Skip to main content

Conversion of Biogas to Syngas via Catalytic Carbon Dioxide Reforming Reactions: An Overview of Thermodynamic Aspects, Catalytic Design, and Reaction Kinetics

  • Chapter
  • First Online:
Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals

Abstract

Biogas production has continuously increased worldwide during the last decades. Nowadays, heat, electricity, and biomethane production are the main utilization of biogas at large-scale industrial processes. The research and development on biogas valorization is currently related to synthesis gas production via reforming process, since syngas allows obtaining various chemicals and fuels of high-added value. However, biogas reforming is a complex process, which implies various reactions in parallel, and needs high temperature (>800 °C) to obtain high methane conversion. The development of a highly-performing catalyst, which must be active, selective, thermally stable, and resistant to solid carbon formation on its surface, is crucial. This chapter is devoted to an update of the thermodynamic aspect of biogas reforming under different conditions. This chapter also reviews recent significant works related to catalyst design as well as kinetic and mechanistic studies of biogas reforming processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdoulmoumine N, Adhikari S, Kulkarni A, Chattanathan, S (2015) A review on biomass gasification syngas cleanup. Appl. Ener. 155:294-307.

    Google Scholar 

  • Abdullah B, Ghani NAA, Vo DVN (2017) Recent advances in dry reforming of methane over Ni-based catalysts. J Clean Prod 162:170–185

    Article  CAS  Google Scholar 

  • Abdulrasheed A, Jail A, Gambo Y, Ibrahim M, Hambali H, Hamid M (2019) A review on catalyst development for dry reforming of methane to syngas: recent advances. Renew Sust Energ Rev 108:175–193

    Article  CAS  Google Scholar 

  • Achinas S, Achinas V, Euverink GJW (2017) A technological overview of biogas production from biowaste. Engineering 3:299–307

    Article  Google Scholar 

  • ADEME (2016) Vabhyogaz 3—Valorisation du biogaz en hydrogène. https://occitanie.ademe.fr/sites/default/files/valorisation-biogaz-hydrogene-vabhyogaz.pdf. Accessed 17 May 2019

  • Amin MH, Patel J, Sage V, Lee WJ, Periasamy S, Dumbre D, Mozammel T, Prasad V, Samanta C, Bhargava SK (2015) Tri-reforming of methane for the production of syngas: review on the process, catalyst and kinetic mechanism. APCChE 2015 congress incorporating Chemeca, no. Sept: 1–10

    Google Scholar 

  • Anchieta CG, Assaf EM, Assaf JM (2019) Effect of ionic liquid in Ni/ZrO2 catalysts applied to syngas production by methane tri-reforming. Int J Hydrogen Energ 44:9316–9327

    Article  CAS  Google Scholar 

  • Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 36:452–466

    Article  CAS  PubMed  Google Scholar 

  • Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Catalyst design for dry reforming of methane: analysis review. Renew Sust Energ Rev 82:2570–2585

    Article  CAS  Google Scholar 

  • Asimakopoulos K, Gavala, HN, Skiadas IV (2018) Reactor systems for syngas fermentation processes: A review. Chem. Eng. J. 348:732–744.

    Google Scholar 

  • Aw MS, Črnivec IGO, Pintar A (2014a) Tunable ceria–zirconia support for nickel–cobalt catalyst in the enhancement of methane dry reforming with carbon dioxide. Catal Commun 52:10–15

    Article  CAS  Google Scholar 

  • Aw MS, Črnivec IGO, Djinovic P, Pintar A (2014b) Strategies to enhance dry reforming of methane: synthesis of ceria-zirconia/nickelecobalt catalysts by freeze-drying and NO calcination. Int J Hydrogen Energ 39:12636–12647

    Article  CAS  Google Scholar 

  • Aw MS, Zorko M, Djinovic P, Pintar A (2015) Insights into durable NiCo catalysts on β-SiC/CeZrO2 an γ-Al2O3/CeZrO2 advanced supports prepared from facile methods for CH4–CO2 dry reforming. Appl Catal B 164:100–112

    Article  CAS  Google Scholar 

  • Ayodele BV, Khan MR, Lam SS, Cheng CK (2016) Production of CO-rich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: kinetic and mechanistic studies. Int J Hydrogen Energ 41:4603–4615

    Article  CAS  Google Scholar 

  • Aziz NIHA, Hanafiah MM, Gheewala SH (2019) A review on life cycle assessment of biogas production: challenges and future perspectives in Malaysia. Biomass Bioenergy 122:361–374

    Article  CAS  Google Scholar 

  • Bao Z, Lu Y, Yu F (2017) Kinetic study of methane reforming with carbon dioxide over NiCeMgAl bimodal pore catalyst. AICHE J 63:2019–2029

    Article  CAS  Google Scholar 

  • Bian Z, Das S, Wai MH, Hongmanorom P, Kawi S (2017) A review on bimetallic nickel-based catalysts for CO2 reforming of methane. ChemPhysChem 18:3117–3134

    Article  CAS  PubMed  Google Scholar 

  • Biogas Renewable Energy (2019). http://www.biogas-renewable-energy.info/biogas_composition.html. Accessed 8 May 2019

