Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 879))

  • 444 Accesses

Abstract

All classical logic circuits are physically irreversible, because these circuits comprise irreversible logic. With irreversible logic, all the energy transferred by the power supply is finally converted into heat. Irreversible logic does not allow traverse the state sequences in the reverse direction to gain the initial state after the end of logical computation. This chapter discusses different aspects of both irreversible and reversible logic gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.M. Mano, Digital Design (Prentice Hall, 2005)

    Google Scholar 

  2. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  3. C.S. Lent, M. Liu, Y. Lu, Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240 (2006)

    Article  Google Scholar 

  4. A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483(7388), 187–189 (2012)

    Article  Google Scholar 

  5. A.O. Orlov, C.S. Lent, C.C. Thorpe, G.P. Boechler, G.L. Snider, Experimental test of Landauers principle at the sub-KBT level. Jpn. J. Appl. Phys. 51(6S), 06FE10 (2012)

    Google Scholar 

  6. T. Toffoli, Reversible computing (Springer, Berlin, 1980), pp. 632–644

    Book  Google Scholar 

  7. E. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21(3), 219–253 (1982)

    Article  MathSciNet  Google Scholar 

  8. A. Peres, Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985)

    Article  MathSciNet  Google Scholar 

  9. R.P. Feynman, Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)

    Article  MathSciNet  Google Scholar 

  10. I.L.C.M.A. Nielsen, Quantum Computation and Quantum Information (Cambridge University Press, 2000)

    Google Scholar 

  11. P.A.M. Dirac, A new notation for quantum mechanics. Math. Proc. Cambridge Philos. Soc. 35(3), 416–418 (1939)

    Article  MathSciNet  Google Scholar 

  12. D. Maslov, D.M. Miller, Comparison of the cost metrics for reversible and quantum logic synthesis. IET Comput. Dig. Techn.

    Google Scholar 

  13. W.N.N. Hung, X. Song, G. Yang, J. Yang, M. Perkowski, Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(9), 1652–1663 (2006)

    Article  Google Scholar 

  14. D. Maslov, G.W. Dueck, Reversible cascades with minimal garbage. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(11), 1497–1509 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trailokya Nath Sasamal .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasamal, T.N., Singh, A.K., Mohan, A. (2020). Fundamental of Reversible Logic. In: Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective. Studies in Computational Intelligence, vol 879. Springer, Singapore. https://doi.org/10.1007/978-981-15-1823-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1823-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1822-5

  • Online ISBN: 978-981-15-1823-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics