Skip to main content

Thermodynamics

  • Chapter
  • First Online:
Basic Concepts of Iron and Steel Making

Abstract

Success and efficiency of a process is depending on the thermodynamic calculation of the reactions. How much oxygen requires to oxidize impurities present in hot metal should be known before the actual process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cold shortness: Large amount of phosphorus (more than 0.12% P) reduces the ductility, thereby increasing the tendency of the steel to crack when cold worked. This brittle condition at temperatures below the recrystallization temperature is called cold shortness.

  2. 2.

    Hot shortness: Sulphur in steel is considered injurious except when added to enhance machinability. Sulphur readily combines with iron to form a low-melting iron sulphide. Sulphur causes hot shortness in steel unless sufficient manganese is added. Sulphur has a greater affinity for manganese than iron and forms manganese sulphide which has a melting point above the hot rolling temperature of steel, which prevents hot shortness. The term is used for the character of steel, which becomes brittle at hot-working temperatures above 0.6 Tm (recrystallization temperature, where strain hardening is removed; Tm is melting point of steel, K). Hot shortness hinders hot-working operations.

  3. 3.

    Carbon atoms are strongly surface active and will concentrate at a free surface if equilibrium is attained, but this surface concentration is unlikely to be maintained by the diffusional supply of carbon atoms when these are continuously being removed from the surface by oxidation.

References

  1. R.G. Ward, An Introduction to the Physical Chemistry of Iron & Steel Making (The English Language Book Society, and Edward Arnold (Publishers) Ltd, London, 1962)

    Google Scholar 

  2. A.K. Chakrabarti, Steel Making (Printice-Hall of India Pvt Ltd, New Delhi, 2007)

    Google Scholar 

  3. C. Bodsworth, Physical Chemistry of Iron and Steel Manufacture (CBS Publishers & Distributors, Delhi, 1988)

    Google Scholar 

  4. E.T. Turkdogan, Fundametals of Steelmaking (The Institute of Materials, London, 1996)

    Google Scholar 

  5. S. Basu, A.K. Lahiri, Trans. Indian Inst. Met. 66(5–6), 555 (2013)

    Google Scholar 

  6. S.S. Bedarkar, R. Singh, Trans. Indian Inst. Met. 66(3), 207 (2013)

    Article  CAS  Google Scholar 

  7. R.H. Tupkary, An Introduction to Modern Steelmaking, 5th edn. (Khanna Publishers, Delhi, 1991)

    Google Scholar 

  8. A. Ghosh, Principles of Secondary Processing and Casting of Liquid Steel (Oxford & IBH Publishing Co, New Delhi, 1990)

    Google Scholar 

  9. E.T. Turkdogan, Arch. Eisenhuttenwesen 54, 4 (1983)

    Google Scholar 

  10. S.K. Dutta, A.B. Lele, Trans. Indian Inst. Metal. 56(1), 19 (2003)

    CAS  Google Scholar 

  11. N.K. Bharal, Key Note Lecture at the National Seminar on Recent Advances in Making, Shaping and Applications of Stainless steel (Vadodara, India, 2001), p. 57 (Privately Collected)

    Google Scholar 

  12. Slag Atlas Verein Deutscher Eisenhuttenleute (Verlag Stahleisen mBH, Dusseldorf, 1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujay Kumar Dutta .

Appendices

Probable Questions

  1. 1.

    Discuss oxidizing power of slag.

  2. 2.

    What do you mean by sulphide capacity of slag?

  3. 3.

    Discuss thermodynamics of refining and carbon–oxygen equilibrium reaction.

  4. 4.

    Discuss thermodynamics of silicon reaction.

  5. 5.

    What do you mean by ‘phosphorous participation’? State the conditions that are required for de-phosphorization of liquid steel bath. Draw a plot showing dependence of phosphorous participation on the FeO content and V-ratio of steelmaking slag.

  6. 6.

    Discuss thermodynamics of phosphorous reaction.

  7. 7.

    Discuss ionic theory of manganese transfer.

  8. 8.

    Discuss ionic theory of sulphur reaction.

  9. 9.

    Discuss thermodynamics for oxygen in molten steel.

  10. 10.

    Discuss thermodynamics of chromium reactions for stainless steel production.

  11. 11.

    ‘De-carburization of the bath is not possible without chromium oxidation’. Why?

    What are the thermodynamic alternatives for that?

  12. 12.

    Discuss thermodynamic of vacuum degassing in steelmaking.

  13. 13.

    Discuss thermodynamics of vacuum degassing for hydrogen.

  14. 14.

    Discuss thermodynamics of degassing for oxygen.

  15. 15.

    Discuss de-sulphurization during vacuum.

  16. 16.

    Find out the correlation for equation of sulphur partition and sulphur capacity.

Examples

Example 20.1

In a steelmaking process to stop C–O2 reaction at 0.1%C; (i) what is the equilibrium [O] presence in steel at 1600 °C? (ii) If the actual [O] presence is 0.025%, then what is the excess [O] presence in steel? (iii) What is the [C]% retain in steel at that [O] content (if all [O] consume by [C]) ?

\( {\text{Given:}}\log {k}_{\text{CO}} = \left( {\frac{1056}{T}} \right) + 2.131\;\left( {{\text{for}}\,{\text{C}} - {\text{O}}_{2} \,{\text{reaction}}} \right) \)

Solution

  1. (i)

    \( [{\text{C}}] + [{\text{O}}] = \{ {\text{CO}}\} , \)

    $$ \log {k}_{\text{CO}} = \left( {\frac{1056}{T}} \right) + 2.131 $$

T = 1600 + 273 = 1873 K

\( \log {k}_{\text{CO}} = \left( {\frac{1056}{1873}} \right) + 2.131 = 2.6748 \)

Therefore, \( {k}_{\text{CO}} = 495.22 = \left( {\frac{{p_{CO} }}{{[h_{{{\text{C}}]}} [h_{{{\text{O}}]}} }}} \right) \)

Since [hi] = fi [wt% i].

Therefore, \( {f}_{\text{c}} [{\text{wt}}\,\% {\text{C}}] \times {f}_{\text{o}} [{\text{wt}}\,\% {\text{O}}] = \left( {\frac{{p_{CO} }}{{k_{CO} }}} \right) \)

Now putting, fc = 1 and fo = 1 [for dilute solution], \( p_{\text{CO}} = 1\,{\text{atm}} \)

\( [{\text{wt}}\,\% {\text{C}}] \times [{\text{wt}}\,\% {\text{O}}] = \left( {1/{k}_{\text{CO}} } \right) = \left( {1/495.22} \right) = 2.019 \times 10^{ - 3} \)

Since [wt% C] = 0.1.

Therefore, [wt% O]eq = {(2.019 × 10−3)/0.1} = 0.02%.

  1. (ii)

    Excess [O] = [O]ac − [O]eq = 0.025 – 0.02 = 0.005%.

  2. (iii)

    Since [wt% C] x [wt% O] = 2.019 × 10−3 and [wt% O]ac = 0.025%.

Therefore, [wt% C] = {(2.019 × 10−3)/0.025} = 0.081%.

Example 20.2

Find out activity of [O] content in liquid steel during reaction of Si at 1600 °C. [Si] content in liquid is 0.8%.

\( {\text{Given}}\log k_{{{\text{SiO}}_{2 } }} = \left( {\frac{ 2 9 , 7 0 0}{T}} \right) - 11.24. \)

Solution

$$ [{\text{Si}}] + 2[{\text{O}}] = \left( {{\text{SiO}}_{2} } \right) $$
(1)
$$ k_{{{\text{SiO}}_{2} }} = \left( {\frac{{(a_{{SiO_{2 } )}} }}{{[a_{{{\text{Si}} ] }} [a_{{{\text{O}}]}}^{2 } }}} \right) $$
(2)

T = 1600 + 273 = 1873 K.

Therefore, log \( k_{{{\text{SiO}}_{2 } }} = [( 2 9 , 7 0 0/1873){-}11.24] = 4.617 \)

\( k_{{{\text{SiO}}_{2 } }} = 41391.77 \)

Considering formation of SiO2 is pure form, so \( \left( {a_{{{\text{SiO}}_{2 } }} } \right) = 1 \) and

[aSi] = fSi [wt% Si] = [wt% Si] since for dilute solution, fSi = 1.

