Skip to main content

Harmonics and Voltage Sag Compensation of a Solar PV-Based Distributed Generation Using MSRF-Based UPQC

  • Conference paper
  • First Online:
Innovation in Electrical Power Engineering, Communication, and Computing Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 630))

Abstract

This paper deals with source current harmonics and voltage sag compensation of a solar photovoltaic (PV)-based distributed generation (DG) system using unified power quality conditioner (UPQC). Despite the several benefits of DG like excellent energy supply, reducing expansion of power distribution system, environmental friendly and so on, there are several challenges existing due to the integration of DG with the grid or operating it in stand-alone mode. Power quality (PQ) issue is one of the main technical challenges in DG power system. In order to provide improved PQ of energy supply, it is necessary to analyze the harmonics distortion of the system as well as the voltage sag and swell. The UPQC has been widely useful, and it is confirmed to be the best solution to diminish this PQ issue. This paper explores the detail of PQ impacts in a DG (comprising of solar PV) system operates in stand-alone mode. The voltage sag compensation with voltage and current harmonics is estimated under varying load situation with a control scheme like modified synchronous reference frame technique. The proposed model is developed in MATLAB/SIMULINKR, and the result obtained validates the superiority of proposed technique over others in terms of harmonics elimination and sag compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badoni M, Singh B, Singh A (2017) Implementation of echo-state network-based control for power quality improvement. IEEE Trans Ind Electron 64(7):5576–5584

    Article  Google Scholar 

  2. Mahmoud MS, Rahman MSU, Fouad MS (2015) Review of microgrid architectures—a system of systems perspective. IET Renew Power Gener 9(8):1064–1078

    Article  Google Scholar 

  3. Samal S, Hota PK (2017) Design and analysis of solar PV-fuel cell and wind energy based microgrid system for power quality improvement. Cogent Eng 4(1):1402453

    Article  Google Scholar 

  4. Suresh M, Patnaik SS, Suresh Y, Panda AK (2011) Comparison of two compensation control strategies for shunt active power filter in three-phase four-wire system. In: Innovative smart grid technologies (ISGT), IEEE PES, pp 1–6

    Google Scholar 

  5. Tang Y, Loh PC, Wang P, Choo FH, Gao F, Blaabjerg F (2012) Generalized design of high performance shunt active power filter with output LCL filter. IEEE Trans Ind Electron 59(3):1443–1452

    Article  Google Scholar 

  6. Hosseinpour M, Yazdian A, Mohamadian M, Kazempour J (2008) Desing and simulation of UPQC to improve power quality and transfer wind energy to grid. J Appl Sci 8(21):3770–3782

    Article  Google Scholar 

  7. Xu Q, Hu X, Wang P, Xiao J, Tu P, Wen C, Lee MY (2017) A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous DC microgrid. IEEE Trans Ind Electron 64(7):5930–5941

    Article  Google Scholar 

  8. Montero MIM, Cadaval ER, Gonzalez FB (2007) Comparison of control strategies for shunt active power filters in three-phase four-wire systems. IEEE Trans Power Electron 22(1):229–236

    Article  Google Scholar 

  9. Samal S, Hota PK (2017) Power quality improvement by solar photo-voltaic/fuel cell integrated system using unified power quality conditioner. Int J Renew Energy Res (IJRER) 7(4):2075–2084

    Google Scholar 

  10. Singh BN, Singh B, Chandra A, Al-Haddad K (2005) Design and digital implementation of active filter with power balance theory. In: IEEE Proceedings-electrical power application, vol 152(5), pp 1149–1160

    Article  Google Scholar 

  11. Akagi H, Kanazawa Y, Nabae A (1984) Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans Ind Electron Appl 20(3):625–630

    Article  Google Scholar 

  12. Samal S, Hota PK (2017) Power quality improvement by solar photo-voltaic/wind energy integrated system using unified power quality conditioner. Int J Power Electron Drive Syst 8(3):14–24

    Google Scholar 

  13. Jowder FAL (2009) Design and analysis of dynamic voltage restorer for deep voltage sag and harmonic compensation. IET Gener Transm Distrib 3(6):547–560

    Article  Google Scholar 

  14. Altas IH, Sharaf AM () A photovoltaic array simulation model for Matlab-Simulink GUI environment. In: Clean Electrical Power, ICCEP’07, pp 341–345

    Google Scholar 

  15. Femia N, Petrone G, Spagnuolo G, Vitelli M (2007) Optimization of perturb and observe maximum power point tracking method. IEEE Trans Power Electron 20(4):963–973

    Article  Google Scholar 

  16. Viinamäki J, Jokipii J, Messo T, Suntio T, Sitbon M, Kuperman A (2014) Comprehensive dynamic analysis of photovoltaic generator interfacing DC–DC boost power stage. IET Renew Power Gener 9(4):306–314

    Article  Google Scholar 

  17. Kalirasu A, Dash SS (2010) Simulation of closed loop controlled boost converter for solar installation. Serb J Electr Eng 7(1):121–130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Kumar Barik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samal, S., Hota, A., Hota, P.K., Barik, P.K. (2020). Harmonics and Voltage Sag Compensation of a Solar PV-Based Distributed Generation Using MSRF-Based UPQC. In: Sharma, R., Mishra, M., Nayak, J., Naik, B., Pelusi, D. (eds) Innovation in Electrical Power Engineering, Communication, and Computing Technology. Lecture Notes in Electrical Engineering, vol 630. Springer, Singapore. https://doi.org/10.1007/978-981-15-2305-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2305-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2304-5

  • Online ISBN: 978-981-15-2305-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics