Skip to main content

Impact of Nanotechnology in the Development of Smart Cities

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 58))

Abstract

Due to rapid urbanization and limited availability of resources, it is need of the hour to make cities sustainable, greener and smarter. The idea to make cities smart is essential in point of view of increasing population in urban areas and to meet the demand smartly. Nanotechnology has applications in various fields such as in industries, agriculture, biomedical and military equipment. Nanotechnology has the potential to make cities smart by using different nanomaterials for energy storage, smart building construction, infrastructure, smart textiles, environmental remediation and nanoscale photonics technologies to mention a few. In the present article, authors have attempted to provide insights into the ways by which nanotechnology can be utilized for developing smart cities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goldstone JA (2010) The new population bomb: the four megatrends that will change the world. Foreign Aff 89:31

    Google Scholar 

  2. Bloom DE (2011) 7 billion and counting. Science 333(6042):562–569

    Google Scholar 

  3. Anttiroiko A-V, Valkama P, Bailey SJ (2014) Smart cities in the new service economy: building platforms for smart services. AI Soc 29(3):323–334

    Google Scholar 

  4. Gautam S et al (2017) Cost-effective treatment technology for small size sewage treatment plants in India

    Google Scholar 

  5. Dhoble YN, Ahmed S (2018) Sustainability of wastewater treatment in subtropical region: aerobic vs anaerobic process. Int J Eng Res Dev 14(1):51–66

    Google Scholar 

  6. Parihar RS et al (2017) Characterisation and management of municipal solid waste in Bhopal, Madhya Pradesh, India. In: Proceedings of the institution of civil engineers—waste and resource management. Thomas Telford Ltd

    Google Scholar 

  7. Parihar RS et al (2018) MSWM in Bhopal city: a critical analysis and a roadmap for its sustainable management. In: Proceedings of the institution of civil engineers—municipal engineer. Thomas Telford Ltd

    Google Scholar 

  8. Kumar M, Sharif M, Ahmed S (2017) Flood risk management strategies for national capital territory of Delhi, India. ISH J Hydraul Eng 1–12

    Google Scholar 

  9. Barrionuevo JM, Berrone P, Ricart JE (2012) Smart cities, sustainable progress. IESE Insight 14(14):50–57

    Google Scholar 

  10. Casini M (2016) Smart buildings: advanced materials and nanotechnology to improve energy-efficiency and environmental performance. Woodhead Publishing

    Google Scholar 

  11. Zeng HC (2007) Oriented attachment: a versatile approach for construction of nanomaterials. Int J Nanotechnol 4(4):329–346

    Google Scholar 

  12. Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC Press

    Google Scholar 

  13. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49(1):1–14

    Google Scholar 

  14. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170(2–3):520–529

    Google Scholar 

  15. Leong S et al (2014) TiO2 based photocatalytic membranes: a review. J Membr Sci 472:167–184

    Google Scholar 

  16. Braun JH, Baidins A, Marganski RE (1992) TiO2 pigment technology: a review. Prog Org Coat 20(2):105–138

    Google Scholar 

  17. Macwan D, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46(11):3669–3686

    Google Scholar 

  18. Allahverdiyev AM et al (2011) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 6(8):933–940

    Google Scholar 

  19. Foster HA et al (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6):1847–1868

    Google Scholar 

  20. Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109(18):8889–8898

    Google Scholar 

  21. Muranyi P, Schraml C, Wunderlich J (2010) Antimicrobial efficiency of titanium dioxide-coated surfaces. J Appl Microbiol 108(6):1966–1973

    Google Scholar 

  22. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B 176:396–428

    Google Scholar 

  23. Ganesh VA et al (2011) A review on self-cleaning coatings. J Mater Chem 21(41):16304–16322

    Google Scholar 

  24. Eranna G (2016) Metal oxide nanostructures as gas sensing devices. CRC Press

    Google Scholar 

  25. Page K et al (2007) Titania and silver–titania composite films on glass—potent antimicrobial coatings. J Mater Chem 17(1):95–104

    Google Scholar 

  26. Nagarajan R, Kumar V, Ahmad S (2012) Anion doped binary oxides, SnO2, TiO2 and ZnO: fabrication procedures, fascinating properties and future prospects

    Google Scholar 

  27. Li Y-F, Wang B-H, Huang W-X (2003) Study on bactericidal performance of nano-scale ZnO modified interior wall paint. Paint Coat Ind China 33(8):3–5

    Google Scholar 

  28. Hochmannova L, Vytrasova J (2010) Photocatalytic and antimicrobial effects of interior paints. Prog Org Coat 67(1):1–5

    Google Scholar 

  29. Simoncic B, Tomsic B (2010) Structures of novel antimicrobial agents for textiles—a review. Text Res J 80(16):1721–1737

    Google Scholar 

  30. Iacovangelo CD (2001) Infrared reflecting coatings. Google patents

    Google Scholar 

  31. Austin RR (1992) Multilayer anti-reflection coating using zinc oxide to provide ultraviolet blocking. Google patents

    Google Scholar 

  32. Briscoe J, Dunn S (2015) Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano Energy 14:15–29

    Google Scholar 

  33. Kumar V, Govind A, Nagarajan R (2011) Optical and photocatalytic properties of heavily F-doped SnO2 nanocrystals by a novel single-source precursor approach. Inorg Chem 50(12):5637–5645

