Skip to main content

Microbes for Cold Stress Resistance in Plants: Mechanism, Opportunities, and Challenges

  • Chapter
  • First Online:
Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Cold stress (CS) is one of the major hindrances for quality crop production and global food security. Under cold environment, different kinds of alterations in the biochemical, physiological, and molecular processes of plants have been observed. Hence, it becomes mandatory to develop eco-compatible, sustainable, and economically sound options for ensuring quality food grain production of high mountainous regions. The use of cold-tolerant microbes (CTM) enhances growth of agricultural crops under low temperature environment. Additionally, it provides an economically captivating and environment-friendly means for protecting agricultural crops from cold stress injuries. They can also trigger crop growth by improving nutrition acquisition, regulating release of plant hormone and siderophores in addition to the activation of antioxidant system under low temperature conditions. As a result, this plant–CTM interaction under cold environment is vital and CTMs may act as a principal cold stress engineer to answer global agricultural tribulations of high altitude. In this chapter, attempts have been made to explore about CTM and their mechanism of action to boost agricultural production in sustainable manner under low temperature environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Latef AAH, Chaoxing H (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33:1217–1225

    Article  CAS  Google Scholar 

  • Ait Barka E, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173(4):808–816

    Article  CAS  PubMed  Google Scholar 

  • Awasthi S, Sharma A, Saxena P, Yadav J, Pandiyan K, Kumar M, Singh A, Chakdar H, Bhowmik A, Kashyap PL, Srivastava AK, Saxena AK (2019) Molecular detection and in silico characterization of cold shock protein coding gene (cspA) from cold adaptive Pseudomonas koreensis. J Plant Biochem Biotechnol 28:405–413. https://doi.org/10.1007/s13562-019-00500-8

    Article  CAS  Google Scholar 

  • Baldi P, Pedron L, Hietala AM, Porta NL (2011) Cold tolerance in cypress (Cupressus sempervirens L.): a physiological and molecular study. Tree Genet Genomes 7(1):79–90

    Article  Google Scholar 

  • Berríos G, Cabrera G, Gidekel M, Gutiérrez-Moraga A (2012) Characterization of a novel antarctic plant growth-promoting bacterial strain and its interaction with Antarctic hair grass (Deschampsia Antarctica Desv). Polar Biol 36(3):349–352

    Article  Google Scholar 

  • Bisht SC, Mishra PK, Joshi GK (2013) Genetic and functional diversity among root associated psychrotrophic Pseudomonad’s isolated from the Himalayan plants. Arch Microbiol 195(9):605–605

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Jin W, Liu A et al (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic 160:222–229

    Article  CAS  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Chu XT, Fu JJ, Sun YF, Xu YM, Miao YJ, Xu YF, Hu TM (2016) Effect of arbuscular mycorrhizal fungi inoculation on cold stress-induced oxidative damage in leaves of Elymus nutans Griseb. S Afr J Bot 104:21–29

    Article  CAS  Google Scholar 

  • Cruz R, Milach S (2004) Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes. Sci Agric 61:1–8

    Article  Google Scholar 

  • Das K, Katiyar V, Goel R (2004) ‘P’ solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol Res 158:359–362

    Article  PubMed  Google Scholar 

  • Egamberdiyeva D, Höflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35(7):973–978

    Article  CAS  Google Scholar 

  • Ek-Jander J, Fahraëus G (1971) Adaptation of rhizobia to subarctic environment in Scandinavia. Plant Soil Spec 35:129–137

    Article  Google Scholar 

  • Erdal S (2012) Androsteron—induced molecular and physiological changes in maize seedlings in repose to chilling stress. Plant Physiol Biochem 57:1–7

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208

    Article  CAS  PubMed  Google Scholar 

  • Fernandez O, Vandesteene L, Feil R, Baillieul F, Lunn JE, Clément C (2012) Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance. Planta 236(2):355–369

    Article  CAS  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautam N, Sharma P, Rana JC, Singh M (2019) Plant growth promoting traits of a novel psychrotrophic bacterium Virdibacillus arenosi PH15 isolated from rhizosphere of Podophyllum hexandrum Royle. Acad J Med Plants 7(1):013–019

    Google Scholar 

  • Ghadirnezhad R, Fallah A (2014) Temperature effect on yield and yield components of different rice cultivars in flowering stage. Int J Agron 2014:4

    Article  Google Scholar 

  • Ghildiyal A, Pandey A (2008) Isolation of cold tolerant antifungal strains of Trichoderma sp. from glacial sites of Indian himalayan region. Res J Microbiol 3:559–564

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Gollotte A, Tisserant B et al (1995) Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular mycorrhizal associations. Can J Bot 73:526–532