From Eq. 2:

\( \left[ {{a}_{\text{O}} } \right]^{2} = \left( {\frac{{(a_{{{\text{SiO}}_{2 } )}} }}{{k_{{{\text{SiO}}_{2 } }} \left[ {Wt\% \,{\text{Si}}} \right]}}} \right) = \left( {\frac{1}{{\left( {41391.77 \times 0.8} \right)}}} \right) = 3.0199 \times 10^{ - 5} \)

Therefore, [aO] = 5.495 × 10−3.

Example 20.3

Calculate the concentration of oxygen in molten iron at 16000 C in equilibrium with pure FeO. Given log kFe = −(6372/T) + 2.73.

Solution

$$ {\text{FeO}}({\text{l}}) = {\text{Fe}}({\text{l}}) + {\text{O}}({\text{wt}}\% ) $$
(1)
$$ {\text{So}} k_{\text{Fe}} = \left\{ {\left[ {{h}_{\text{o}} } \right] \cdot \left[ {{a}_{\text{Fe}} } \right]/\left( {{a}_{\text{FeO}} } \right)} \right\} $$
(2)

Since aFeO = 1 (for pure FeO) and aFe = 1 (assume pure Fe).

Again [ho] = [fo], [Wo] = [Wo] (if we consider for dilute solution, fo = 1).

Now from Eq. (2), we get:

$$ {k}_{\text{Fe}} = \left[ {{W}_{\text{o}} } \right] $$
(3)

T = 1600 + 273 = 1873 K.

log kFe = −(6372/T) + 2.73 = [−(6372/1873) + 2.73] = −0.672.

Therefore, kFe = 0.213.

Hence, the concentration of oxygen in molten iron at 1600 ℃, [Wo] = 0.213%.

Example 20.4

Calculate the residual oxygen content of liquid iron containing 0.1 wt% Si in equilibrium with solid silica at 1600 ℃.

\( \begin{aligned} & {\text{Given}}:\quad {\text{Si}}({\text{l}}) + {\text{O}}_{2} ({\text{g}}) = {\text{SiO}}_{2} ({\text{s}}),\Delta {G}^{\text{o}}_{1} = - 947.68 + 0.199\,{T}\,{\text{kJ}}/{\text{mol}} \\ & \quad \quad \quad \quad {\text{O}}_{2} ({\text{g}}) = 2[{\text{O}}](1\,{\text{wt}}\% \,{\text{std state}}),\Delta {G}^{\text{o}}_{2} = - 233.47{-}0.006\,{T}\,{\text{kJ}}/{\text{mol}} \\ & \quad \quad \quad \quad {\text{Si}}({\text{l}}) = [{\text{Si}}](1\,{\text{wt}}\% \,{\text{std state}}),\Delta {G}^{\text{o}}_{3} = - 119.24{-}0.053\,{T}\,{\text{kJ}}/{\text{mol}} \\ & \quad {e}_{\text{Si}}^{\text{Si}} = 0.32,{e}_{\text{Si}}^{\text{O}} = - 0.24,{e}_{\text{O}}^{\text{O}} = - 0.20,{\text{and}}\,{e}_{\text{O}}^{\text{Si}} = -0.14. \\ \end{aligned} \)

Solution

$$ \begin{aligned} & \quad [{\text{Si}}](1\,{\text{wt}}\% \,{\text{std state}}) = {\text{Si}}({\text{l}}) - \Delta {G}^{\text{o}}_{3} \\ & \quad 2[{\text{O}}](1\,{\text{wt}}\% \,{\text{std state}}) = {\text{O}}_{2} ({\text{g}}) - \Delta {G}^{\text{o}}_{2} \\ & \quad {\text{Si}}({\text{l}}) + {\text{O}}_{2} ({\text{g}}) = {\text{SiO}}_{2} ({\text{s}}),\quad \Delta {G}^{\text{o}}_{1} \\ & \quad [{\text{Si}}](1\,{\text{wt}}\% \,{\text{std state}}) + 2[{\text{O}}](1\,{\text{wt}}\% \,{\text{std state}}) = {\text{SiO}}_{2} ({\text{s}})\Delta {G}^{\text{o}}_{\text{r}} \\ \end{aligned} $$