    Google Scholar 

  34. Kumar V et al (2019) Facile synthesis of Ce–doped SnO2 nanoparticles: a promising photocatalyst for hydrogen evolution and dyes degradation. ChemistrySelect 4(13):3722–3729

    Google Scholar 

  35. Kumar V, Uma S, Nagarajan R (2014) Optical and magnetic properties of (Er, F) co-doped SnO2 nanocrystals. Turk J Phys 38(3):450–462

    Google Scholar 

  36. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2):113–126

    Google Scholar 

  37. Aziz N et al (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31(42):11605–11612

    Google Scholar 

  38. Park JU et al (2006) Rheological behavior of polymer/layered silicate nanocomposites under uniaxial extensional flow. Macromol Res 14(3):318–323

    Google Scholar 

  39. Beigi MH et al (2013) An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater Des 50:1019–1029

    Google Scholar 

  40. Rana AK et al (2009) Significance of nanotechnology in construction engineering. Int J Recent Trends Eng 1(4):46

    Google Scholar 

  41. Ganesh VK (2012) Nanotechnology in civil engineering. Eur Sci J 8(27)

    Google Scholar 

  42. Nkeuwa WN, Riedl B, Landry V (2014) Wood surfaces protected with transparent multilayer UV-cured coatings reinforced with nanosilica and nanoclay. Part I: morphological study and effect of relative humidity on adhesion strength. J Coat Technol Res 11(3):283–301

    Google Scholar 

  43. Gupta H (2018) Role of nanocomposites in agriculture. In: Nano hybrids and composites. Trans Tech Publications

    Google Scholar 

  44. Gammampila R et al (2013) Application of nanomaterials in the sustainable built environment

    Google Scholar 

  45. Lee J, Mahendra S, Alvarez PJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7):3580–3590

    Google Scholar 

  46. Feldman D (2014) Polymer nanocomposites in building, construction. J Macromol Sci Part A 51(3):203–209

    Google Scholar 

  47. Gopalakrishnan K et al (2011) Nanotechnology in civil infrastructure: a paradigm shift. Springer

    Google Scholar 

  48. Antonacci A et al (2018) Nanostructured (bio) sensors for smart agriculture. TrAC Trends Anal Chem 98:95–103

    Google Scholar 

  49. Rameshaiah G, Pallavi J, Shabnam S (2015) Nano fertilizers and nano sensors—an attempt for developing smart agriculture. Int J Eng Res Gen Sci 3(1):314–320

    Google Scholar 

  50. Eid A et al (2018) Nanotechnology-enabled additively-manufactured RF and millimeter-wave electronics. In: 2018 IEEE 13th nanotechnology materials and devices conference (NMDC). IEEE

    Google Scholar 

  51. Vajtai R et al (2002) Building carbon nanotubes and their smart architectures. Smart Mater Struct 11(5):691

    Google Scholar 

  52. Schlögl R (2011) Chemistry’s role in regenerative energy. Angew Chem Int Ed 50(29):6424–6426

    Google Scholar 

  53. Devi RR et al (2013) Synergistic effect of nanoTiO2 and nanoclay on mechanical, flame retardancy, UV stability, and antibacterial properties of wood polymer composites. Polym Bull 70(4):1397–1413

    Google Scholar 

  54. Olivier M-G et al (2011) Study of the effect of nanoclay incorporation on the rheological properties and corrosion protection by a silane layer. Prog Org Coat 72(1–2):15–20

    Google Scholar 

  55. Shaffie E et al (2016) Moisture-induced damage evaluation of nanopolymer-modified binder in stone mastic asphalt (SMA) mixtures. In: InCIEC 2015. Springer, pp 947–957

    Google Scholar 

  56. Ghosh SK et al (2016) Porous polymer composite membrane based nanogenerator: a realization of self-powered wireless green energy source for smart electronics applications. J Appl Phys 120(17):174501

    Google Scholar 

  57. Hwang J et al (2015) Biomimetics: forecasting the future of science, engineering, and medicine. Int J Nanomed 10:5701

    Google Scholar 

  58. Bhushan B (2017) Springer handbook of nanotechnology. Springer

    Google Scholar 

  59. Aversa R et al (2016) Hybrid ceramo-polymeric nanocomposite for biomimetic scaffolds design and preparation. Am J Eng Appl Sci 9(4)

    Google Scholar 

  60. Duhan JS et al (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Google Scholar 

  61. Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286

    Google Scholar 

  62. Nihtianov S, Tan Z, George B (2017) New trends in smart sensors for industrial applications—part I. IEEE Trans Ind Electron 64(9):7281–7283

    Google Scholar 

  63. Kumar V et al (2012) Novel lithium-containing honeycomb structures. Inorg Chem 51(20):10471–10473

    Google Scholar 

  64. Gupta A, Kumar V, Uma S (2015) Interesting cationic (Li+/Fe3+/Te6+) variations in new rocksalt ordered structures. J Chem Sci 127(2):225–233