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377

    Article  CAS  PubMed  Google Scholar 

  • Hume DJ, Shelp BJ (1990) Superior performance of the Hup- x strain 532C in Ontario soybean field trials. Can J Plant Sci 70:661–666

    Article  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson LF, Bernard EC, Qian P (1987) Isolation of Trichoderma spp. at low temperatures from Tennessee and Alaska soils. Plant Dis 71:137–140

    Article  Google Scholar 

  • Junior MAL, Lima AST, Arruda JRF, Smith DL (2005) Effect of root temperature on nodule development of bean, lentil and pea. Soil Biol Biochem 37:235–239

    Article  CAS  Google Scholar 

  • Kang HM, Saltveit ME (2002) Chilling tolerance of maize cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576. https://doi.org/10.1034/j.1399-3054.2002.1150411.x

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH (2015) Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annum L. Eur J Soil Biol 68:85–93

    Article  CAS  Google Scholar 

  • Karabudak T, Bor M, Özdemir F, Türkan İ (2014) Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression. Mol Biol Rep 41(3):1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Kashyap PL, Rai P, Kumar R, Sharma S, Jasrotia P, Srivastava AK, Kumar S (2018) Microbial nanotechnology for climate resilient agriculture. In: Kashyap PL, Srivastava AK, Tiwari SP, Kumar S (eds) Microbes for climate resilient agriculture. Wiley, Hoboken, pp 279–344

    Chapter  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244

    Article  CAS  Google Scholar 

  • Kaushik R, Saxena AK, Tilak KVBR (2001) Selection and evaluation of Azospirillum brasilense strains growing at a sub-optimum temperature in rhizocoenosis with wheat. Folia Microbiol 46:327–332

    Article  CAS  Google Scholar 

  • Kim HS, Oh JM, Luan S (2013) Cold stress causes rapid but differential changes in properties of plasma membrane H+- ATPase of camelina and rapeseed. J Plant Physiol 170:828–837

    Article  CAS  PubMed  Google Scholar 

  • Korkmaz A, Dufault RJ (2001) Developmental consequences of cold temperature stress at transplanting on seedling and field growth and yield. I. Watermelon. J Am Soc Hortic Sci 126:404–409

    Article  Google Scholar 

  • Kumar S, Suyal DC, Dhauni N, Bhoriyal M, Goel R (2014) Relative plant growth promoting potential of Himalayan psychrotolerant Pseudomonas jesenii strain MP1 against native Cicer arietinum (L.)., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. and Eleusine coracana (L.) Gaertn. Afr J Microbiol Res 8(50):3931–3943

    Google Scholar 

  • Kumar S, Suyal DC, Bhoriyal M, Goel R (2018) Plant growth promoting potential of psychrotolerant Dyadobacter sp. for pulses and finger millet and impact of inoculation on soil chemical properties and diazotrophic abundance. J Plant Nutr 41(8):1035–1046

    Article  CAS  Google Scholar 

  • Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R (2019) Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS One 14(3):e0213844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kytöviita MM, Ruotsalainen AL (2007) Mycorrhizal benefit in two low Arctic herbs increases with increasing temperature. Am J Bot 94(8):1309–1315

    Article  PubMed  Google Scholar 

  • Larcher W (2001) Ökophysiologie der Pfl anzen, 6th edn. Eugen Ulmer, Stuttgart, p 204

    Google Scholar 

  • Li XN, Pu HC, Liu FL, Zhou Q, Cai J, Dai TB (2015) Winter wheat photosynthesis and grain yield responses to spring freeze. Agron J 107:1002–1010. https://doi.org/10.2134/agronj14.0460

    Article  Google Scholar 

  • Liu J, Folberth C, Yang H, Röckström J, Abbaspour K, Zehnder AJ (2013) A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PLoS One 8(2):e57750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu A, Chen S, Chang R et al (2014a) Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity. J Plant Res 127:775–785

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Ma LN, He XY et al (2014b) Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose. Appl Soil Ecol 84:185–191

    Article  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Malviya MK, Pandey A, Trivedi P, Gupta G (2009) Chitinolytic activity of cold tolerant antagonistic species of Streptomyces isolated from glacial sites of Indian himalaya. Curr Microbiol 59:502–508

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Collins T (2019) Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 103:2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubara Y, Hirano I, Sassa D (2004) Alleviation of high temperature stress in strawberry plants infected with arbuscular mycorrhizal fungi. Environ Control Biol 42(2):105–111

    Article  Google Scholar 

  • McBeath J (1995) Cold tolerant Trichoderma. US Patent #5,418,165

    Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4(4):806–811

    Article  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Kundu S, Gupta HS (2008) Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58(4):561–568

    Article  Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalaya. Biol Res 42(3):305–313

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193(7):497–513

    Article  CAS  PubMed  Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell 7:321–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moyer CL, Morita RY (2007) Psychrophiles and psychrotrophs. In: Morita RY (ed) Encyclopedia of life sciences. Wiley, Chichester, pp 1–6