\( \begin{aligned} {\text{Therefore}}\,\Delta {G}^{\text{o}}_{\text{r}} & = \Delta {G}^{\text{o}}_{1} - \Delta {G}^{\text{o}}_{2} - \Delta {G}^{\text{o}}_{3} \\ & = ( - 947.68 + 0.199\,{T}){-}\{ ( - 233.47{-}0.006\,{T}) + ( - 119.24{-}0.053\,{T})\} ] \\ & = - 594.97 + 0.258\,{T}\,{\text{kJ}}/{\text{mol}}\quad \left[ {{T} = 1600 + 273 = 1873\,{\text{K}}} \right] \\ & = ( - 594.97 + 0.258 \times 1873) \times 1000\,{\text{J}}/{\text{mol}} \\ & = - 111736\,{\text{J/mol}} \\ \end{aligned} \)

Since ΔGor = −RT ln k.

Or −111,736 = −8.314 × 1873 × ln k.

Or ln k = 7.175.

$$ \begin{aligned} \log {f}_{\text{o}} & = {e}_{\text{o}}^{\text{O}} [{\text{wt}}\% \,{\text{O}}] + {e}_{\text{o}}^{\text{Si}} [{\text{wt}}\% \,{\text{Si}}] = ( - 0.2) \times ({\text{wt}}\% \,{\text{O}}) + ( - 0.14) \times (0.1) \\ & = - 0.2\,{\text{wt}}\% \,{\text{O}} - 0.014 \\ \end{aligned} $$
$$ \begin{aligned} \log {f}_{\text{Si}} & = {e}_{\text{Si}}^{\text{Si}} [{\text{wt}}\% \,{\text{Si}}] + {e}_{\text{Si}}^{\text{O}} [{\text{wt}}\% \,{\text{O}}] = 0.32 \times 0.1 + ( - 0.24) \times ({\text{wt}}\% \,{\text{O}}) \\ & = 0.032 - 0.24{\text{wt}}\% \,{\text{O}} \\ \end{aligned} $$

Equilibrium constant, k = [aSiO2/(hSi · h2O)] = [1/(hSi · h2O)] (since aSiO2 = 1).

Again hi = fi · wt% i.

Therefore, k = [1/{(fSi · wt% Si) · (fO · wt% O)2}].

Taking both side logs:

\( \begin{aligned} \log {k} & = - \left[ {\left\{ {\log {f}_{\text{Si}} + \log ({\text{wt}}\% \,{\text{Si}})} \right\} + 2\left\{ {\log {f}_{\text{O}} + \log ({\text{wt}}\% \,{\text{O}})} \right\}} \right] \\ & = - \left[ {\left\{ {(0.032 - 0.24\,{\text{wt}}\% \,{\text{O}}) + \log (0.1)} \right\} + 2\left\{ {( - 0.2\,{\text{wt}}\% \,{\text{O}} - 0.014) + \log ({\text{wt}}\% \,{\text{O}})} \right\}} \right] \\ & = - \left[ {\left\{ {(0.032 - 0.24\,{\text{wt}}\% \,{\text{O}}) + ( - 1)} \right\} + \left\{ {( - 0.4\,{\text{wt}}\% \,{\text{O}} - 0.028) + 2\log ({\text{wt}}\% \,{\text{O}})} \right\}} \right] \\ & = \left[ {0.996 + 0.64{\text{wt}}\% \,{\text{O}} - 2\log ({\text{wt}}\% \,{\text{O}})} \right] \\ \end{aligned} \)

Since value of wt% O is very small, value of log (wt% O) can be taken as negligible.

[since ln x = 2.303 log x; ln k = 7.175 = 2.303 log k,

Therefore, log k = (7.175/2.303) = 3.1155].

So log k = 0.996 + 0.64 wt% O = 3.1155.

Therefore, wt% O = 3.31.

Example 20.5

Find out the oxygen concentration in liquid steel after degassing at 1600 ℃ and 1.0 torr. [wt% C] = 0.2.

Given:

  1. (i)

    log kO = (6120/T) + 0.15.

  2. (ii)

    log kCO = (1168/T) + 2.07.

Solution

\( {T} = 1600 + 273 = 1873\,{\text{K}},760\,{\text{torr}} = 1\,{\text{atm}},{\text{so}}\,1.0\,{\text{torr}} = (1/760)\,{\text{atm}} \)

$$ 2[{\text{O}}] = {\text{O}}_{2} $$
(1)

Equilibrium constant,

$$ {k}^{{\prime }}_{\text{O}} = \left[ {{p}_{{{\text{O}}2}} /\left( {{h}_{\text{O}} } \right)^{2} } \right] $$
(2)

Since hi = fi × wt% i = wt% i, due to fi = 1.

From Eq. (2):

$$ {\text{wt}}\% \,{\text{O}} = \surd \left( {{p}_{{{\text{O}}2}} /{k}^{{\prime }}_{\text{O}} } \right) = {k}_{\text{O}} \,\times \,\surd {p}_{{{\text{O}}2}} $$
(3)

Since kO = √(1/k′O).

Again log kO = (6120/T) + 0.15 = (6120/1873) + 0.15 = 3.417.

Therefore, kO = 2615.082; now putting this value to Eq. (3):

wt% O = kO × √pO2 = 2615.08 × √(1/760) = 94.86%.

This high value of oxygen content in steel is impossible; hence, oxygen cannot be removed by this way. Therefore, oxygen in steel can be removed by reacting with carbon.

$$ [{\text{C}}] + [{\text{O}}] = \{ {\text{CO}}\} $$
(4)

Equilibrium constant,

$$ {k}_{\text{CO}} = \left[ {{p}_{\text{CO}} /\left( {{h}_{\text{C}} \times {h}_{\text{O}} } \right)} \right] = \left[ {{p}_{\text{CO}} /({\text{wt}}\% \,{\text{C}} \times {\text{wt}}\% \,{\text{O}})} \right] $$
(5)

Again log kCO = (1168/T) + 2.07 = (1168/1873) + 2.07 = 2.693.

Therefore, kCO = 493.853; since [wt% C] = 0.2 and pCO = (1/760).

Putting these values in Eq. (5):

\( \begin{aligned} {\text{Therefore}}\,{\text{wt}}\% \,{\text{O}} & = \left[ {{p}_{\text{CO}} /\left( {{\text{wt}}\% \,{\text{C}} \times {k}_{\text{CO}} } \right)} \right] = \left[ {(1/760)/(0.2 \times 493.853)} \right] \\ & = {\mathbf{1}}{\mathbf{.332 \times 10}}^{{{\mathbf{ -5}}}} {\mathbf{\% }} \\ \end{aligned} \)

Example 20.6

Find out wt% O in liquid steel to remove C from HM (content 3% C, 1.2% Si, 0.8% Mn, 0.04% S, 0.4% P) at 1600 °C.

\( \begin{aligned} & {\text{Given}}\,\log {k}_{\text{CO}} = \left[ {(1056/{T}) + 2.131} \right] \\ & {e}_{\text{c}}^{\text{c}} = 0.14,{e}_{\text{c}}^{\text{Mn}} = - 0.012,{e}_{\text{c}}^{\text{P}} = 0.051,{e}_{\text{c}}^{\text{S}} = 0.046,{e}_{\text{c}}^{\text{Si}} = 0.08 \\ & {e}_{\text{o}}^{\text{c}} = - 0.13,{e}_{\text{o}}^{\text{Mn}} = - 0.021,{e}_{\text{o}}^{\text{P}} = 0.07,{e}_{\text{o}}^{\text{S}} = - 0.133,{e}_{\text{o}}^{\text{Si}} = - 0.131. \\ \end{aligned} \)

Solution

T = 1600 + 273 = 1873 K.

So, log kCO = [(1056/1873) + 2.131] = 2.6948.

