Chromophores: Exploitation of the Ureidophthalimide-Based Foldamer. J Am Chem Soc 128:16113

    Google Scholar 

  40. Sinkeldam RW, van Houtem MHCJ, Pieterse K, Vekemans JAJM, Meijer EW (2006) Chiral Poly(ureidophthalimide) Foldamersin Water. Chem Eur J 12:6129

    Google Scholar 

  41. Liu YH, Zhang L, Xu XN, Li ZM, Zhang DW, Zhao X, Li ZT (2014) Intramolecular C–H⋯F hydrogen bondinginduced 1,2,3-triazole-based foldamers†. Org Chem Front 1:494

    Google Scholar 

  42. Meudtner RM, Hecht S (2008) Responsive Backbones Based on Alternating Triazole-Pyridine/Benzene Copolymers: From Helically Folding Polymers to Metallosupramolecularly Crosslinked Gels. Macromol Rapid Commun 29:347

    Google Scholar 

  43. Pfukwa R, Kouwer PHJ, Rowan AE, Klumperman B (2013) Templated Hierarchical Self-Assembly of Poly(p-aryltriazole) Foldamers. Angew Chem Int Ed 52:11040

    Google Scholar 

  44. Lang C, Li W, Dong Z, Zhang X, Yang F, Yang B, Deng X, Zhang C, Xu J, Liu J (2016) Biomimetic Transmembrane Channels with High Stability and Transporting Efficiency from Helically Folded Macromolecules. Angew Chem Int Ed 55:9723

    Google Scholar 

  45. Lang C, Deng X, Yang F, Yang B, Wang W, Qi S, Zhang X, Zhang C, Dong Z, Liu J (2017) Highly Selective Artificial Potassium Ion Channels Constructed from Pore-Containing Helical Oligomers. Angew Chem Int Ed 56:12668

    Google Scholar 

  46. Wang W, Zhang C, Qi S, Deng X, Yang B, Liu J, Dong Z (2018) A Switchable Helical Capsule for Encapsulation and Release of Potassium Ion. J Org Chem 83:1898

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Ting Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, DW., Wang, H., Li, ZT. (2020). Molecular Recognition with Helical Receptors. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_51

Download citation

Publish with us

Policies and ethics