    Google Scholar 

  65. Kumar V, Gupta A, Uma S (2013) Formation of honeycomb ordered monoclinic Li2M2TeO6 (M = Cu, Ni) and disordered orthorhombic Li2Ni2TeO6 oxides. Dalton Trans 42(42):14992–14998

    Google Scholar 

  66. Yuan C et al (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53(6):1488–1504

    Google Scholar 

  67. Tejuca LG, Fierro JL (1992) Properties and applications of perovskite-type oxides. CRC Press

    Google Scholar 

  68. Fierro JLG (2005) Metal oxides: chemistry and applications. CRC Press

    Google Scholar 

  69. Kumar V, Uma S (2011) Investigation of cation (Sn2+) and anion (N3−) substitution in favor of visible light photocatalytic activity in the layered perovskite K2La2Ti3O10. J Hazard Mater 189(1–2):502–508

    Google Scholar 

  70. Mishnaevsky L et al (2017) Materials for wind turbine blades: an overview. Materials 10(11):1285

    Google Scholar 

  71. Fan FR, Tang W, Wang ZL (2016) Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 28(22):4283–4305

    Google Scholar 

  72. Salunkhe RR et al (2016) Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49(12):2796–2806

    Google Scholar 

  73. Li W et al (2016) Tunable, strain-controlled nanoporous MoS2 filter for water desalination. ACS Nano 10(2):1829–1835

    Google Scholar 

  74. Abegaz BW, Datta T, Mahajan SM (2018) Sensor technologies for the energy-water nexus—a review. Appl Energy 210:451–466

    Google Scholar 

  75. Aithal P, Aithal S (2016) Nanotechnological innovations & business environment for Indian automobile sector: a futuristic approach

    Google Scholar 

  76. Qin W et al (2017) Incorporation of silicon dioxide nanoparticles at the carbon fiber-epoxy matrix interphase and its effect on composite mechanical properties. Polym Compos 38(7):1474–1482

    Google Scholar 

  77. Roco MC (2017) Overview: affirmation of nanotechnology between 2000 and 2030. In: Nanotechnology commercialization: manufacturing processes and products, pp 1–23

    Google Scholar 

  78. Rahim MRU et al (2018) Axial crushing comparison of sinusoidal thin-walled corrugated tubes. Mater Today Proc 5(9):19431–19440

    Google Scholar 

  79. Ramaswami A et al (2016) Meta-principles for developing smart, sustainable, and healthy cities. Science 352(6288):940–943

    Google Scholar 

  80. Höjer M, Wangel J (2015) Smart sustainable cities: definition and challenges. In: ICT innovations for sustainability. Springer, pp 333–349

    Google Scholar 

  81. Smalley JS et al (2016) Photonics for smart cities. In: Smart cities technologies. IntechOpen

    Google Scholar 

  82. Szymanski TH (2016) Securing the industrial-tactile Internet of Things with deterministic silicon photonics switches. IEEE Access 4:8236–8249

    Google Scholar 

  83. Arnon S (2015) Visible light communication. Cambridge University Press

    Google Scholar 

  84. Alsamhi S et al (2018) Greening internet of things for smart everythings with a green-environment life: a survey and future prospects. arXiv preprint arXiv:1805.00844

  85. Syduzzaman M et al (2015) Smart textiles and nano-technology: a general overview. J Text Sci Eng 5:1000181

    Google Scholar 

  86. Pakdel E et al (2018) Nanocoatings for smart textiles. In: Smart textiles: wearable nanotechnology

    Google Scholar 

  87. Yilmaz ND (2018) Nanocomposites for smart textiles. In: Smart textiles: wearable nanotechnology, pp 211–245

    Google Scholar 

  88. Manjunatha S, Biradar D, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13

    Google Scholar 

  89. Kumar V et al (2019) Nanotechnology: nanomedicine, nanotoxicity and future challenges. Nanosci Nanotechnol Asia 9(1):64–78

    Google Scholar 

  90. Gupta A, Kumar S, Kumar V (2019) Challenges for assessing toxicity of nanomaterials. In: Biochemical toxicology-heavy metals and nanomaterials, IntechOpen, https://doi.org/10.5772/intechopen.89601

  91. Wiek A et al (2013) Nanotechnology in the city: sustainability challenges and anticipatory governance. J Urban Technol 20(2):45–62

    Google Scholar 

  92. Khitab A, Tausif Arshad M (2014) Nano construction materials. Rev Adv Mater Sci 38(2)

    Google Scholar 

Download references

Acknowledgements

The author thanks SERB (YSS/2015/001120), Government of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, A., Kumar, V., Ahmed, S., Gautam, S. (2020). Impact of Nanotechnology in the Development of Smart Cities. In: Ahmed, S., Abbas, S., Zia, H. (eds) Smart Cities—Opportunities and Challenges. Lecture Notes in Civil Engineering, vol 58. Springer, Singapore. https://doi.org/10.1007/978-981-15-2545-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2545-2_68

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2544-5

  • Online ISBN: 978-981-15-2545-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics