Skip to main content

Plant Volatiles and Their Role in Insect Olfaction

  • Chapter
  • First Online:
Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology

Abstract

Plant volatiles are the invisible players in the plant-insect co-evolutionary arms race. They are involved in various plant-mediated tri-trophic interactions within the ecosystem. Volatiles, emitted from different parts of the plant, serves as a cue for the host-seeking herbivores. Interestingly, insects perceive and process such complex environmental cues with their advanced olfactory system. During herbivory, plants also produce defensive volatiles recognized as herbivore-induced plant volatiles (HIPVs) that often serve a dual purpose by attracting the natural enemies and giving an alarming signal to the plants nearby. Insects tend to avoid the host plants emitting such defensive volatiles and non-host plants, releasing non-host volatiles (NHVs). Understanding the dynamics of host selection through plant volatile recognition by pest insects is highly important to develop eco-friendly pest management practices employing strategies such as push-pull strategy. In the present chapter, we have reviewed different aspects of plant volatile production, insect olfactory system organization, the contribution of plant volatiles in host-seeking behavior of insects, and finally their potential use in formulating insect pest management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aartsma Y, Bianchi FJ, Werf W, Poelman EH, Dicke M (2017) Herbivore-induced plant volatiles and tritrophic interactions across spatial scales. New Phytol 216(4):1054–1063

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson P, Alborn H (1999) Effects on oviposition behaviour and larval development of Spodoptera littoralis by herbivore induced changes in cotton plants. Entomol Exp Appl 92(1):45–51

    Article  Google Scholar 

  • Andersson MN, Larsson MC, Schlyter F (2009) Specificity and redundancy in the olfactory system of the bark beetle Ips typographus: single-cell responses to ecologically relevant odours. J Insect Physiol 55(6):556–567

    Article  CAS  PubMed  Google Scholar 

  • Andersson MN, Löfstedt C, Newcomb RD (2015) Insect olfaction and the evolution of receptor tuning. Front Ecol Evol 3:53

    Article  Google Scholar 

  • Ando T, Sekine S, Inagaki S, Misaki K, Badel L, Moriya H, Sami MM, Itakura Y, Chihara T, Kazama H (2019) Nanopore formation in the cuticle of an insect olfactory sensillum. Curr Biol 29(9):1512–1520

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Ozawa R, Nishioka T, Boland W, Koch T, Kühnemann F, Takabayashi J (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29(1):87–98

    Article  CAS  PubMed  Google Scholar 

  • Arimura G-i, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. BBA-Mol Cell Biol L 1734(2):91–111

    CAS  Google Scholar 

  • Arocha Y, López M, Fernández M, Piñol B, Horta D, Peralta E, Almeida R, Carvajal O, Picornell S, Wilson M (2005) Transmission of a sugarcane yellow leaf phytoplasma by the delphacid planthopper Saccharosydne saccharivora, a new vector of sugarcane yellow leaf syndrome. Plant Pathol 54(5):634–642

    Article  CAS  Google Scholar 

  • Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo T-T, Dionne H, Abbott L, Axel R, Tanimoto H (2014) The neuronal architecture of the mushroom body provides a logic for associative learning. elife 3:e04577

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci 95(14):8113–8118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin IT (2010) Plant volatiles. Curr Biol 20(9):R392–R397

    Article  CAS  PubMed  Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221(4607):277–279

    Article  CAS  PubMed  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127(4):617–633

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi ML, Turlings TC, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87(2):133–142

    Article  CAS  Google Scholar 

  • Bernays EA, Chapman RF (2007) Host-plant selection by phytophagous insects, vol 2. Springer, New York

    Google Scholar 

  • Beutel RG, Friedrich F, Yang X-K, Ge S-Q (2013) The orders of Hexapoda. In: Insect morphology and phylogeny: a textbook for students of entomology. De Gruyter, Berlin/New York, pp 174–479

    Chapter  Google Scholar 

  • Beyaert I, Hilker M (2014) Plant odour plumes as mediators of plant–insect interactions. Biol Rev 89(1):68–81

    Article  PubMed  Google Scholar 

  • Binyameen M, Anderson P, Ignell R, Seada MA, Hansson BS, Schlyter F (2012) Spatial organization of antennal olfactory sensory neurons in the female Spodoptera littoralis moth: differences in sensitivity and temporal characteristics. Chem Senses 37(7):613–629

    Article  CAS  PubMed  Google Scholar 

  • Binyameen M, Hussain A, Yousefi F, Birgersson G, Schlyter F (2013) Modulation of reproductive behaviors by non-host volatiles in the polyphagous Egyptian cotton leafworm, Spodoptera littoralis. J Chem Ecol 39(10):1273–1283

    Article  CAS  PubMed  Google Scholar 

  • Blaakmeer A, Hagenbeek D, Van Beek T, De Groot A, Schoonhoven L, Van Loon J (1994) Plant response to eggs vs. host marking pheromone as factors inhibiting oviposition by Pieris brassicae. J Chem Ecol 20(7):1657–1665

    Article  CAS  PubMed  Google Scholar 

  • Blenn B, Bandoly M, Küffner A, Otte T, Geiselhardt S, Fatouros NE, Hilker M (2012) Insect egg deposition induces indirect defense and epicuticular wax changes in Arabidopsis thaliana. J Chem Ecol 38(7):882–892

    Article  CAS  PubMed  Google Scholar 

  • Boatright J, Negre F, Chen X, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol 135(4):1993–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolter CJ, Dicke M, Van Loon JJ, Visser J, Posthumus MA (1997) Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J Chem Ecol 23(4):1003–1023

    Article  CAS  Google Scholar 

  • Brito NF, Moreira MF, Melo AC (2016) A look inside odourant-binding proteins in insect chemoreception. J Insect Physiol 95:51–65

    Article  CAS  PubMed  Google Scholar 

  • Bruce T (2014) Glucosinolates in oilseed rape: secondary metabolites that influence interactions with herbivores and their natural enemies. Ann Appl Biol 164(3):348–353

    Article  CAS  Google Scholar 

  • Bruce TJ, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects–finding the right mix. Phytochemistry 72(13):1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJ, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10(6):269–274

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJ, Matthes MC, Chamberlain K, Woodcock CM, Mohib A, Webster B, Smart LE, Birkett MA, Pickett JA, Napier JA (2008) Cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci 105(12):4553–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardé RT, Willis MA (2008) Navigational strategies used by insects to find distant, wind-borne sources of odour. J Chem Ecol 34(7):854–866

    Article  PubMed  CAS  Google Scholar 

  • Carraher C, Dalziel J, Jordan MD, Christie DL, Newcomb RD, Kralicek AV (2015) Towards an understanding of the structural basis for insect olfaction by odourant receptors. Insect Biochem Mol Biol 66:31–41

    Article  CAS  PubMed  Google Scholar 

  • Carrasco D, Larsson MC, Anderson P (2015) Insect host plant selection in complex environments. Curr Opin Insect Sci 8:1–7

    Article  PubMed  Google Scholar 

  • Chen H, Jones AD, Howe GA (2006) Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett 580(11):2540–2546

    Article  CAS  PubMed  Google Scholar 

  • Chou Y-H, Spletter ML, Yaksi E, Leong JC, Wilson RI, Luo L (2010) Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat Neurosci 13(4):439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipollini D, Heil M (2010) Costs and benefits of induced resistance to herbivores and pathogens in plants. Plant Sci Rev 5:1–25

    Google Scholar 

  • Clark JT, Ray A (2016) Olfactory mechanisms for discovery of odourants to reduce insect-host contact. J Chem Ecol 42(9):919–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odourant receptors in Drosophila. Neuron 22(2):327–338

    Article  CAS  PubMed  Google Scholar 

  • Corcoran JA, Jordan MD, Carraher C, Newcomb RD (2014) A novel method to study insect olfactory receptor function using HEK293 cells. Insect Biochem Mol Biol 54:22–32

    Article  CAS  PubMed  Google Scholar 

  • Cseke LJ, Kaufman PB, Kirakosyan A (2007) The biology of essential oils in the pollination of flowers. Nat Prod Commun 2(12):1317–1336

    CAS  Google Scholar 

  • D’Alessandro M, Held M, Triponez Y, Turlings TC (2006) The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps. J Chem Ecol 32(12):2733–2748

    Article  PubMed  CAS  Google Scholar 

  • Das A, Lee S-H, Hyun TK, Kim S-W, Kim J-Y (2013) Plant volatiles as method of communication. Plant Biotechnol Rep 7(1):9–26

    Article  Google Scholar 

  • Davidson M, Nielsen MC, Butler R, Castañé C, Alomar O, Riudavets J, Teulon D (2015) Can semiochemicals attract both western flower thrips and their anthocorid predators? Entomol Exp Appl 155(1):54–63