Therefore, kCO = 495.22.

\( \begin{aligned} {\text{Again}},\log {f}_{\text{c}} & = {e}_{\text{c}}^{\text{S}} [{\text{wt}}\% \,{\text{S}}] + {e}_{\text{c}}^{\text{C}} [{\text{wt}}\% \,{\text{C}}] + {e}_{\text{c}}^{\text{Si}} [{\text{wt}}\% \,{\text{Si}}] + {e}_{\text{c}}^{\text{Mn}} [{\text{wt}}\% \,{\text{Mn}}] \\ & \quad + {e}_{\text{c}}^{\text{P}} [{\text{wt}}\% \,{\text{P}}] \\ & = 0.046 \times 0.04 + 0.14 \times 3.0 + 0.08 \times 1.2 + ( - 0.012) \times 0.8 + 0.051 \times 0.4 \\ & = 0.5286 \\ \end{aligned} \)

Therefore, fc = 3.378.

\( \begin{aligned} {\text{Similarly}},\log {f}_{\text{o}} & = {e}_{\text{o}}^{\text{S}} [{\text{wt}}\% \,{\text{S}}] + {e}_{\text{o}}^{\text{C}} [{\text{wt}}\% \,{\text{C}}] + {e}_{\text{o}}^{\text{Si}} [{\text{wt}}\% \,{\text{Si}}] + {e}_{\text{o}}^{\text{Mn}} [{\text{wt}}\% \,{\text{Mn}}] \\ & \quad + {e}_{\text{o}}^{\text{P}} [{\text{wt}}\% \,{\text{P}}] \\ & = ( - 0.133) \times 0.04 + ( - 0.13) \times 3.0 + ( - 0.131) \times 1.2 + ( - 0.021) \times 0.8 \\ & \quad + 0.07 \times 0.4 \\ & = - 0.54132 \\ \end{aligned} \)

Therefore, fo = 0.2875.

We know that kCO = {pco/hc × ho}.

Therefore, hc × ho = {pco/kCO} = {1/kCO} {since pco = 1 and hi = fi × [wt% i]}.

So, fc × [wt% C] × fo × [wt% O] = {1/kCO}.

\( \begin{aligned} {\text{Therefore}},[{\text{wt}}\% \,{\text{O}}] & = \left\{ {1/{k}_{\text{CO}} } \right\} \times \left\{ {1/\left( {{f}_{\text{o}} \times {f}_{\text{c}} \times [{\text{wt}}\% \,{\text{C}}]} \right)} \right\} \\ & = \left\{ {1/\left( {495.22 \times 0.2875 \times 3.378 \times 3.0} \right)} \right\} \\ & = 1/1442.8359 = {\mathbf{6}}{\mathbf{.93 \times 10}}^{{{\mathbf{ -4}}}} \\ \end{aligned} \)

Example 20.7

Calculate the chemical potential of nitrogen in liquid steel at 1600 °C. Steel contents 0.5% C, 0.5% Mn, 0.2% P and 0.01% N.

Given: [wt% N] fN = kN (pN2)1/2, where log kN = {(−188.1/T) − 1.246}.

eCN = 0.25, eNN = 0, ePN = 0.051, eMnN = −0.02.

Solution

T = 1600 + 273 = 1873 K.

\( \log {k}_{\text{N}} = \left\{ {( - 188.1/1873){-}1.246} \right\} = - 1.3464 \)

Therefore, kN = 0.045.

\( \begin{aligned} {\text{Again}},\log {f}_{\text{N}} & = {e}_{\text{N}}^{\text{C}} {\text{wt}}\% {\text{C}} + {e}_{\text{N}}^{\text{N}} {\text{wt}}\% {\text{N}} + {e}_{\text{N}}^{\text{P}} {\text{Wt}}\% {\text{P}} + {e}_{\text{N}}^{\text{Mn}} {\text{Wt}}\% {\text{Mn}} \\ & = 0.25 \times 0.5 + 0 \times 0.01 + 0.051 \times 0.2 + ( - 0.02) \times 0.5 \\ & = 0.1252 \\ \end{aligned} \)

Therefore, fN = 1.334.

Since kN (pN2)1/2 = [wt% N] fN = 0.01 × 1.334 = 0.01334.

Therefore, (pN2)1/2 = 0.01334/0.045 = 0.296.

So, pN2 = 0.0876.

\( \begin{aligned} {\text{Chemical potential of nitrogen in liquid steel}} & = {\upmu }_{{{\text{N}}2}} = {\text{RT}}\ln {\text{p}}_{{{\text{N}}2}} \\ & = 8.314 \times 1873 \times \ln (0.0876) \\ & = - {\mathbf{37}}{\mathbf{.865}}\,{\mathbf{kJ}}/{\mathbf{mol of N}}_{2} \\ \end{aligned} \)

Example 20.8

Calculate the oxygen potential of liquid steel in contact with a molten slag at 1600 °C. Assume equilibrium partitioning of oxygen between slag and metal.

Given:

  1. (1)

    [O]wt% + Fe (l) = FeO (l), k1 = 4.35 at 1600 °C.

  2. (2)

    O2 (g) = 2 [O]wt%, k2 = 6.89 × 106 at 1600 °C.

Solution

T = 1600 + 273 = 1873 K.

k1 = [aFeO/(aO · aFe)] = (1/hO) [since aFe = 1 and aFeO = 1, pure at std state].

Therefore, hO = (1/k1) = (1/4.35) = 0.23.

Again k2 = [(hO)2/PO2].

Or PO2 = [(hO)2/k2] = [(0.23)2/(6.89 × 106)] = 7.67 × 10−9.

\( \begin{aligned} {\text{Therefore}},{\text{oxygen potential of liquid steel}} & = {\mu }_{{{\text{O}}2}} = {\text{RT}}\ln {p}_{{{\text{O}}2}} \\ & = 8.314 \times 1873 \times \ln \left( {7.67 \times 10^{ - 9} } \right) \\ & = - 290979.63\,{\text{J}}/{\text{mol}} \\ & = - {\mathbf{290}}{\mathbf{.98}}\,{\mathbf{kJ}}/{\mathbf{mol}} \\ \end{aligned} \)

Example 20.9

Calculate and compare thermodynamic efficiency of de-sulphurization of molten steel by pure CaO and molten slag of CaO–SiO2–Al2O3. Also find out residual sulphur content in metal if residual oxygen content is 0.001 wt%.

\( \begin{aligned} & {\text{Given}}:\frac{{\left[ {{w}_{\text{O}} } \right]}}{{\left[ {{w}_{\text{S}} } \right]}} = 3 \times 10^{ - 2} ,{\text{for X}}_{\text{CaO}} = 0.6, X_{{SiO_{2} }} = 0.1\,{\text{and}}\,X_{{Al_{2} O_{3} }} = 0.3\,{\text{at}}\,1650\,{^\circ {\text{C}}}. \\ & \quad \quad {\text{C}}_{\text{S}}^{{\prime }} = 7.5 \cdot {\text{C}}_{\text{S}} ,{\text{slag}},{\text{C}}_{\text{S}} = 0.2. \\ \end{aligned} \)

Solution

Assume, wt% of S in slag as 2. i.e. (wS) = 2.

At 1650 °C, for CaO,

\( \frac{{\left[ {{w}_{\text{O}} } \right]}}{{\left[ {{w}_{\text{S}} } \right]}} = 3 \times 10^{ - 2} \,({\text{given}}) \)

For slag, CS = 0.2.

Now,

\( {C}_{\text{S}}^{{\prime }} = \frac{{\left( {{w}_{\text{S}} } \right) \cdot \left[ {{h}_{\text{O}} } \right]}}{{\left[ {{h}_{\text{S}} } \right]}} \) (Eq. 20.155)

\( {C}_{\text{S}}^{{\prime }} = \frac{{\left( {{w}_{\text{S}} } \right) \cdot \left[ {{w}_{\text{O}} } \right]}}{{\left[ {{w}_{\text{S}} } \right]}} \) (Taking [hO] = [wO] and [hS] = [wS] as approximation).

\( \frac{{{\text{C}}_{\text{S}}^{{\prime }} }}{{\left( {{\text{w}}_{\text{S}} } \right)}} = \frac{{\left[ {{\text{w}}_{\text{O}} } \right]}}{{\left[ {{\text{w}}_{\text{S}} } \right]}} \)

\( \frac{{7.5 \cdot {\text{C}}_{\text{S}} }}{2} = \frac{{\left[ {{w}_{\text{O}} } \right]}}{{\left[ {{w}_{\text{S}} } \right]}} \)

\( \frac{(7.5) \cdot (0.2)}{2} = \frac{{\left[ {{w}_{\text{O}} } \right]}}{{\left[ {{w}_{\text{S}} } \right]}} \)

\( \frac{{\left[ {{w}_{\text{O}} } \right]}}{{\left[ {{w}_{\text{S}} } \right]}} = 0.75 \)

\( \frac{{\left[ {{w}_{\text{O}} } \right]}}{{\left[ {{w}_{\text{S}} } \right]}} \) is used as index of thermodynamic efficiency.

As given, wO = 0.001, then

\( \frac{{\left[ {{w}_{\text{O}} } \right]}}{{\left[ {{w}_{\text{S}} } \right]}} = 0.75 \)

\( \frac{0.001}{{\left[ {{w}_{\text{S}} } \right]}} = 0.75 \)

\( \left[ {{w}_{\text{S}} } \right] = \frac{0.001}{0.75} \)

\( {\mathbf{w}}_{{\mathbf{S}}} = {\mathbf{1}}{\mathbf{.33 \times 10}}^{{{\mathbf{ - 3}}}} \) (answer for slag)

If WO = 0.001, then

\( \frac{{\left[ {{w}_{\text{O}} } \right]}}{{\left[ {{w}_{\text{S}} } \right]}} = 3 \times 10^{ - 2} \)

\( \left[ {{w}_{\text{S}} } \right] = \frac{0.001}{{3 \times 10^{ - 2} }} \)

\( \left[ {{w}_{\text{S}} } \right] = 0.33 \) for pure CaO.

The thermodynamic efficiency,

$$ \left( {\frac{slag}{CaO}} \right) = \frac{0.75}{{3 \times 10^{ - 2} }} = 25 $$

So, the slag is 25 times more effective as a de-sulphurizer as compared to pure lime.

Problems

Problem 20.1

Find out activity of [O] content in liquid steel during reaction of Mn at 1600 °C. Mn content in liquid steel is 0.8%.

\( {\text{Given}}:\log {k}_{\text{Mn}} = (12440/{T}){-}5.33.\quad [{\text{Ans}}:0.0609] \)

Problem 20.2

Estimate the activity of S in liquid steel containing 0.04% S, 0.8% C, 0.1% Si, 0.5% Mn and 0.04% P at 1600 °C in 1 wt% standard state.

Given: eCS = 0.11, eSiS = 0.063, eSS = −0.028, eMnS = -0.026 and ePS = 0.029.

[Ans: 0.048]

Problem 20.3

Carbon–oxygen reaction in steelmaking:

\( [{\text{C}}] + [{\text{O}}] = \{ {\text{CO}}\} \)

At 0.2% C, and pCO = 10−5 atm; find out the [wt% O] at 1600 °C.

\( {\text{Given}}:\log {k} = \left( {\frac{1056}{T}} \right) + 2.131\quad \left[ {{\text{Ans}}: 10^{ - 7} {\text{wt}}\% \,{\text{O}}} \right] \)

Problem 20.4

Solution of nitrogen in liquid iron may be assumed to obey Sievert’s law. Nitrogen content in liquid iron at 1873 K in equilibrium with 1 atm pressure of nitrogen is measured as 0.044 (mass%). What will be the equilibrium nitrogen content in liquid iron (mass%) if nitrogen is reduced to 0.25 atm? [Ans: 0.022%].

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, S.K., Chokshi, Y.B. (2020). Thermodynamics. In: Basic Concepts of Iron and Steel Making. Springer, Singapore. https://doi.org/10.1007/978-981-15-2437-0_20

Download citation

Publish with us

Policies and ethics