Skip to main content

A Spotlight on Butanol and Propanol as Next-Generation Synthetic Fuels

  • Chapter
  • First Online:
Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals

Abstract

The exhaustive extraction and prodigious utilization of fossil fuels have led to the large-scale increase in the emissions of greenhouse gases. In addition, the per capita demand of petrochemical resources is escalating due to rapid industrialization and the rising number of vehicles in the transportation sector. There is a growing interest in the development of alternative fuels to reduce the carbon footprint and air pollution caused by the fossil fuels. Biofuels produced from plant residues are carbon neutral and can be produced through biomass-to-liquid and biomass-to-gas conversion technologies. Bioethanol, biopropanol, and biobutanol are some alcohol-based fuels and chemicals that have found multifarious industrial applications. Although bioethanol is blended with gasoline for use as a transportation fuel, it is often criticized over food-versus-fuel debate because of its raw materials being food crops such as corn, sugarcane, and other grains. In addition, butanol and propanol have high potentials over ethanol in replacing gasoline partially or completely due to their advanced fuel properties. This chapter throws light on butanol and propanol as the next-generation synthetic fuels. The aspects discussed in this chapter include their fuel chemistry as well as production technologies from petrochemicals and bio-based feedstocks. The biotechnological developments in the fermentation of lignocellulosic biomass to produce butanol and propanol are provided. The chapter concludes with a note on industrial challenges and future prospects in employing butanol and propanol as commercial biofuels and biochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aitchison H, Wingad RL, Wass DF (2016) Homogeneous ethanol to butanol catalysis—Guerbet renewed. ACS Catal 6:7125–7132

    Article  CAS  Google Scholar 

  • Ammar EM, Wang Z, Yang ST (2013) Metabolic engineering of Propionibacterium freudenreichii for n-propanol production. Appl Microbiol Biotechnol 97:4677–4690

    Article  CAS  PubMed  Google Scholar 

  • Atsumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azargohar R, Nanda S, Rao BVSK, Dalai AK (2013) Slow pyrolysis of deoiled canola meal: product yields and characterization. Energy Fuel 27:5268–5279

    Article  CAS  Google Scholar 

  • Azargohar R, Nanda S, Dalai AK (2018) Densification of agricultural wastes and forest residues: a review on influential parameters and treatments. In: Sarangi PK, Nanda S, Mohanty P (eds) Recent advancements in biofuels and bioenergy utilization. Springer Nature, Singapore, pp 27–51

    Chapter  Google Scholar 

  • Azargohar R, Nanda S, Kang K, Bond T, Karunakaran C, Dalai AK, Kozinski JA (2019) Effects of bio-additives on the physicochemical properties and mechanical behavior of canola hull fuel pellets. Renew Energy 132:296–307

    Article  CAS  Google Scholar 

  • Biofuel.org.uk (2018). http://biofuel.org.uk/bioalcohols.html. Accessed 29 Dec 2018

  • Bisaria VS (1991) Bioprocessing of agro-residue to glucose and chemicals. In: Martin AM (ed) Bioconversion of waste materials to industrial products. Elsevier, London, pp 187–223

    Google Scholar 

  • Butamax™ (2018) A joint venture between BP and DuPont. http://www.butamax.com. Accessed 29 Dec 2018

  • Capello C, Wernet G, Sutter J, Hellweg S, Hungerbühler K (2009) A comprehensive environmental assessment of petrochemical solvent production. Int J Life Cycle Assess 14:467–479

    Article  CAS  Google Scholar 

  • Carlini C, Di Girolamo M, Macinai A, Marchionna M, Noviello M, Galletti AMRM, Sbrana G (2003) Selective synthesis of isobutanol by means of the Guerbet reaction: Part 2. Reaction of methanol/ethanol and methanol/ethanol/n-propanol mixtures over copper based/MeONa catalytic systems. Mol Catal A: Chem 200:137–146

    Article  CAS  Google Scholar 

  • Chakraborty S, Piszel PE, Hayes CE, Baker RT, Jones WD (2015) Highly selective formation of n-butanol from ethanol through the Guerbet process: a tandem catalytic approach. J Am Chem Soc 137:14264–14267

