Skip to main content

Medicinal Properties of Fruit and Vegetable Peels

  • Chapter
  • First Online:
Advances in Bioengineering

Abstract

In these days, more focus is made in improving the immune system and curing diseases by using food and food-related products. In these contexts, fruits are being extensively used to treat and prevent diseases. After utilization of fruits and vegetable, huge amount of waste is generated during pre- and post-harvesting process. This produced waste is generally discarded as waste in the dump yards which is hazardous to the environment. However, recent studies have confirmed that fruit and vegetable peel (FVP) waste can be a valuable source of bioactive compounds, due to the presence of steroids, phenolics, tannins, flavonoids, triterpenoids, glycosides, carotenoids, ellagitannins, anthocyanins, vitamin C and essential oil. These compounds can add value to the FVP if extracted efficiently. Several economically valuable products having superior medicinal, nutritional and antioxidant properties can be obtained from FVPs by various processes like drying, size reduction, fermentation, solvent extraction and many more. The bioactive compounds in the FVP show its various uses in the treatment of wounds, acne, diarrhoea, gastroenteritis and rotavirus enteritis, allergies, malaria, coughs, degenerative muscular diseases, bacterial/fungal infections, cancer, cardiovascular disorder, diabetes, liver diseases, dental plaque, inflammatory ailments including rheumatism, menstrual pain, etc. This chapter reviews the antioxidant, antiatherogenic, antimicrobial, antiallergenic, anti-inflammatory, antithrombotic, cardioprotective and vasodilatory properties of some commonly used FVP. This will help to obtain the maximum health benefits and maximize the industrial profits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelmalek S, Mohsen E, Awwad A, Issa R (2016) Peels of Psidium guajava fruit possess antimicrobial properties. Int Arab J Antimicrob Agents 6(3):1. https://doi.org/10.3823/791

    Article  CAS  Google Scholar 

  • Ajila CM, Bhat SG, Prasada Rao UJS (2007) Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem 102:1006–1011

    Article  CAS  Google Scholar 

  • Ajila CM, Rao LJ, Rao UJSP (2010) Characterization of bioactive compounds from raw and ripe Mangifera indica L. peel extracts. Food Chem Toxicol 48:3406–3411

    Article  CAS  PubMed  Google Scholar 

  • Akamine K, Koyama T, Yazawa K (2009) Banana peel extract suppressed prostate gland enlargement in testosterone-treated mice. Biosci Biotechnol Biochem 73(9):1911–1914. https://doi.org/10.1271/bbb.80770

    Article  CAS  PubMed  Google Scholar 

  • Amado IR, Franco D, Sanchez M, Zapata C, Vazquez JA (2014) Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem 165:290–299. https://doi.org/10.1016/j.foodchem.2014.05.103

    Article  CAS  PubMed  Google Scholar 

  • Anhwange BA (2008) Chemical composition of Musa Sapientum (banana) peels. J Food Technol 6(6):263–266

    CAS  Google Scholar 

  • Aravind G, Bhowmik D, Duraivel S, Harish G (2013) Traditional and medicinal uses of Carica papaya. J Med Plants Stud 1(1):7–15

    Google Scholar 

  • Asghar N, Naqvi SA, Hussain Z, Rasool N, Khan ZA, Shahzad SA, Sherazi TA, Janjua MR, Nagra SA, Zia-Ul-Haq M, Jaafar HZ (2016) Compositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents. Chem Cent J 10:5. https://doi.org/10.1186/s13065-016-0149-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atzingen DA, Gragnani A, Veiga DF, Abla LE, Mendonça AR, Paula CA, Juliano Y, Correa JC, Faria MR, Ferreira LM (2011) Gel from unripe Musa sapientum peel to repair surgical wounds in rats1. Acta Cir Bras 26(5). https://doi.org/10.1590/S0102-86502011000500009

  • Aurore G, Parfait B, Fahrasmane L (2009) Bananas, raw materials for making processed food products. Trends Food Sci Technol 20(2):78–91

    Article  CAS  Google Scholar 

  • Aziz NAA, Wong LM, Bhat R, Cheng LH (2012) Evaluation of processed green and ripe mango peel and pulp flours (Mangifera indica var. Chokanan) in term of chemical composition, antioxidant compounds and functional properties. J Sci Food Agric 92:557–563

    Article  PubMed  CAS  Google Scholar 

  • Balasuriya N, Rupasinghe HPV (2012) Antihypertensive properties of flavonoid-rich apple peel extract. Food Chem 135(4):2320–2325. https://doi.org/10.1016/j.foodchem.2012.07.023

    Article  CAS  PubMed  Google Scholar 

  • Bampidis VA, Robinson PH (2006) Citrus by-products as ruminant feeds: a review. Anim Feed Sci Technol 128(3–4):175–217

    Article  Google Scholar 

  • Bardiya N, Somayaji D, Khanna S (1996) Biomethanation of banana peel and pineapple waste. Bioresour Technol 58(1):73–76. https://doi.org/10.1016/S0960-8524(96)00107-1

    Article  CAS  Google Scholar 

  • Berardini N, Knodler M, Schieber A, Carle R (2005) Utilization of mango peels as a source of pectin and polyphenolics. Innov Food Sci Emerg Technol 6:442–452

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M, Witek-Krowiak A (2015) Agricultural “waste peels” as versatile biomass for water purification – a review. Chem Eng J 270:244–271. https://doi.org/10.1016/j.cej.2015.01.135

    Article  CAS  Google Scholar 

  • Bhui K, Prasad S, George J, Shukla Y (2009) Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumorinitiating triggering mitochondrial death pathway. Cancer Lett 28:167–176

    Article  CAS  Google Scholar 

  • Braddock RJ, Temelli F, Cadwallader KR (1986) Citrus essential oils—a dossier for material safety data sheets. Food Technol 40(11):114–116

    CAS  Google Scholar 

  • Budin SB, Ismail H, Chong PL (2013) Psidium guajava fruit peel extract reduces oxidative stress of pancreas in streptozotocin-induced diabetic rats. Sains Malaysiana 42(6):707–713

    Google Scholar 

  • Chabuck ZAG, Al-Charrakh AH, Kadhim NK, Kadhim SK (2013) Antimicrobial effect of aqueous banana peel extract, Iraq. Research Gate Pharm Sci 1:73–75

    Google Scholar 

  • Chatterjee S (2014) Therapeutic fruit peels their role in preventing lifestyle disorders. Recent Res Sci Technol 6(1):283–286

    Google Scholar 

  • Chérif JK, Jémaia S, Rahal NB, Jrad A, Trabelsi-Ayadi M (2010) Study of antioxidant content and antiradical capacity of fresh and industrial waste of Tunisian tomato. Valorization of Tunisian tomato in bioactive molecules. Tunis J Med Plants Nat Prod 4:116–125

    Google Scholar 

  • Chobotava K, Vernallis AB, Majid FAA (2009) Bromelain’s activity and potential as an anti-cancer agent: current evidence and perspectives. Cancer Lett 290:148–156

    Article  CAS  Google Scholar 

  • Chukwuka KS, M MI, Uka UN (2013) Evaluation of nutritional components of Carica papaya L. at different stages of ripening. J Pharm Biol Sci 6(4):13–16

    Google Scholar 

  • Contreras-Calderón J, Calderón-Jaimes L, Guerra-Hernández E, García-Villanova B (2011) Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res Int 44(7):2047–2053. https://doi.org/10.1016/j.foodres.2010.11.003

    Article  CAS  Google Scholar 

  • de Matuoka e Chiocchetti G, De Nadai Fernandes EA, Bacchi MA, Pazim RA, SRV S, Tomé TM (2013) Mineral composition of fruit by-products evaluated by neutron activation analysis. J Radioanal Nucl Chem 297(3):399–404. https://doi.org/10.1007/s10967-012-2392-8

    Article  CAS  Google Scholar 

  • Du W-X, Olsen CW, Avena-Bustillos RJ, Friedman M, McHugh TH (2011) Physical and antibacterial properties of edible films formulated with apple skin polyphenols. J Food Sci 76(2):M149–M155. https://doi.org/10.1111/j.1750-3841.2010.02012.x

    Article  CAS  PubMed  Google Scholar 

  • Fapohunda S, Mmom JU, Fakeye F (2012) Proximate analyses, phytochemical screening and antibacterial potentials of bitter cola, cinnamon, ginger and banana peel. Academia Arena 4(8):8–15

    Google Scholar 

  • Foo KY, Hameed BH (2012) Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresour Technol 104:679–686. https://doi.org/10.1016/j.biortech.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  • Foo LPY, Tee CZ, Raimy NR, Hassell DG, Lee LY (2011) Potential Malaysia agricultural waste materials for the biosorption of cadmium(II) from aqueous solution. Clean Techn Environ Policy 14(2):273–280. https://doi.org/10.1007/s10098-011-0398-5

    Article  CAS  Google Scholar 

  • Fu R, Yan T, Wang Q, Guo Q, Yao H, Wu X, Li Y (2012) Suppression of endothelial cell adhesion by XJP-1, a new phenolic compound derived from banana peel. Vasc Pharmacol 57:105–112. https://doi.org/10.1016/j.vph.2012.05.006

    Article  CAS  Google Scholar 

  • Guo C, Yang J, Wei J, Li Y, Xu J, Jiang Y (2003) Antioxidant activities of peel, pulp, and seed fractions of common fruits as determined by FRAP assay. Nutr Res 23:1719–1726. https://doi.org/10.1016/S0271-5317(03)00184-2

    Article  CAS  Google Scholar 

  • He X, Liu RH (2007) Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple’s anticancer activity. J Agric Food Chem 55:4366–4370. https://doi.org/10.1021/jf063563o

    Article  CAS  PubMed  Google Scholar 

  • Henríquez M, Almonacid S, Lutz M, Simpson R, Valdenegro M (2013) Comparison of three drying processes to obtain an apple peel food ingredient. CyTA J Food 11(2):127–135. https://doi.org/10.1080/19476337.2012.703693

    Article  CAS  Google Scholar 

  • Hossain MB, Tiwari BK, Gangopadhyay N, O’Donnell CP, Brunton NP, Rai DK (2014) Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason Sonochem 21(4):1470–1476. https://doi.org/10.1016/j.ultsonch.2014.01.023

    Article  CAS  PubMed  Google Scholar 

  • Hull WQ, Lindsay CW, Baier WE (1953) Chemicals from oranges. Ind Eng Chem 45(5):876–890

    Article  CAS  Google Scholar 

  • Imran M, Butt MS, Anjum FM, Sultan JI (2013) Chemical profiling of different mango peel varieties. Pak J Nutr 12(10):934–942

    Article  Google Scholar 

  • Jeddou KB, Chaari F, Maktouf S, Nouri-Ellouz O, Helbert CB, Ghorbel RE (2016) Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem 205:97–105. https://doi.org/10.1016/j.foodchem.2016.02.108

    Article  CAS  PubMed  Google Scholar 

  • Kanimozhi K, Gopi D, Kavitha L (2014) Synthesis and characterization of banana peel derived biopolymer/hydroxyapatite nanocomposite for biomedical applications. Int J Sci Eng Res 5(3):138–140

    Google Scholar 

  • Kaur D, Wani AA, Oberoi DPS, Sogi DS (2008) Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chem 108:711–718. https://doi.org/10.1016/j.foodchem.2007.11.002

