Skip to main content

Dyes: Effect on the Environment and Biosphere and Their Remediation Constraints

  • Chapter
  • First Online:
Microbial Bioremediation & Biodegradation

Abstract

The early excitement of industrialization during the twentieth century and unprecedented population rise have now compelled us to think about developing environmental remediation strategies on a priority basis to save the basic essential components of life. Understanding the impact of dyes and dye intermediates which have been the major component of industrial pollutants in the environment is the prime need, to reclaim the pristine environment. Physical and chemical environmental cleanup technologies developed for dye and textile effluents are proven to be expensive and energy consuming, often generate toxic by-products, and more importantly are faced with limited success in a narrower scope. Consequently, the need for an alternate approach has led to the development of self-sustainable, greener biological methods (i.e., bioremediation). It offers a great advantage of astonishing catabolic diversity of the innate microbial population inhabiting the polluted environment. Factors like geological aspects, climate, soil and water characteristics, waste and disposal facilities, etc. play a vital role in the success of different technologies (including bioremediation). Besides chemical structure, degree of recalcitrance, toxicity, and bioavailability of dye molecules are considered significant parameters for their treatments. In this review, an attempt has been made to understand the complexities and constraints of existing technologies and few optimistic scenarios to improve and develop new methodologies for treatment of industrial effluents from dye and textile industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akan JC, Abdulrahman FI, Ayodele JT, Ogugbuaja VO (2009) Impact of tannery and textile effluent on the chemical characteristics of Challawa River, Kano state Nigeria. Aust J Basic Appl Sci 3:1933–1947

    CAS  Google Scholar 

  • Alaton IA, Ferry JL (2003) Merits of polyoxotungstates as environmental remediation catalysts: a novel wet oxidation technology for refractory industrial pollutants. J Environ Sci Health A Tox Hazard Subst Environ Eng 38:2435–2445

    Google Scholar 

  • Baek KH, Yoon BD, Cho DH, Kim BH, Oh HM, Kim HS (2009) Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil contaminated soil. J Microbiol Biotechnol 19:339–345

    CAS  Google Scholar 

  • Balapure KH, Jain K, Chattaraj S, Bhatt NS, Madamwar D (2014) Co-metabolic degradation of diazo dye—reactive blue 160 by enriched mixed cultures BDN. J Hazard Mater 279:85–95

    CAS  Google Scholar 

  • Balapure K, Bhatt N, Madamwar D (2015) Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresour Technol 175:1–7

    CAS  Google Scholar 

  • Banat MI, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 58:217–227

    CAS  Google Scholar 

  • Beltrame MO, De Marco SG, Marcovecchio JE (2010) Effects of zinc on molting and body weight of the estuarine crab Neohelice granulata (Brachyura: Varunidae). Sci Total Environ 408:531–536

    CAS  Google Scholar 

  • Bes-Piá A, Mendoza-Roca JA, Alcaina-Miranda MI, Iborra-Clar A, Iborra-Clar MI (2003) Combination of physico-chemical treatment and nanofiltration to reuse wastewater of a printing, dyeing and finishing textile industry. Desalination 157:73

    Google Scholar 

  • Bin Y, Jiti Z, Jing W, Cuihong D, Hongman H, Zhiyong S, Yongming B (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236:129–136

    Google Scholar 

  • Blumel S, Stolz A (2003) Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24. Appl Microbiol Biotechnol 62:186–190

    CAS  Google Scholar 

  • Blumel S, Knackmuss HJ, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68:3948–3955

    CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    CAS  Google Scholar 

  • Brown MA, DeVito SC (1993) Predicting azo dye toxicity. Crit Rev Env Sci Technol 23:249–324

    CAS  Google Scholar 

  • Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288

    CAS  Google Scholar 

  • Carr CM (1995) Chemistry of the textile industry. Blackie Academic and Professional, Glasgow, p 276

    Google Scholar 

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11

    Google Scholar 

  • Chen H, Wang RF, Cerniglia CE (2004) Molecular cloning, over expression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr Purif 34:302–310

    CAS  Google Scholar 

  • Chung KT, Cerniglia CE (1992) Mutagenicity of azo dyes: structure-activity relationships. Mutat Res 277:201–220

    CAS  Google Scholar 

  • Cristovao RO, Tavares APM, Ribeiro AS, Loureiro JM, Boaventura RAR, Macedo EA (2008) Kinetic modelling and simulation of laccase catalyzed degradation of reactive textile dyes. Bioresour Technol 99:4768–4774

    CAS  Google Scholar 

  • Dasgupta J, Sikder J, Chakraborty S, Curcio S, Drioli E (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manag 147:55–72

    CAS  Google Scholar 

  • Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol 101:1558–1569

    CAS  Google Scholar 

  • Diaz E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7:173–180

    CAS  Google Scholar 

  • Dulkadiroglu H, Dogruel S, Okutman D, Kabdasli I, Sozen S, Orhon D (2002) Effect of chemical treatment on soluble residual COD in textile wastewaters. Water Sci Techol 45:251–259

    CAS  Google Scholar 

  • Easton JR (1995) The dye maker’s view. In: Cooper P (ed) Colour in dye house effluent. Society of Dyers and Colourists, Bradford, pp 9–21

    Google Scholar 

  • Faryal R, Hameed A (2005) Isolation and characterization of various fungal strains from textile effluent for their use in bioremediation. Pak J Bot 37:1003–1008

    Google Scholar 

  • Fernandez ME, Nunell GV, Bonelli PR, Cukiermana AL (2014) Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes. Ind Crop Prod 62:437–445

    CAS  Google Scholar 

  • Ferraz ERA, Umbuzerio GA, de-Almeida G, Caloto-Oliveria A, Chequer FMD, Zanomi MVB (2011) Differential toxicity of disperse red 1 and disperse red 13 in the Ames test, HepG2, cytotoxicity assay and daphnia acute toxicity test. Environ Toxicol 26:489–497

    CAS  Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    CAS  Google Scholar 

  • Forss J, Pinhassi J, Lindh M, Welander U (2013) Microbial diversity in a continuous system based on rice husks for biodegradation of the azo dyes reactive red 2 and reactive red 5. Bioresour Technol 130:681–688

    CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolourization of dye wastewaters: a review. Bioresour Technol 79:251–262

    CAS  Google Scholar 

  • Gogate PR, Pandit AB (2004a) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501

    CAS  Google Scholar 

  • Gogate PR, Pandit AB (2004b) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8:553–597

    CAS  Google Scholar 

  • Greaves AJ, Phillips DAS, Taylor JA (1999) Correlation between the bioelimination of anionic dyes by an activated sewage with molecular structure. Part 1: literature review. J Soc Dyers Color 115:363–365

    CAS  Google Scholar 

  • Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interf Sci 193–194:24–34

    Google Scholar 

  • Hai IF, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Environ Sci Technol 37(4):315–377

    CAS  Google Scholar 

  • Hao OJ, Kim H, Chaing PC (2000) Decolourization of wastewater. Cri Rev Environ Sci Technol 30:449–505

    CAS  Google Scholar 

  • Hitz HR, Huber W, Reed RH (1978) The absorption of dyes on activated sludge. J Soc Dyers Color 94(2):71–76

    CAS  Google Scholar 

  • Hong YG, Xu M, Guo J, Xu Z, Chen X, Sun G (2007) Respiration and growth of Shewanella decolorationis S12 with an azo compound as the sole electron acceptor. Appl Environ Microbiol 73(1):64–72

    CAS  Google Scholar 

  • Jadhav JP, Kalyani DC, Telke AA, Phugare SS, Govindwar SP (2010) Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals and toxicity from textile dye effluent. Bioresour Technol 101:165–173

    CAS  Google Scholar 

  • Jain K, Shah V, Chapla D, Madamwar D (2012) Decolorization and degradation of azo dye –reactive violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. J Hazard Mater 213–214:378–386

    Google Scholar 

  • Jegatheesan V, Pramanik BK, Chen J, Navaratna D, Chang CY, Shu L (2016) Treatment of textile wastewater with membrane bioreactor: a critical review. Bioresour Technol 204:202–212

    CAS  Google Scholar 

  • Jerez CA (2009) Biomining microorganisms: molecular aspects and applications in biotechnology and bioremediation. In: Advances in applied bioremediation. Springer, Berlin, pp 239–256

    Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) Comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    CAS  Google Scholar 

  • Karpouzas DG, Singh BK (2010) Application of fingerprinting molecular methods in bioremediation studies. Methods Mol Biol 599:69–88

    CAS  Google Scholar 

  • Khan Z, Jain K, Soni A, Madamwar D (2014) Microaerophilic degradation of sulphonated azo dye—reactive red 195 by bacterial consortium AR1 through co-metabolism. Int Biodeterior Biodegrad 94:167–175

    CAS  Google Scholar 

  • Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol Adv 33:1697–1714

    CAS  Google Scholar 

  • Kim TH, Park C, Yang J, Kim S (2004) Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. J Hazard Mater 112:95

    CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) TiO2-assitated photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14

    CAS  Google Scholar 

  • Krull R, Döpkens E (2004) Recycling of dyehouse effluents by biological and chemical treatment. Water Sci Technol 49(4):311

    CAS  Google Scholar 

  • Kuberan T, Anburaj J, Sundaravadivelan C, Kumar P (2011) Biodegradation of azo dye by Listeria sp. Int J Environ Sci 1:1760–1770

    Google Scholar 

  • Kulkarni PS, Crespo JG, Afonso CAM (2008) Dioxins sources and current remediation technologies - a review. Environ Int 34:139–153

    CAS  Google Scholar 

  • Kulla HG (1981) Biodegradation of synthetic organic colorants. In: Leisinger T, Hutter R, Cook AM, Nuesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds: FEMS symposium no. 12. Academic Press for the Swiss Academy of Sciences and the Swiss Society of Microbiology on behalf of the Federation of European Microbiological Societies, London

    Google Scholar 

  • Kusvuran E, Gulnaz O, Irmak S, Atanur OM, Yavuz HI, Erbatur O (2004) Comparison of several advanced oxidation processes for the decolorization of reactive red 120 azo dye in aqueous solution. J Hazard Mater 109:85–93

    CAS  Google Scholar 

  • Lai KCK, Surampalli RY, Tyagi RD, Lo IMC, Yan S (2007) Performance monitoring of remediation technologies for soil and groundwater contamination: review. ASCE practical periodical of hazardous, toxic and radioactive. Waste Manag 11(3):132–157

    CAS  Google Scholar 

  • Laing IG (1991) The impact of effluent regulations on the dyeing industry. Rev Prog Color Relat Top 2:56–70

    Google Scholar 

  • Lee HHW, Chen G, Yue PL (2001) Integration of chemical and biological treatments for textile industry wastewater: a possible zero-discharge system. Water Sci Technol 44(5):75

    CAS  Google Scholar 

  • Libra JA, Sosath F (2003) Combination of biological and chemical processes for the treatment of textile wastewater containing reactive dyes. J Chem Technol Biotechnol 78:1149

    CAS  Google Scholar 

  • Lim BR, Hu HY, Ahn KH, Fujie K (2004) Oxidative treatment characteristics of biotreated textile-dyeing wastewater and chemical agents used in a textile-dyeing process by advanced oxidation process. Wa. Sci Tech 49(5–6):137

    CAS  Google Scholar 

  • Lovely DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44

    Google Scholar 

  • Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Advanc 29:248–258

    CAS  Google Scholar 

  • Marechal AM, Slokar YM, Taufer (1997) Decolourization of chlorotriazine reactive azo dyes with H2O2/UV. Dyes Pigments 33:281–298

    Google Scholar 

  • Mass R, Chaudhari S (2005) Adsorption and biological decolourization of azo dye reactive red 2 in semicontinuous anaerobic reactors. Process Biochem 40:699–705

    Google Scholar 

  • Mate MS, Pathade G (2012) Biodegradation of C.I. reactive red 195 by Enterococcus faecalis strain YZ66. World J Microbiol Biotechnol 28:815–826

    CAS  Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    CAS  Google Scholar 

  • Moosvi S, Madamwar D (2007) An integrated process for the treatment of CETP wastewater using coagulation, anaerobic and aerobic process. Bioresour Technol 98:3384–3392

    CAS  Google Scholar 

  • Moosvi S, Kher X, Madamwar D (2007) Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes Pigments 74:723–729

    CAS  Google Scholar 

  • Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399

    CAS  Google Scholar 

  • Nigam P, Banat IM, Singh D, Marchant R (1996) Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem 31(5):435–442

    CAS  Google Scholar 

  • Nigam P, Armour G, Banat IM, Singh D, Marchant R (2000) Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour Technol 72:219–226

    CAS  Google Scholar 

  • Nojiri H, Shintani M, Omori T (2004) Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol 64:154–174

    CAS  Google Scholar 

  • Pang YL, Abdullah AZ (2013) Current status of textile industry wastewater management and research Progress in Malaysia: a review. Clean (Weinh) 41(8):751–764

    CAS  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cell: a review. Dyes Pigments 58:179–196

    CAS  Google Scholar 

  • Pizzolato TM, Carissimi E, Machado EL, Schneider IAH (2002) Colour removal with NaClO of dye wastewater from an agate-processing plant in Rio Grande do Sul, Brazil. Int J Miner Process 65:203–211

    CAS  Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    CAS  Google Scholar 