    Google Scholar 

  • Nayyar H, Bains T, Kumar S (2005) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ Exp Bot 53:39–48

    Article  CAS  Google Scholar 

  • Negi YK, Kumar J, Garg SK (2005) Cold-tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89:2151–2156

    Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Palni LMS, Mulkalwar P, Nadeem M (2002) Effect of temperature on solubilization of tricalcium phosphate by Pseudomonas corrugata. J Sci Ind Res 61:457–460

    CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LM (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53(2):102–107

    Article  CAS  PubMed  Google Scholar 

  • Patni B, Panwar AS, Negi P, Joshi GK (2018) Plant growth promoting traits of psychrotolerant bacteria: a boon for agriculture in hilly terrains. Plant Sci Today 5(1):24–28

    Article  CAS  Google Scholar 

  • Pedranzani H, Rodríguez-Rivera M, Gutiérrez M, Porcel R (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26(2):141–152

    Article  CAS  PubMed  Google Scholar 

  • Polisensky DH, Braam J (1996) Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol 111:1271–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prevost D, Antoun H, Bordeleau LM (1987) Effects of low temperature on nitrogenase activity in sainfoin (Onobrychis viciifolia) nodulated by arctic rhizobia. FEMS Microbiol Ecol 45:205–210

    Article  CAS  Google Scholar 

  • Prevost D, Drouin P, Antoun H (1999) The potential use of cold-adapted rhizobia to improve symbiotic nitrogen fixation in legumes cultivated in temperate regions. In: Biotechnological applications of cold-adapted organisms, pp 161–176

    Chapter  Google Scholar 

  • Prevost D, Drouin P, Laberge S, Bertrad A, Cloutier J, Levesque G (2003) Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can J Bot 81(12):1153–1161

    Article  CAS  Google Scholar 

  • Qin Y, Fu Y, Kanga W, Li H, Gao H, Vitalievitch KS, Liu H (2017) Isolation and identification of a cold-adapted bacterium and its characterization for biocontrol and plant growth-promoting activity. Ecol Eng 105:362–369

    Article  Google Scholar 

  • Rai AK, Kumar R (2015) Potential of microbial bio-resources of Sikkim Himalayan region. ENVIS Bull Himalayan Ecol 23:99–105

    Google Scholar 

  • Rihan HZ, Al-Issawi M, Fuller MP (2017) Advances in physiological and molecular aspects of plant cold tolerance. J Plant Interact 12(1):143–157

    Article  CAS  Google Scholar 

  • Rinu K, Pandey A (2011) Slow and steady phosphate solubilisation by a psychrotolerant strain of Paecilomyces hepiali (MTCC 9621). World J Microbiol Biotechnol 27:1055–1062

    Article  CAS  Google Scholar 

  • Rinu K, Sati P, Pandey A (2014) Trichoderma gamsii (NFCCI 2177) a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54(5):408–417

    Article  CAS  PubMed  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signaling and cold acclimation in plants. Adv Bot Res 49:35–150

    Article  CAS  Google Scholar 

  • Rymen B, Fiorani F, Kartal F, Vandepoele K, Inzé D, Beemster GTS (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol 143:1429–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    Article  CAS  PubMed  Google Scholar 

  • Sati P, Dhakar K, Pandey A (2013) Microbial diversity in soil under potato cultivation from Cold Desert Himalaya, India. ISRN Biodiversity 2013:9. https://doi.org/10.1155/2013/767453

    Article  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008a) Characterization of a cold tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24(7):955–960

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46(2):171–175

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra P, Bisht J, Gupta H (2009) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64(2):239–245

    Article  CAS  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS (2010) Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J Microbiol 50(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27(5):1129–1135

    Article  CAS  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis[W][OA]. Plant Cell 24(6):2578–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SM, Yadav LS, Singh SK, Singh P, Singh PN, Ravindra R (2011) Phosphate solubilizing ability of two arctic Aspergillus strains. Polar Res 30:7283–7289

    Article  CAS  Google Scholar 

  • Soni R, Suyal DC, Agrawal K, Yadav A, Shouche Y, Goel R (2015) Differential proteomic expression of Himalayan psychrotrophic diazotroph Pseudomonas palleroniana N26 under low temperature diazotrophic conditions. Cryo Letters 36:74–82

    PubMed  Google Scholar 

  • Srivastava AK, Rai A, Kumar S, Kashyap PL, Arora DK (2013) Extremophiles: potential sources of biomolecules. In: Tiwari SP, Sharma R, Singh RK (eds) Recent advances in microbiology. Nova Publishers, New York, pp 551–564

    Google Scholar 

  • Subramanian P (2011) Psychrotolerance mechanisms in cold-adapted bacteria and their perspectives as plant growth- promoting bacteria in temperate agriculture. Korean J Soil Sci Fertil 44(4):625–636