    Article  CAS  PubMed  Google Scholar 

  • Keswani MH, Patil AR (1985) The boiled potato peel as a burn wound dressing – a preliminary report. Burns Phytother Res 11:220–224

    CAS  Google Scholar 

  • Ketnawa S, Chaiwut P, Rawdkuen S (2011) Aqueous two-phase extraction of bromelain from pineapple peels (‘Phu Lae’ cultv.) and its biochemical properties. Food Sci Biotechnol 2(5):1219–1226

    Article  CAS  Google Scholar 

  • Khan JA, Yadav JS, Srivastava Y, Pal PK (2012) In vitro evaluation of antimicrobial properties of carica papaya. Int J Biol Pharm Allide Sci 1(7):933–945

    Google Scholar 

  • Knappa FF, Nicholasa HJ (1969) Cycloartenyl palmitate: a naturally occurring ester that forms a cholesteric mesophase. Mol Cryst 6(3–4):319–328. https://doi.org/10.1080/15421407008083469

    Article  Google Scholar 

  • Koubala BB, Kansci G, Garnier C, Ralet MC, Thibault JF (2012) Mango (Mangifera indica) and ambarella (Spondias cytherea) peel extracted pectins improve viscoelastic properties of derived jams. Afr J Food Agric Nutr Dev 12:6200–6212

    Google Scholar 

  • Krishni RR, Foo KY, Hameed BH (2014) Food cannery effluent, pineapple peel as an effective low-cost biosorbent for removing cationic dye from aqueous solutions. Desalin Water Treat 52:6096–6103

    Article  CAS  Google Scholar 

  • Kumara MPPR, Wijetunga S (2010) Biogas production potential of select raw materials commonly found in house hold waste. In: 15th international forestry and environment symposium, Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka, pp 116–112

    Google Scholar 

  • Larrauri JA, Rupérez P, FS-C F (1997) Mango peel fibres with antioxidant activity. Z Lebensm Unters Forsch A 205:39–42

    Article  CAS  Google Scholar 

  • Lee E-H, Yeom H-J, Ha M-S, Bae D-H (2010) Development of banana peel jelly and its antioxidant and textural properties. Food Sci Biotechnol 19(2):449–455

    Article  CAS  Google Scholar 

  • Leontowicz H, Leontowicz M, Gorinstein S, Belloso M, Trakhtenberg S (2007) Apple peels and pulp as a source of bioactive compounds and their influence on digestibility and lipid profile in normal and atherogenic rats. Med Wet 63(11):1434–1436

    Google Scholar 

  • Liang S, McDonald AG (2014) Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J Agric Food Chem 62(33):8421–8429. https://doi.org/10.1021/jf5019406

    Article  CAS  PubMed  Google Scholar 

  • López JÁS, Li Q, Thompson IP (2010) Biorefinery of waste orange peel. Crit Rev Biotechnol 30(1):63–69

    Article  CAS  Google Scholar 

  • Luo F, Lv Q, Zhao Y, Hu G, Huang G, Zhang J, Sun C, Li X, Chen K (2012) Quantification and purification of mangiferin from Chinese mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H2O2-induced stress. Int J Mol Sci 13:11260–11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzoor M, Anwar F, Saari N, Ashraf M (2012) Variations of antioxidant characteristics and mineral contents in pulp and peel of different apple (Malus domestica Borkh.) cultivars from Pakistan. Molecules 17(1):390–407. https://doi.org/10.3390/molecules17010390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massias A, Boisard S, Baccaunaud M, Leal Calderon F, Subra-Paternault P (2015) Recovery of phenolics from apple peels using CO2+ethanol extraction: kinetics and antioxidant activity of extracts. J Supercrit Fluids 98:172–182. https://doi.org/10.1016/j.supflu.2014.12.007

    Article  CAS  Google Scholar 

  • Maurer HR (2001) Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci 58:1234–1245

    Article  CAS  PubMed  Google Scholar 

  • Mercadante AZ, Rodriguez-Amaya DB (1998) Effects of ripening, cultivar differences and processing on the carotenoid composition of mango. J Agric Food Chem 35:262–265

    Google Scholar 

  • Mohapatra D, Mishra S, Sutar N (2010) Banana and it’s by-product utilization: an overview. J Sci Ind Res 69:232–329

    Google Scholar 

  • Morais DR, Rotta EM, Sargi SC, Schmidt EM, Bonafe EG, Eberlin MN, Sawaya ACHF, Visentainer JV (2015) Antioxidant activity, phenolics and UPLC–ESI(–)–MS of extracts from different tropical fruits parts and processed peels. Food Res Int 77:392–399. https://doi.org/10.1016/j.foodres.2015.08.036

    Article  CAS  Google Scholar 

  • Mphahlele RR, Fawole OA, Stander MA, Opara UL (2014) Preharvest and postharvest factors influencing bioactive compounds in pomegranate (Punica granatum L.)—a review. Sci Hortic 178:114–123. https://doi.org/10.1016/j.scienta.2014.08.010

    Article  CAS  Google Scholar 

  • Noura V, Corbua AR, Rotarua P, Karageorgou I, Lalas S (2018) Effect of carotenoids, extracted from dry tomato waste, on the stability and characteristics of various vegetable oils. Grasas Aceites 69(1):1–12. https://doi.org/10.3989/gya.0994171

    Article  CAS  Google Scholar 

  • Onyeneho SN, Hettiarachchy NS (1993) Antioxidant activity, fatty acids and phenolic acids composition of potato peels. J Sci Food Agric 62:345–350

    Article  CAS  Google Scholar 

  • Orhue PO, Momoh ARM (2013) Antibacterial activities of different solvent extracts of carica papaya fruit parts on some gram positive and gram negative organisms. Int J Herbs Pharmacol Res 4(2):42–47

    Google Scholar 

  • Packer VG, Melo PS, Bergamaschi KB, Selani MM, Villanueva NDM, de Alencar SM, Contreras-Castillo CJ (2015) Chemical characterization, antioxidant activity and application of beetroot and guava residue extracts on the preservation of cooked chicken meat. J Food Sci Technol 52(11):7409–7416. https://doi.org/10.1007/s13197-015-1854-8

    Article  CAS  Google Scholar 

  • Palermo V, Mattivi F, Silvestri R, Regina GL, Falcone C, Mazzoni C (2012) Apple can act as anti-aging on yeast cells. Oxidative Med Cell Longev 2012:491759. https://doi.org/10.1155/2012/491759

    Article  CAS  Google Scholar 

  • Parengkuan L, Yagi M, Matsushima M, Ogura M, Hamada U, Yonei Y (2013) Anti-glycation activity of various fruits. Anti-Aging Med 10(4):70–76

    Google Scholar 

  • Parmar HS, Kar A (2008) Medicinal values of fruit peels from Citrus sinensis, Punica granatum, and Musa paradisiaca with respect to alterations in tissue lipid peroxidation and serum concentration of glucose, insulin, and thyroid hormones. J Med Food 11(2):376–381. https://doi.org/10.1089/jmf.2006.010

    Article  CAS  PubMed  Google Scholar 

  • Parni B, Verma Y (2014) Biochemical properties in peel, pulp and seeds of Carica Papaya. Plant Arch 14(1):565–568

    Google Scholar 

  • Pathak PD, Mandavgane SA, Kulkarni BD (2015) Fruit peel waste as a novel low-cost bio adsorbent. Rev Chem Eng 31(4):361–381

    Article  CAS  Google Scholar 

  • Pathak PD, Mandavgane SA, Kulkarni BD (2016a) Characterizing fruit and vegetable peels as bioadsorbents. Curr Sci 110(11):2114–2123

    Article  CAS  Google Scholar 

  • Pathak PD, Mandavgane SA, Kulkarni BD (2016b) Valorization of banana peel: a biorefinery approach. Rev Chem Eng 30(6):651–666. https://doi.org/10.1515/revce-2015-0063

    Article  CAS  Google Scholar 

  • Pathak PD, Mandavgane SA, Kulkarni BD (2019) Waste to wealth: a case study of papaya peel. Waste Biomass Valor 10:1755–1766. https://doi.org/10.1007/s12649-017-0181-x

  • Prakash A, Mathur K, Vishwakarma A, Vuppu S, Mishra B (2013) Comparative assay of antioxidant and antibacterial properties of Indian culinary seasonal fruit peel extracts obtained from Vellore, Tamilnadu. Int J Pharm Sci Rev Res 19(1):131–135

    Google Scholar 

  • Qin L-J, Wang Q, Wu L-Y (2007) Stability of antimicrobial activities of mango (Mangifera indica L.) peel extracts. Guangxi Agric Sci 4:423–426

    Google Scholar 

  • Rai PK, Jaiswal D, Mehta S, Watal G (2009) Anti-hyperglycaemic potential of Psidium guajava raw fruit peel. Indian J Med Res 129:561–565

    PubMed  Google Scholar 

  • Rakholiya K, Kaneria M, Chanda S (2014) Inhibition of microbial pathogens using fruit and vegetable peel extracts. Int J Food Sci Nutr 65(6):733–739. https://doi.org/10.3109/09637486.2014.908167

    Article  PubMed  Google Scholar 

  • Rejal SZB (2010) Extraction of antioxidant acivity, phenolic content and mineral content from guava peel. Faculty of Chemical & Natural Resources Engineering Universiti Malaysia Pahang, Malaysia Pahang

    Google Scholar 

  • Rodrıguez-Ambriz SL, Islas-Hernandez JJ, Agama-Acevedo E, Tovar J (2008) Characterization of a fibre-rich powder prepared by liquefaction of unripe banana flour. Food Chem 107:1515–1521. https://doi.org/10.1016/j.foodchem.2007.10.007

    Article  CAS  Google Scholar 

  • Roja HN, Munishamanna KB, Veena R, Palanimuthu V (2017) Solid state fermentation of tomato pomace waste by different lactic acid bacteria and yeast strains for quality and nutritional improvement. Agric Update 12(2):347–354. https://doi.org/10.15740/HAS/AU/12.TECHSEAR(2)2017/347-354

    Article  Google Scholar 

  • Rosida H, Sukardiman, Khotib J (2014) The increasing of Vegf expression and re-epithelialization on dermal wound healing process after treatment of Banana Peel extract (Musa Acuminata Colla). Int J Pharm Pharm Sci 6(11):427–430

    Google Scholar 

  • Roy S, Lingampeta P (2014) Solid wastes of fruits peels as source of low cost broad spectrum natural antimicrobial compounds-Furanone, furfural and benezenetriol. Int J Res Eng Technol 3(7):273–279. https://doi.org/10.13140/rg.2.1.4412.0484

    Article  Google Scholar 

  • Rupasinghe HPV, Kathirvel P, Huber GM (2011) Ultra-sonication-assisted solvent extraction of quercetin glycosides from ‘Idared’ apple peels. Molecules 16(12):9783–9791. https://doi.org/10.3390/molecules16129783

    Article  CAS  PubMed Central  Google Scholar 

  • Sánchez Maldonado AF, Mudge E, Gänzle MG, Schieber A (2014) Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res Int 65:27–34. https://doi.org/10.1016/j.foodres.2014.06.018

    Article  CAS  Google Scholar 

  • Savatović S, Ćetković G, Čanadanović-Brunet J, Djilas S (2012) Tomato waste a potential source of hydrophilic antioxidants. Int J Food Sci Nutr 63(2):129–137. https://doi.org/10.3109/09637486.2011.606211

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Kamath V, Rajini PS (2005) Protective effect of potato peel powder in ameliorating oxidative stress in streptozotocin diabetic rats. Plant Foods Hum Nutr 60(2):49–54. https://doi.org/10.1007/s11130-005-5099-y

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Kamath V, Narasimhamurthy K, Rajini PS (2008) Protective effect of potato peel extract against carbon tetrachloride-induced liver injury in rats. Environ Toxicol Pharmacol 26(2):241–246. https://doi.org/10.1016/j.etap.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  • Sogi DS, Siddiq M, Greiby I, Dolan KD (2013) Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods. Food Chem 141:2649–2655

    Article  CAS  PubMed  Google Scholar 

  • Someya S, Yoshiki Y, Okubo K (2002) Antioxidant compounds from bananas (Musa Cavendish). Food Chem 79(3):351–354

    Article  CAS  Google Scholar 

  • Tartrakoon T, Chalearmsan N, Vearasilp T, Meulen UT (1999) The nutritive value of banana peel (Musa sapieutum L.) in growing pigs. Paper presented at the Deutscher Tropentag, Berlin,

    Google Scholar 

  • Tewtrakul S, Itharat A, Thammaratwasik P, Ooraikul B (2008) Anti-allergic and anti-microbial activities of some Thai crops. Songklanakarin J Sci Technol 30(4):467–473

    Google Scholar 

  • Thilakarathnaa SH, Wangb Y, Rupasinghea HPV, Ghanam K (2012) Apple peel flavonoid- and triterpene-enriched extracts differentially affect cholesterol homeostasis in hamsters. J Funct Foods 4(4):963–971. https://doi.org/10.1016/j.jff.2012.07.004

    Article  CAS  Google Scholar 

  • Vieiraa FGK, Borgesa GDSC, Copettia C, Pietrob PFD, Nunesc EC, Fetta R (2011) Phenolic compounds and antioxidant activity of the apple flesh and peel of eleven cultivars grown in Brazil. Sci Hortic 128(3):261–266. https://doi.org/10.1016/j.scienta.2011.01.032

    Article  CAS  Google Scholar 

  • Waly MI, Al-Rawahi AS, Al Riyami M, Al-Kindi MA, Al-Issaei HK, Farooq SA, Al-Alawi A, Rahman MS (2014) Amelioration of azoxymethane induced-carcinogenesis by reducing oxidative stress in rat colon by natural extracts. BMC Complement Altern Med 14:60. https://doi.org/10.1186/1472-6882-14-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe KL, Liu RH (2003) Apple peels as a value-added food ingredient. J Agric Food Chem 51:1676–1683. https://doi.org/10.1021/jf025916z

    Article  CAS  PubMed  Google Scholar 

  • Wu D (2016) Recycle technology for potato peel waste processing: a review. Procedia Environ Sci 31:103–107. https://doi.org/10.1016/j.proenv.2016.02.014

    Article  CAS  Google Scholar 

  • Yogiraj V, Goyal PK, Chauhan CS, Goyal A, Vyas B (2014) Carica papaya Linn: an overview. Int J Herb Med 2(5):01–08

    Google Scholar 

  • Zgórka G, Kawka S (2001) Application of conventional UV, photodiode array (PDA) and fluorescence (FL) detection to analysis of phenolic acids in plant material and pharmaceutical preparation. J Pharm Biomed Anal 24:1065–1072

    Article  PubMed  Google Scholar 

  • Zhang P, Wampler JL, Bhunia AK, Burkholder KM, Patterson JA, Whistler RL (2004) Effects of Arabinoxylans on activation of murine macrophages and growth performance of broiler chicks. Cereal Chem 81(4):511–514. https://doi.org/10.1094/CCHEM.2004.81.4.511

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, P. (2020). Medicinal Properties of Fruit and Vegetable Peels. In: Vyas, R. (eds) Advances in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2063-1_6

Download citation

Publish with us

Policies and ethics