  • Rieger PG, Meier HM, Gerle M, Vogt U, Groth T, Knackmuss HJ (2002) Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. J Biotechnol 94:101–123

    CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    CAS  Google Scholar 

  • Sani RK, Banerjee UC (1999) Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzym Microb Technol 24:433–437

    CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolourization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    CAS  Google Scholar 

  • Sarria V, Deront M, Péringer P, Pulgarin C (2003) Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron (III) photoassisted-biological treatment. Appl Catal B Environ 40:231

    CAS  Google Scholar 

  • Savin II, Butnaru R (2008) Wastewater characteristics in textile finishing mills. Environ Eng Manag J 7:859–864

    CAS  Google Scholar 

  • Sen R, Chakrabarti S (2009) Biotechnology-applications to environmental remediation in resource exploitation. Curr Sci 97:768–775

    CAS  Google Scholar 

  • Shah M (2014) Effective treatment systems for azo dye degradation: a joint venture between physico-chemical and microbiological process. Int J Environ Biorem Biodegrad 2(5):231–242

    Google Scholar 

  • Shah B, Mohan V, Jain K, Madamwar D (2016) Microaerophilic symmetric reductive cleavage of reactive azo dye—Remazol brilliant violet 5R by developed consortium VIE6: community synergism. Appl Biochem Biotechnol 180:1029–1042

    CAS  Google Scholar 

  • Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367

    Google Scholar 

  • Slokar YM, Le Marechal AM (1998) Methods of decolourization of textiles. Dyes Pigments 37:335–356

    CAS  Google Scholar 

  • Solis M, Solis A, Perezb HI, Manjarrez N, Floresa M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47:1723–1748

    CAS  Google Scholar 

  • Solis-Oba M, Eloy-Juarez M, Teutli M, Nava JL, Gonzalez I (2009) Comparison of advanced techniques for the treatment of an indigo model solution: electro incineration, chemical coagulation and enzymatic. Rev Mex Ing Quim 8:275–282

    CAS  Google Scholar 

  • Southern TG (1995) Technical solutions to the colour problem: a critical review. In: Cooper P (ed) Colour in dyehouse effluent. Society of Dyers and Colourists, Bradford, pp 73–91

    Google Scholar 

  • Steenken-Richter I, Kermer WD (1992) Decolourizing textile effluents. Color Technol 108(4):182–186

    CAS  Google Scholar 

  • Stenuit B, Eyers L, Schuler L, George I, Agathos SN (2009) Molecular tools for monitoring and validating bioremediation. In: Advances in applied bioremediation, vol 17. Springer, Berlin, pp 339–353

    Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    CAS  Google Scholar 

  • Walker R, Ryan AJ (1971) Some molecular parameters influencing rate of reduction of azocompounds by intestinal microflora. Xenobiotica 1(4/5):483–486

    CAS  Google Scholar 

  • Wang GD, Chen XY (2007) Detoxification of soil phenolic pollutants by plant secretory enzyme. In: Willey N (ed) Phytoremediation. Methods in bioremediation, vol 23. Humana, Totowa, pp 49–57

    Google Scholar 

  • Wang Z, Xue M, Huang K, Liu Z (2011) Textile dyeing wastewater treatment. In: Hauser P (ed) Advances in treating textile effluent. InTech, pp 91–116

    Google Scholar 

  • Watanabe T (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12(3):237–241

    Google Scholar 

  • Weber R (2007) Relevance of PCDD/PCDF formation for the evaluation of POPs destruction technologies-review on current status and assessment gaps. Chemosphere 67:109–117

    Google Scholar 

  • Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interf Sci 209:172–184

    CAS  Google Scholar 

  • Yusuff RO, Sonibare JA (2004) Characterization of textile industries’ effluents in Kaduna Nigeria and pollution implications. Global Nest: Int J 6:212–221

    Google Scholar 

  • van der Zeer FP (2002) Anaerobic azo dye reduction. Ph.D. thesis. Wageningen University, Wageningen

    Google Scholar 

  • Zimmerman T, Kulla HG, Leisinger T (1982) Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by pseudomonas KF46. Eur J Biochem 129:197–203

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Department of Biotechnology, Ministry of Science and Technology, New Delhi, for financial support (BT/Env/BC/01/2014).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, K., Desai, C., Tiwari, O., Madamwar, D. (2020). Dyes: Effect on the Environment and Biosphere and Their Remediation Constraints. In: Shah, M. (eds) Microbial Bioremediation & Biodegradation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1812-6_3

Download citation

Publish with us

Policies and ethics