    Article  Google Scholar 

  • Subramanian P, Mageswari A, Kim K, Lee Y, Sa T (2015) Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum Lycopersicum Mill.) by activation of their antioxidant capacity. Mol Plant Microbe Interact 28:1073–1081. https://doi.org/10.1094/MPMI-01-15-0021-R

    Article  CAS  PubMed  Google Scholar 

  • Subramanian P, Kim K, Krishnamoorthy R, Mageswari A, Selvakumar G, Sa T (2016) Cold stress tolerance in Psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solanum lycopersicum Mill.) under low temperatures. PLoS One 11(8):e0161592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun X, Griffith M, Pasternak JJ, Glick BR (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 41(9):776–784

    Article  CAS  PubMed  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2014) Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr Microbiol 68:543–550

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) An overview: cold stress effects on reproductive development in grain crops. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clément C, Barka EA (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. MPMI 25(2):241–249

    Article  CAS  PubMed  Google Scholar 

  • Tiryaki D, Ihsan A, okkes A (2019) Psychrotolerant bacteria isolated from the leaf apoplast of cold-adapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cryobiology 86:111–119

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugate (NRRL B-30409) mutants increased phosphate solubilisation, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144

    Article  PubMed  CAS  Google Scholar 

  • Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MTCC 7905. J Basic Microbiol 47(6):513–517

    Article  CAS  PubMed  Google Scholar 

  • Turan M, Gulluce M, Cakmak R, Sahin F (2013) Effect of plant growth-promoting rhizobacteria strain on freezing injury and antioxidant enzyme activity of wheat and barley. J Plant Nutr 36:731–748

    Article  CAS  Google Scholar 

  • Uemura M, Steponkus PL (1999) Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane. J Plant Res 112(2):245–254

    Article  Google Scholar 

  • van der Ploeg A, Heuvelink E (2005) Influence of sub-optimal temperature on tomato growth and yield: a review. J Hortic Sci Biotechnol 80:652–659

    Article  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899

    Article  CAS  Google Scholar 

  • Vyas P, Joshi R, Sharma KC, Rahi P, Gulati A, Gulati A (2010) Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. J Microbiol Biotechnol 20(12):1724–1734

    CAS  PubMed  Google Scholar 

  • Wang P, Zhang Y, Mi F, Tang X, He X, Cao Y, Liu C, Yang D, Dong J, Zhang K, Xu J (2015) Recent advances in population genetics of ectomycorrhizal mushrooms Rusulla spp. Mycology 6:110–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Chen Q, Hussain S, Mei J, Dong H, Peng S (2016a) Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci Rep 6:19637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang C, Gao YL, Wang YP, Guo JH (2016b) A consortium of three plant growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. J Plant Growth Regul 35(1):54–64

    Article  CAS  Google Scholar 

  • Whaley JM, Kirby EJM, Spink JH, Foulkes MJ, Sparkes DL (2004) Frost damage to winter wheat in the UK: the effect of plant population density. Eur J Agron 21:105–115

    Article  Google Scholar 

  • Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63:279–290

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yadav AN, Singh RN, Sachan SG, Kaushik R (2015) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Prithiviraj B, Charles TC, Driscoll BT, Smith DL (2003) Low temperature tolerant Bradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area. Eur J Agron 19:205–213

    Article  CAS  Google Scholar 

  • Zhao J, Li S, Jiang T, Liu Z, Zhang W (2012) Chilling stress- the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L.) leaf senescence. PLoS One 7:e36126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Ma H, Liang K (2012) Improved tolerance of teak (Tectona grandis L.f.) seedlings to low-temperature stress by the combined effect of arbuscular mycorrhiza and paclobutrazol. J Plant Growth Regul 31:427–435

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137

    Article  CAS  Google Scholar 

  • Zhu JJ, Li YR, Liao JX (2013) Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves. Plant Physiol Biochem 73:427–443

    Article  CAS  PubMed  Google Scholar 

  • Zhu XC, Song FB, Liu FL, Liu SQ, Tian CJ (2015) Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress. Crop Pasture Sci 66:62–70

    Article  CAS  Google Scholar 

  • Zhuang K, Kong F, Zhang S, Meng C, Yang M, Liu Z, Wang Y, Ma N, Meng Q (2019) Whirly1 enhances tolerance to chilling stress in tomato via protection of photosystem II and regulation of starch degradation. New Phytol 221:1998–2012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kushwaha, P., Kashyap, P.L., Kuppusamy, P. (2020). Microbes for Cold Stress Resistance in Plants: Mechanism, Opportunities, and Challenges. In: Goel, R., Soni, R., Suyal, D. (eds) Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1902-4_14

Download citation

Publish with us

Policies and ethics