    Article  CAS  Google Scholar 

  • de Fouchier A, Walker WB III, Montagné N, Steiner C, Binyameen M, Schlyter F, Chertemps T, Maria A, Francois M-C, Monsempes C (2017) Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat Commun 8:15709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Depetris-Chauvin A, Galagovsky D, Grosjean Y (2015) Chemicals and chemoreceptors: ecologically relevant signals driving behavior in Drosophila. Front Ecol Evol 3:41

    Article  Google Scholar 

  • Dicke M (2000) Chemical ecology of host-plant selection by herbivorous arthropods: a multitrophic perspective. Biochem Syst Ecol 28(7):601–617

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15(3):167–175

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440

    Article  CAS  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198(1):16–32

    Article  CAS  PubMed  Google Scholar 

  • Dweck HK, Ebrahim SA, Khallaf MA, Koenig C, Farhan A, Stieber R, Weißflog J, Svatoš A, Grosse-Wilde E, Knaden M (2016) Olfactory channels associated with the Drosophila maxillary palp mediate short-and long-range attraction. elife 5:e14925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5(9):R221–R233

    Article  CAS  PubMed  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci 101(6):1781–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, Turlings TC (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:6273

    Article  CAS  PubMed  Google Scholar 

  • Evans W (1983) Habitat selection in the Carabidae. Coleopt Bull 37:164–167

    Google Scholar 

  • Farré-Armengol G, Peñuelas J, Li T, Yli-Pirilä P, Filella I, Llusia J, Blande JD (2016) Ozone degrades floral scent and reduces pollinator attraction to flowers. New Phytol 209(1):152–160

    Article  PubMed  CAS  Google Scholar 

  • Feeny P, Städler E, Åhman I, Carter M (1989) Effects of plant odour on oviposition by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). J Insect Behav 2(6):803–827

    Article  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53(1):275–297

    Article  CAS  PubMed  Google Scholar 

  • Fishilevich E, Domingos AI, Asahina K, Naef F, Vosshall LB, Louis M (2005) Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 15(23):2086–2096

    Article  CAS  PubMed  Google Scholar 

  • Fleischer J, Pregitzer P, Breer H, Krieger J (2018) Access to the odour world: olfactory receptors and their role for signal transduction in insects. Cell Mol Life Sci 75:1–24

    Article  CAS  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14(5):10242–10297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galizia CG (2014) Olfactory coding in the insect brain: data and conjectures. Eur J Neurosci 39(11):1784–1795

    Article  PubMed  PubMed Central  Google Scholar 

  • Galizia CG, Rössler W (2010) Parallel olfactory systems in insects: anatomy and function. Annu Rev Entomol 55:399–420

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Germinara GS, De Cristofaro A, Rotundo G (2011) Chemical cues for host location by the chestnut gall wasp, Dryocosmus kuriphilus. J Chem Ecol 37(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Ghaninia M, Olsson SB, Hansson BS (2014) Physiological organization and topographic mapping of the antennal olfactory sensory neurons in female hawkmoths, Manduca sexta. Chem Senses 39(8):655–671

    Article  CAS  PubMed  Google Scholar 

  • Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, Ya T, Gepstein S, Giovannoni JJ, Katzir N (2010) Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot 61(4):1111–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez F (2017) Smells of sociality. Diss. (sammanfattning/ summary) Alnarp: Sveriges lantbruksuniv., Acta Universitatis agriculturae Sueciae, 1652–6880; 2017:39; eISBN 978-91-576-8852-1

    Google Scholar 

  • Gonzalez M, Gaete-Eastman C, Valdenegro M, Figueroa CR, Fuentes L, Herrera R, Moya-León MA (2009) Aroma development during ripening of Fragaria chiloensis fruit and participation of an alcohol acyltransferase (FcAAT1) gene. J Agric Food Chem 57(19):9123–9132

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez F, Witzgall P, Walker WB III (2016) Protocol for heterologous expression of insect odourant receptors in Drosophila. Front Ecol Evol 4:24

    Article  Google Scholar 

  • Gu Y, Lucas P, Rospars J-P (2009) Computational model of the insect pheromone transduction cascade. PLoS Comput Biol 5(3):e1000321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals–‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11(1):24–34

    PubMed  Google Scholar 

  • Hallberg E, Hansson BS, Löfstedt C (2012) Sensilla and proprioceptors. In: Volume 2: morphology, physiology, and development, vol 4. De Gruyter, Berlin/Boston, pp 267–288