    Article  CAS  PubMed  Google Scholar 

  • Chauvel A, Lefebre G (1989a) Petrochemical processes: technical and economic characteristics, Synthesis-gas derivatives and major hydrocarbons, vol 1. Editions Technip, Paris

    Google Scholar 

  • Chauvel A, Lefebre G (1989b) Petrochemical processes: Technical and economic characteristics, Major oxygenated, chlorinated and nitrated derivatives, vol 2. Editions Technip, Paris

    Google Scholar 

  • Choi YJ, Park JH, Kim TY, Lee SY (2012) Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng 14:477–486

    Article  CAS  PubMed  Google Scholar 

  • Dabelstein W, Reglitzky A, Schutze A, Reders K (2007) Automotive fuels. Ullmannʼs Encycl Ind Chem 4:425–458

    Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  PubMed  Google Scholar 

  • Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33

    Article  CAS  Google Scholar 

  • DuPont Tate & Lyle Bio Products (2018) Expanding bio-based propanediol production in Tennessee. http://www.duponttateandlyle.com/DuPont-Tate-Lyle-Bio-Products-Expanding-Bio-based-Propanediol-Production-in-Tennessee. Accessed 29 Dec 2018

  • Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    Article  CAS  PubMed  Google Scholar 

  • Dürre P (2008) Fermentative butanol production bulk chemical and biofuel. Ann N Y Acad Sci 1125:353–362

    Article  CAS  PubMed  Google Scholar 

  • Dürre P (2011) Fermentative production of butanol—the academic perspective. Curr Opin Biotechnol 22:331–336

    Article  CAS  PubMed  Google Scholar 

  • Eden A, Van Nedervelde L, Drukker M, Benvenisty N, Debourg A (2001) Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Appl Microbiol Biotechnol 55:296–300

    Article  CAS  PubMed  Google Scholar 

  • Eisele P, Killpack R (2002) Propene. In: Wiley-VCH (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227

    Article  CAS  PubMed  Google Scholar 

  • García V, Päkkilä J, Ojamo H, Muurinen E, Keiski RL (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sust Energ Rev 15:964–980

    Article  CAS  Google Scholar 

  • Georgieva TI, Skiadas IV, Ahring BK (2007) Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation. Biotechnol Bioeng 98:1161–1170

    Article  CAS  PubMed  Google Scholar 

  • Ghosh TK, Tyagi RD (1979) Rapid ethanol fermentation of cellulose hydrolysate. II. Product and substrate inhibition and optimization of fermentor design. Biotechnol Bioeng 21:1401–1420

    Article  Google Scholar 

  • Gong M, Nanda S, Hunter HN, Zhu W, Dalai AK, Kozinski JA (2017a) Lewis acid catalyzed gasification of humic acid in supercritical water. Catal Today 291:13–23

    Article  CAS  Google Scholar 

  • Gong M, Nanda S, Romero MJ, Zhu W, Kozinski JA (2017b) Subcritical and supercritical water gasification of humic acid as a model compound of humic substances in sewage sludge. J Supercrit Fluids 119:130–138

    Article  CAS  Google Scholar 

  • Graham-Rowe D (2011) Agriculture: beyond food versus fuel. Nature 474:S6–S8

    Article  CAS  PubMed  Google Scholar 

  • Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 22:337–343

    Article  CAS  PubMed  Google Scholar 

  • Gronowska M, Joshi S, MacLean HL (2009) A review of U.S. and Canadian biomass supply studies. Bioresources 4:341–369

    CAS  Google Scholar 

  • Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JHD, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. PNAS 108:504–509

    Article  PubMed  Google Scholar 

  • Himmi EH, Bories A, Boussaid A, Hassani L (2000) Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Appl Microbiol Biotechnol 53:435–440

    Article  CAS  PubMed  Google Scholar 

  • Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012) Bio-based production of C2–C6 platform chemicals. Biotechnol Bioeng 109:2437–2459

    Article  CAS  PubMed  Google Scholar 

  • Janssen PH (2004) Propanol as an end product of threonine fermentation. Arch Microbiol 182:482–486

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Pickering SJ, Lester EH, Turner TA, Wong KH, Warrior NA (2009) Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol. Compos Sci Technol 69:192–198

    Article  CAS  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones A, O’Hare M, Farrell A (2007) Biofuel boundaries: estimating the medium-term supply potential of domestic biofuels. Research report UCB-ITS-TSRC-RR-2007-4. University of California, Berkeley, CA

    Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang YG, Zhang RB, Zhang F, Zhu J (2011) Glycerol/glucose co-fermentation: one more proficient process to produce propionic acid by Propionibacterium acidipropionici. Curr Microbiol 62:152–158

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL (2014) Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. Bioresour Technol 151:69–77

    Article  CAS  PubMed  Google Scholar 

  • Mabee WE, Saddler JN (2010) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 101:4806–4813

    Article  CAS  PubMed  Google Scholar 

  • MacLean HL, Lave LB (2003) Evaluating automobile fuel/propulsion system technologies. Prog Energy Combust Sci 29:1–69

    Article  CAS  Google Scholar 

  • Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A (2011) Engineering strategy of yeast metabolism for higher alcohol production. Microb Cell Factories 10:70

    Article  CAS  Google Scholar 

  • Nair RV, Bennett GN, Papoutsakis ET (1994) Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol 176:871–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res 6:663–677

    Article  CAS  Google Scholar 

  • Nanda S, Dalai AK, Kozinski JA (2014a) Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energ Sci Eng 2:138–148

    Article  CAS  Google Scholar 

  • Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014b) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers Bioref 4:157–191

    Article  CAS  Google Scholar 

  • Nanda S, Azargohar R, Dalai AK, Kozinski JA (2015a) An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sust Energ Rev 50:925–941

    Article  CAS  Google Scholar 

  • Nanda S, Reddy SN, Hunter HN, Butler IS, Kozinski JA (2015b) Supercritical water gasification of lactose as a model compound for valorization of dairy industry effluents. Ind Eng Chem Res 54:9296–9306

    Article  CAS  Google Scholar 

  • Nanda S, Reddy SN, Hunter HN, Dalai AK, Kozinski JA (2015c) Supercritical water gasification of fructose as a model compound for waste fruits and vegetables. J Supercrit Fluids 104:112–121

    Article  CAS  Google Scholar 

  • Nanda S, Dalai AK, Berruti F, Kozinski JA (2016a) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valor 7:201–235

    Article  CAS  Google Scholar 

  • Nanda S, Dalai AK, Gökalp I, Kozinski JA (2016b) Valorization of horse manure through catalytic supercritical water gasification. Waste Manag 52:147–158

    Article  CAS  PubMed  Google Scholar 

  • Nanda S, Dalai AK, Kozinski JA (2016c) Supercritical water gasification of timothy grass as an energy crop in the presence of alkali carbonate and hydroxide catalysts. Biomass Bioenergy 95:378–387

    Article  CAS  Google Scholar 

  • Nanda S, Isen J, Dalai AK, Kozinski JA (2016d) Gasification of fruit wastes and agro-food residues in supercritical water. Energ Convers Manage 110:296–306

    Article  CAS  Google Scholar 

  • Nanda S, Kozinski JA, Dalai AK (2016e) Lignocellulosic biomass: a review of conversion technologies and fuel products. Curr Biochem Eng 3:24–36

    Article  CAS  Google Scholar 

  • Nanda S, Reddy SN, Mitra SK, Kozinski JA (2016f) The progressive routes for carbon capture and sequestration. Energ Sci Eng 4:99–122

    Article  CAS  Google Scholar 

  • Nanda S, Golemi-Kotra D, McDermott JC, Dalai AK, Gökalp I, Kozinski JA (2017a) Fermentative production of butanol: perspectives on synthetic biology. New Biotechnol 37:210–221

    Article  CAS  Google Scholar 

  • Nanda S, Gong M, Hunter HN, Dalai AK, Gökalp I, Kozinski JA (2017b) An assessment of pinecone gasification in subcritical, near-critical and supercritical water. Fuel Process Technol 168:84–96

    Article  CAS  Google Scholar 

  • Nanda S, Rana R, Sarangi PK, Dalai AK, Kozinski JA (2018a) A broad introduction to first, second and third generation biofuels. In: Sarangi PK, Nanda S, Mohanty P (eds) Recent advancements in biofuels and bioenergy utilization. Springer Nature, Singapore, pp 1–25

    Google Scholar 

  • Nanda S, Reddy SN, Vo DVN, Sahoo BN, Kozinski JA (2018b) Catalytic gasification of wheat straw in hot compressed (subcritical and supercritical) water for hydrogen production. Energ Sci Eng 6:448–459

    Article  CAS  Google Scholar 

  • Nanda S, Rana R, Hunter HN, Fang Z, Dalai AK, Kozinski JA (2019) Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chem Eng Sci 195:935–945

    Article  CAS  Google Scholar 

  • Okolie JA, Rana R, Nanda S, Dalai AK, Kozinski JA (2019) Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustain Energ Fuel 3:578–598

    Article  CAS  Google Scholar 

  • Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  • Qi Z, Hollett M, Attia A, Kaufman A (2002) Low temperature direct 2-propanol fuel cells. Electrochem Solid-State Lett 5:A129–A130

    Article  CAS  Google Scholar 

  • Qureshi N, Blaschek HP (1999) Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol Prog 15:594–602

    Article  CAS  PubMed  Google Scholar 

  • Qureshi N, Ezeji TC (2008) Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioprod Biorefin 2:319–330

    Article  CAS  Google Scholar 

  • Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427

    Article  CAS  PubMed  Google Scholar 

  • Sarangi PK, Nanda S (2018) Recent developments and challenges of acetone-butanol-ethanol fermentation. In: Sarangi PK, Nanda S, Mohanty P (eds) Recent advancements in biofuels and bioenergy utilization. Springer Nature, Singapore, pp 111–123

    Chapter  Google Scholar 

  • Sheldon RA, Sanders JPM (2015) Toward concise metrics for the production of chemicals from renewable biomass. Catal Today 239:3–6

    Article  CAS  Google Scholar 

  • Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320

    Article  CAS  PubMed  Google Scholar 

  • Shen CR, Liao JC (2013) Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli. Metab Eng 17:12–22

    Article  CAS  PubMed  Google Scholar 

  • Surisetty VR, Dalai AK, Kozinski J (2011) Alcohols as alternative fuels: an overview. Appl Catal A Gen 404:1–11

    CAS  Google Scholar 

  • Szulczyk KR (2010) Which is a better transportation fuel—butanol or ethanol? Int J Energ Environ 1:501–512

    CAS  Google Scholar 

  • The Knowledge Transfer Network (KTN) (2016) From shale gas to biomass: the future of chemical feedstocks. Horsham, UK

    Google Scholar 

  • USEIA, U.S. Energy Information Administration (2011) International Energy Outlook 2011. http://www.worldenergyoutlook.org. Accessed 15 Dec 2011

  • USEIA, U.S. Energy Information Administration (2016) International Energy Statistics. https://www.eia.gov/. Accessed 1 June 2017

  • Uyttebroek M, Hecke WV, Vanbroekhoven K (2015) Sustainability metrics of 1-butanol. Catal Today 239:7–10

    Article  CAS  Google Scholar 

  • Wells M (1999) Handbook of petrochemicals and processes. Ashgate Publishing Co, Brookfield, VT

    Google Scholar 

  • Wilkins MR, Atiyeh HK (2011) Microbial production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:326–330

    Article  CAS  PubMed  Google Scholar 

  • Wypych G (2001) Handbook of solvents, vol 1, 2nd edn. ChemTec Publishing, Ontario, p 870

    Google Scholar 

  • Yemshanov D, McKenney D (2008) Fast-growing poplar plantations as a bioenergy supply source for Canada. Biomass Bioenergy 32:185–197

    Article  Google Scholar 

  • Yu M, Zhang Y, Tang IC, Yang ST (2011) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 13:373–382

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Yang ST (2009) Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnol Bioeng 104:766–773

    CAS  PubMed  Google Scholar 

  • Zhao N, Xu R, Wei W, Sun Y (2002) Cu/Mn/ZrO2 catalyst for alcohol synthesis by Fischer-Tropsch modified elements. React Kinet Catal Lett 75:297–304

    Article  CAS  Google Scholar 

  • Zimmermann H, Walzl R (2002) Ethylene. In: Wiley-VCH (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonil Nanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nanda, S. et al. (2020). A Spotlight on Butanol and Propanol as Next-Generation Synthetic Fuels. In: Nanda, S., N. Vo, DV., Sarangi, P. (eds) Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-1804-1_5

Download citation

Publish with us

Policies and ethics