    Google Scholar 

  • Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odour coding in the Drosophila antenna. Cell 117(7):965–979

    Article  CAS  PubMed  Google Scholar 

  • Hallem EA, Dahanukar A, Carlson JR (2006) Insect odour and taste receptors. Annu Rev Entomol 51:113–135

    Article  CAS  PubMed  Google Scholar 

  • Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72(5):698–711

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Nakanishi K, Mori T, Tomita M, Tsumoto K (2016) The method used to culture host cells (Sf9 cells) can affect the qualities of baculovirus budding particles expressing recombinant proteins. Biosci Biotechnol Biochem 80(3):445–451

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp A, Hansson BS, Baldwin IT, Knaden M, Yon F (2018) Floral trait variations among wild tobacco populations influence the foraging behavior of hawkmoth pollinators. Front Ecol Evol 6:19

    Article  Google Scholar 

  • Hilfiker O, Groux R, Bruessow F, Kiefer K, Zeier J, Reymond P (2014) Insect eggs induce a systemic acquired resistance in Arabidopsis. Plant J 80(6):1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, Fatouros NE (2016) Resisting the onset of herbivore attack: plants perceive and respond to insect eggs. Curr Opin Plant Biol 32:9–16

    Article  PubMed  Google Scholar 

  • Hilker M, Meiners T (2011) Plants and insect eggs: how do they affect each other? Phytochemistry 72(13):1612–1623

    Article  CAS  PubMed  Google Scholar 

  • Himanen SJ, Blande JD, Klemola T, Pulkkinen J, Heijari J, Holopainen JK (2010) Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants – a mechanism for associational herbivore resistance? New Phytol 186(3):722–732

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JK, Blande JD (2012) Molecular plant volatile communication. In: Sensing in nature. Springer, New York, pp 17–31

    Chapter  Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15(3):176–184

    Article  CAS  PubMed  Google Scholar 

  • Hu J-H, Wang Z-Y, Sun F (2011) Anatomical organization of antennal-lobe glomeruli in males and females of the scarab beetle Holotrichia diomphalia (Coleoptera: Melolonthidae). Arthropod Struct Dev 40(5):420–428

    Article  PubMed  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5(3):224–229

    Article  CAS  PubMed  Google Scholar 

  • Ian E, Kirkerud NH, Galizia CG, Berg BG (2017) Coincidence of pheromone and plant odour leads to sensory plasticity in the heliothine olfactory system. PLoS One 12(5):e0175513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joseph RM, Carlson JR (2015) Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet 31(12):683–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalberer NM, Turlings TC, Rahier M (2001) Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants. J Chem Ecol 27(4):647–661

    Article  CAS  PubMed  Google Scholar 

  • Kelly JL, Hagler JR, Kaplan I (2014) Semiochemical lures reduce emigration and enhance pest control services in open-field predator augmentation. Biol Control 71:70–77

    Article  CAS  Google Scholar 

  • Kersch-Becker MF, Kessler A, Thaler JS (2017) Plant defences limit herbivore population growth by changing predator–prey interactions. Proc R Soc Lond B Biol Sci 284(1862):20171120

    Google Scholar 

  • Kessler A (2015) The information landscape of plant constitutive and induced secondary metabolite production. Curr Opin Insect Sci 8:47–53

    Article  PubMed  Google Scholar 

  • Khan M, Ulrichs C, Mewis I (2011) Water stress alters aphid-induced glucosinolate response in Brassica oleracea var. italica differently. Chemoecology 21(4):235–242

    Article  CAS  Google Scholar 

  • Knolhoff LM, Heckel DG (2014) Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Annu Rev Entomol 59:263–278

    Article  CAS  PubMed  Google Scholar 

  • Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94(3):619–628

    Article  CAS  Google Scholar 

  • Kostal V, Finch S (1994) Influence of background on host plant selection and subsequent oviposition by the cabbage root fly (Delia radicum). Entomol Exp Appl 70(2):153–163

    Article  Google Scholar 

  • Kostromytska O, Scharf ME, Buss EA (2015) Types and functions of mole cricket (Orthoptera: Gryllotalpidae) antennal and palpal sensilla. Fla Entomol 98(2):593–605

    Article  Google Scholar 

  • Kreher SA, Kwon JY, Carlson JR (2005) The molecular basis of odour coding in the Drosophila larva. Neuron 46(3):445–456

    Article  CAS  PubMed  Google Scholar 

  • Krishnan B, Wairkar YP (2018) Electroantennograms (EAGs) and Electroretinograms (ERGs) in the genetic dissection of synaptic function in Drosophila melanogaster. In: Extracellular recording approaches. Springer, New York, pp 157–184

    Google Scholar 

  • Kromann SH, Saveer AM, Binyameen M, Bengtsson M, Birgersson G, Hansson BS, Schlyter F, Witzgall P, Ignell R, Becher PG (2015) Concurrent modulation of neuronal and behavioural olfactory responses to sex and host plant cues in a male moth. Proc R Soc Lond B Biol Sci 282(1799):20141884

    Google Scholar 

  • Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446:542–546

    Article  CAS  PubMed  Google Scholar 

  • Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66(8):1619–1627

    Article  CAS  PubMed  Google Scholar 

  • Lamy FC, Poinsot D, Cortesero A-M, Dugravot S (2017) Artificially applied plant volatile organic compounds modify the behavior of a pest with no adverse effect on its natural enemies in the field. J Pest Sci 90(2):611–621

    Article  Google Scholar 

  • Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odourant receptor essential for Drosophila olfaction. Neuron 43(5):703–714

    Article  CAS  PubMed  Google Scholar 

  • Leal WS (2013) Odourant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Lev-Yadun S (2016) Plants are not sitting ducks waiting for herbivores to eat them. Plant Signal Behav 11(5):e1179419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lhomme P, Carrasco D, Larsson M, Hansson B, Anderson P (2017) A context-dependent induction of natal habitat preference in a generalist herbivorous insect. Behav Ecol 29(2):360–367

    Article  Google Scholar 

  • Li Z, Ni JD, Huang J, Montell C (2014) Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity. PLoS Genet 10(9):e1004600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majeed S, Hill SR, Ignell R (2014) Impact of elevated CO2 background levels on the host-seeking behaviour of Aedes aegypti. J Exp Biol 217(4):598–604

    PubMed  Google Scholar 

  • Mathew D, Martelli C, Kelley-Swift E, Brusalis C, Gershow M, Samuel AD, Emonet T, Carlson JR (2013) Functional diversity among sensory receptors in a Drosophila olfactory circuit. Proc Natl Acad Sci 110(23):E2134–E2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick AC, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17(5):303–310

    Article  CAS  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7(7):1015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Missbach C, Dweck HK, Vogel H, Vilcinskas A, Stensmyr MC, Hansson BS, Grosse-Wilde E (2014) Evolution of insect olfactory receptors. elife 3:e02115

    Article  PubMed  PubMed Central  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Boland W, Maffei ME (2009) Chemical ecology of plant-insect interactions. In: Molecular aspects of plant disease resistance. Wiley-Blackwell, Chirchester, pp 261–291

    Google Scholar 

  • Montagné N, de Fouchier A, Newcomb RD, Jacquin-Joly E (2015) Advances in the identification and characterization of olfactory receptors in insects. In: Progress in molecular biology and translational science, vol 130. Elsevier, Amsterdam, pp 55–80

    Google Scholar 

  • Morawo T, Fadamiro H (2016) Identification of key plant-associated volatiles emitted by Heliothis virescens larvae that attract the parasitoid, Microplitis croceipes: implications for parasitoid perception of odour blends. J Chem Ecol 42(11):1112–1121

    Article  CAS  PubMed  Google Scholar 

  • Moreno A, Palacios I, Blanc S, Fereres A (2014) Intracellular salivation is the mechanism involved in the inoculation of cauliflower mosaic virus by its major vectors Brevicoryne brassicae and Myzus persicae. Ann Entomol Soc Am 98(6):763–769

    Article  Google Scholar 

  • Murlis J, Elkinton JS, Carde RT (1992) Odour plumes and how insects use them. Annu Rev Entomol 37(1):505–532

    Article  Google Scholar 

  • Myrick AJ, Park KC, Hetling JR, Baker TC (2009) Detection and discrimination of mixed odour strands in overlapping plumes using an insect-antenna-based chemosensor system. J Chem Ecol 35(1):118–130

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307(5715):1638–1642

    Article  CAS  PubMed  Google Scholar 

  • Neilson EH, Goodger JQ, Woodrow IE, Møller BL (2013) Plant chemical defense: at what cost? Trends Plant Sci 18(5):250–258

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Kännaste A, Copolovici L (2013) Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front Plant Sci 4:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Ning C, Yang K, Xu M, Huang L-Q, Wang C-Z (2016) Functional validation of the carbon dioxide receptor in labial palps of Helicoverpa armigera moths. Insect Biochem Mol Biol 73:12–19

    Article  CAS  PubMed  Google Scholar 

  • Ogura K, Koyama T (1998) Enzymatic aspects of isoprenoid chain elongation. Chem Rev 98(4):1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Olsson SB, Hansson BS (2013) Electroantennogram and single sensillum recording in insect antennae. In: Pheromone signaling. Springer, Totowa, pp 157–177

    Chapter  Google Scholar 

  • Ômura H (2018) Plant secondary metabolites in host selection of butterfly. In: Chemical ecology of insects. CRC Press, Boca Raton, pp 3–27

    Chapter  Google Scholar 

  • Ozaki K, Ryuda M, Yamada A, Utoguchi A, Ishimoto H, Calas D, Marion-Poll F, Tanimura T, Yoshikawa H (2011) A gustatory receptor involved in host plant recognition for oviposition of a swallowtail butterfly. Nat Commun 2:542

    Article  PubMed  CAS  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121(2):325–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Park KC, Lee JA, Suckling DM (2018) Antennal olfactory sensory neurones responsive to host and nonhost plant volatiles in gorse pod moth Cydia succedana. Physiol Entomol 43(2):86–99

    Article  CAS  Google Scholar 

  • Pashalidou FG, Lucas-Barbosa D, van Loon JJ, Dicke M, Fatouros NE (2013) Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development. Ecology 94(3):702–713

    Article  PubMed  Google Scholar 

  • Pashalidou FG, Gols R, Berkhout BW, Weldegergis BT, van Loon JJ, Dicke M, Fatouros NE (2015) To be in time: egg deposition enhances plant-mediated detection of young caterpillars by parasitoids. Oecologia 177(2):477–486

    Article  PubMed  Google Scholar 

  • Pattrick JG, Shepherd T, Hoppitt W, Plowman NS, Willmer P (2017) A dual function for 4-methoxybenzaldehyde in Petasites fragrans? Pollinator-attractant and ant-repellent. Arthropod Plant Interact 11(5):623–627

    Article  Google Scholar 

  • Pellegrino M, Nakagawa T, Vosshall LB (2010) Single sensillum recordings in the insects Drosophila melanogaster and Anopheles gambiae. J Vis Exp 17(36):e1725

    Google Scholar 

  • Pelosi P, Zhu J, Knoll W (2018) Odourant-binding proteins as sensing elements for odour monitoring. Sensors 18(10):3248

    Article  CAS  PubMed Central  Google Scholar 

  • Pierre PS, Dugravot S, Ferry A, Soler R, van Dam NM, Cortesero AM (2011) Aboveground herbivory affects indirect defences of brassicaceous plants against the root feeder Delia radicum Linnaeus: laboratory and field evidence. Ecol Entomol 36(3):326–334

    Article  Google Scholar 

  • Raffa K, Andersson MN, Schlyter F (2016) Host selection by bark beetles: playing the odds in a high-stakes game. In: Advances in insect physiology, vol 50. Elsevier, Amsterdam, pp 1–74

    Google Scholar 

  • Raitanen J, Forsman JT, Kivelä SM, Mäenpää MI, Välimäki P (2013) Attraction to conspecific eggs may guide oviposition site selection in a solitary insect. Behav Ecol 25(1):110–116

    Article  Google Scholar 

  • Reineccius G (2016) Flavor chemistry and technology. CRC Press, Boca Raton

    Google Scholar 

  • Reisenman CE, Heinbockel T, Hildebrand JG (2008) Inhibitory interactions among olfactory glomeruli do not necessarily reflect spatial proximity. J Neurophysiol 100(2):554–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Renou M (2014) Pheromones and general odour perception in insects. In: Neurobiology of chemical communication. CRC Press, Boca Raton, pp 23–56

    Chapter  Google Scholar 

  • Renwick J (1989) Chemical ecology of oviposition in phytophagous insects. Experientia 45(3):223–228

    Article  CAS  Google Scholar 

  • Renwick JAA (2002) The chemical world of crucivores: lures, treats and traps. Entomol Exp Appl 104(1):35–42

    Article  CAS  Google Scholar 

  • Reymond P (2013) Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta 238(2):247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinker DC, Zhou X, Pitts RJ, Rokas A, Zwiebel LJ (2013) Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae. BMC Genomics 14(1):749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16(5):565–574

    Article  CAS  PubMed  Google Scholar 

  • Rojas JC (1999) Influence of host plant damage on the host-finding behavior of Mamestra brassicae (Lepidoptera: Noctuidae). Environ Entomol 28(4):588–593

    Article  Google Scholar 

  • Rojas JC, Virgen A, Cruz-López L (2003) Chemical and tactile cues influencing oviposition of a generalist moth, Spodoptera frugiperda (Lepidoptera: Noctuidae). Environ Entomol 32(6):1386–1392

    Article  Google Scholar 

  • Rybczynski R, Reagan J, Lerner MR (1989) A pheromone-degrading aldehyde oxidase in the antennae of the moth Manduca sexta. J Neurosci 9(4):1341–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci 101(47):16653–16658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Touhara K (2008) Insect olfaction: receptors, signal transduction, and behavior. In: Chemosensory systems in mammals, fishes, and insects. Springer, Berlin, pp 203–220

    Chapter  Google Scholar 

  • Saveer AM, Kromann SH, Birgersson G, Bengtsson M, Lindblom T, Balkenius A, Hansson BS, Witzgall P, Becher PG, Ignell R (2012) Floral to green: mating switches moth olfactory coding and preference. Proc R Soc Lond B Biol Sci 279(1737):2314–2322. rspb20112710

    Google Scholar 

  • Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13(5):643–656

    Article  PubMed  Google Scholar 

  • Schlyter F (2012) Semiochemical diversity in practice: Antiattractant semiochemicals reduce bark beetle attacks on standing trees – a first meta-analysis. Psyche: J Entomol 2012:1–10

    Article  Google Scholar 

  • Schuman MC, Baldwin IT (2018) Field studies reveal functions of chemical mediators in plant interactions. Chem Soc Rev 47:5338–5353

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Matsunami H (2014) Mechanisms of olfaction. In: Bioelectronic nose. Springer, Dordrecht, pp 23–45

    Chapter  Google Scholar 

  • Silverstein RL, Febbraio M (2009) CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2(72):re3–re3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Snoeren TA, Mumm R, Poelman EH, Yang Y, Pichersky E, Dicke M (2010) The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. J Chem Ecol 36(5):479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song MS, Kim DG, Lee SH (2005) Isolation and characterization of a jasmonic acid carboxyl methyltransferase gene from hot pepper (Capsicum annuum L.). J Plant Biol 48(3):292–297

    Article  CAS  Google Scholar 

  • Song L-M, Wang X-M, Huang J-P, Zhu F, Jiang X, Zhang S-G, Ban L-P (2017) Ultrastructure and morphology of antennal sensilla of the adult diving beetle Cybister japonicus Sharp. PLoS One 12(3):e0174643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stafford CA, Walker GP, Ullman DE (2012) Hitching a ride: vector feeding and virus transmission. Commun Integr Biol 5(1):43–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Stam JM, Kroes A, Li Y, Gols R, van Loon JJ, Poelman EH, Dicke M (2014) Plant interactions with multiple insect herbivores: from community to genes. Annu Rev Plant Biol 65:25–64

    Article  CAS  Google Scholar 

  • Stengl M (2010) Pheromone transduction in moths. Front Cell Neurosci 4:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17(6):278–285

    Article  Google Scholar 

  • Suh E, Bohbot JD, Zwiebel LJ (2014) Peripheral olfactory signaling in insects. Curr Opin Insect Sci 6:86–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Szyszka P, Galizia CG (2015) Olfaction in insects. In: Handbook of olfaction and gustation. Wiley, Hoboken, pp 531–546

    Chapter  Google Scholar 

  • Tabata J (2018) Chemical ecology of insects: applications and associations with plants and microbes. CRC Press, Boca Raton

    Book  Google Scholar 

  • Takemura S-y, Aso Y, Hige T, Wong A, Lu Z, Xu CS, Rivlin PK, Hess H, Zhao T, Parag T (2017) A connectome of a learning and memory center in the adult Drosophila brain. elife 6:e26975

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamiru A, Khan Z (2017) Volatile semiochemical mediated plant defense in cereals: a novel strategy for crop protection. Agronomy 7(3):58

    Article  CAS  Google Scholar 

  • Tamiru A, Khan ZR, Bruce TJ (2015) New directions for improving crop resistance to insects by breeding for egg induced defence. Curr Opin Insect Sci 9:51–55

    Article  PubMed  Google Scholar 

  • Tegler LT, Corin K, Hillger J, Wassie B, Yu Y, Zhang S (2015) Cell-free expression, purification, and ligand-binding analysis of Drosophila melanogaster olfactory receptors DmOR67a, DmOR85b and DmORCO. Sci Rep 5:7867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tholl D, Sohrabi R, Huh J-H, Lee S (2011) The biochemistry of homoterpenes–common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry 72(13):1635–1646

    Article  CAS  PubMed  Google Scholar 

  • Trona F, Anfora G, Balkenius A, Bengtsson M, Tasin M, Knight A, Janz N, Witzgall P, Ignell R (2013) Neural coding merges sex and habitat chemosensory signals in an insect herbivore. Proc R Soc Lond B Biol Sci 280(1760):20130267

    Google Scholar 

  • Tumlinson JH (2014) The importance of volatile organic compounds in ecosystem functioning. J Chem Ecol 40(3):212–213

    Article  CAS  PubMed  Google Scholar 

  • Turlings TC, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452

    Article  CAS  PubMed  Google Scholar 

  • Van Tol R, Helsen H, Griepink F, De Kogel W (2009) Female-induced increase of host-plant volatiles enhance specific attraction of aphid male Dysaphis plantaginea (Homoptera: Aphididae) to the sex pheromone. Bull Entomol Res 99(6):593–602

    Article  PubMed  CAS  Google Scholar 

  • Vergoz V, Roussel E, Sandoz J-C, Giurfa M (2007) Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS One 2(3):e288

    Article  PubMed  PubMed Central  Google Scholar 

  • Visser J (1986) Host odour perception in phytophagous insects. Annu Rev Entomol 31(1):121–144

    Article  Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293(5828):161–163

    Article  CAS  PubMed  Google Scholar 

  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96(5):725–736

    Article  CAS  PubMed  Google Scholar 

  • Wallingford AK, Connelly HL, Dore Brind’Amour G, Boucher MT, Mafra-Neto A, Loeb GM (2016) Field evaluation of an oviposition deterrent for management of spotted-wing drosophila, Drosophila suzukii, and potential nontarget effects. J Econ Entomol 109(4):1779–1784

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Carey AF, Carlson JR, Zwiebel LJ (2010) Molecular basis of odour coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci 107(9):4418–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe H, Nishino H, Nishikawa M, Mizunami M, Yokohari F (2010) Complete mapping of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach Periplaneta americana. J Comp Neurol 518(19):3907–3930

    Article  PubMed  Google Scholar 

  • Webster B, Cardé RT (2017) Use of habitat odour by host-seeking insects. Biol Res 92(2):1241–1249

    Article  Google Scholar 

  • Wetzel CH, Behrendt H-J, Gisselmann G, Störtkuhl KF, Hovemann B, Hatt H (2001) Functional expression and characterization of a Drosophila odourant receptor in a heterologous cell system. Proc Natl Acad Sci 98(16):9377–9380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicher D (2015) Olfactory signaling in insects. In: Progress in molecular biology and translational science, vol 130. Elsevier, Amsterdam, pp 37–54

    Google Scholar 

  • Yang J-O, Nakayama N, Toda K, Tebayashi S, Kim C-S (2013) Elicitor (s) in Sogatella furcifera (Horvath) causing the Japanese rice plant (Oryza sativa L.) to induce the ovicidal substance, benzyl benzoate. Biosci Biotechnol Biochem 77(6):1258–1261

    Article  CAS  PubMed  Google Scholar 

  • Zakir A, Sadek MM, Bengtsson M, Hansson BS, Witzgall P, Anderson P (2013) Herbivore-induced plant volatiles provide associational resistance against an ovipositing herbivore. J Ecol 101(2):410–417

    Article  Google Scholar 

  • Zhang QH, Schlyter F (2004) Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric For Entomol 6(1):1–20

    Article  CAS  Google Scholar 

  • Zhu-Salzman K, Zeng R (2015) Insect response to plant defensive protease inhibitors. Annu Rev Entomol 60:233–252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MB, AR, FS is supported by the EU project “EXTEMIT – K,” No. CZ.02.1.01/0.0/0.0/15_003/0000433 financed by OP RDE. AR and QA also supported by Internal Grant Agency (IGA) of Czech University of Life Sciences Prague for financial support through Project IGA D_01_18 and IGA C_06_18 respectively. BZU is acknowledged for facilitating MB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Binyameen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Binyameen, M., Ali, Q., Roy, A., Schlyter, F. (2021). Plant Volatiles and Their Role in Insect Olfaction. In: Singh, I.K., Singh, A. (eds) Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2467-7_7

Download citation

Publish with us

Policies and ethics