  • Bobadilla LF, Garcilaso V, Centeno MA, Odriozola JA (2017) Monitoring the reaction mechanism in model biogas reforming by in situ transient and steady-state DRIFTS measurements. ChemSusChem 10:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Boukha Z, Kacimi M, Pereira MFR, Faria JL, Figueiredo JL, Ziyad M (2007) Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite. Appl Catal A Gen 317:299–309

    Article  CAS  Google Scholar 

  • Boukha Z, Yeste MP, Cauqui MA, González-Velasco JR (2019) Influence of Ca/P ratio on the catalytic performance of Ni/hydroxyapatite samples in dry reforming of methane. Appl Catal A Gen 580:34–45

    Article  CAS  Google Scholar 

  • Brown RC (2011) Thermochemical processing of biomass: conversion into fuels, chemicals and power. Wiley, Chichester, UK

    Book  Google Scholar 

  • Cao P, Adegbite S, Zhao H, Lester E, Wu T (2018) Tuning dry reforming of methane for F-T syntheses: a thermodynamic approach. Appl Energy 227:190–197

    Article  CAS  Google Scholar 

  • Chein RY, Hsu WH (2018) Thermodynamic analysis of syngas production via tri-reforming of methane and carbon gasification using flue gas from coal-fired power plants. J Clean Prod 200:242–258

    Article  CAS  Google Scholar 

  • Chein RY, Wang CY, Yu CT (2017) Parametric study on catalytic tri-reforming of methane for syngas production. Energy 118:1–17

    Article  CAS  Google Scholar 

  • Clemens H, Bailis R, Nyambane A, Ndung’u V (2018) Africa biogas partnership program: a review of clean cooking implementation through market development in East Africa. Energ Sust Develop 46:23–31

    Article  Google Scholar 

  • Cui Y, Zhang H, Xu H, Li W (2007) Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/α-Al2O3 catalyst: the effect of temperature on the reforming mechanism. Appl Catal A Gen 318:79–88

    Article  CAS  Google Scholar 

  • Das S, Sengupta M, Bag A, Shah M, Bordoloi A (2018) Facile synthesis of highly disperse Ni–co nanoparticles over mesoporous silica for enhanced methane dry reforming. Nanoscale 10:6409–6425

    Article  CAS  PubMed  Google Scholar 

  • Daza CE, Gallego J, Mondragón F, Moreno S, Molina R (2010) High stability of Ce-promoted Ni/mg-Al catalysts derived from hydrotalcites in dry reforming of methane. Fuel 89:592–603

    Article  CAS  Google Scholar 

  • Dębek R, Zubek K, Motak M, Galvez ME, Da Costa P, Grzybek T (2015) Ni–Al hydrotalcite-like material as the catalyst precursors for the dry reforming of methane at low temperature. C R Chim 18:1205–1210

    Article  CAS  Google Scholar 

  • Di Maio R, Fais S, Ligas P, Piegari E, Raga R, Cossu R (2018) 3D geophysical imaging for site-specific characterization plan of an old landfill. Waste Manag 76:629–642

    Article  PubMed  Google Scholar 

  • Diez-Ramirez J, Dorado F, Martinez-Valiente A, Garcia-Vargas J, Sanchez P (2016) Kinetic, energetic and exergetic approach to the methane tri-reforming process. Int J Hydrogen Energ 41:19339–19348

    Article  CAS  Google Scholar 

  • Djinovic P, Pintar A (2017) Stable and selective syngas production from dry CH4-CO2 streamsover supported bimetallic transition metal catalysts. Appl Catal B 206:675–682

    Article  CAS  Google Scholar 

  • Djinovic P, Crnivec IGO, Erjavec B, Pintar A (2012) Influence of active metal loading and oxygen mobility on coke-free dry reforming of Ni–co bimetallic catalysts. Appl Catal B 125:259–270

    Article  CAS  Google Scholar 

  • Djinovic P, Crnivec IGO, Pintar A (2015) Biogas to syngas conversion without carbonaceous deposits via thedry reforming reaction using transition metal catalysts. Catal Today 253:155–162

    Article  CAS  Google Scholar 

  • Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ Sci Technol 32:2233–2237

    Article  CAS  Google Scholar 

  • Elfattah S, Eldrainy Y, Attia A (2016) Upgrade Egyptian biogas to meet the natural gas network quality standard. Alexandria Eng J 55:2279–2283

    Article  Google Scholar 

  • Estephane J, Aouad S, Hany S, El Khoury B, Gennequin C, El Zakhem H, El Nakat J, Aboukaïs A, Aad EA (2015) CO2 reforming of methane over Ni–CO/ZSM5 catalysts. Aging and carbon deposition study. Int J Hydrogen Energ 40:9201–9208

    Article  CAS  Google Scholar 

  • Faungnawakij K, Kikuchi R, Eguchi K (2007) Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether. J Power Sources 164:73–79

    Article  CAS  Google Scholar 

  • García-Vargas JM, Valverde JL, Dorado F, Sanchez P (2014a) Influence of the support on the catalytic behaviour of Ni catalysts for the dry reforming reaction and the tri-reforming process. J Mol Catal A Chem 395:108–116

    Article  CAS  Google Scholar 

  • García-Vargas JM, Valverde JS, Díez J, Sánchez P, Dorado F (2014b) Influence of alkaline and alkaline-earth cocations on the performance of Ni/β-SiC catalysts in the methane tri-reforming reaction. Appl Catal B 148–149:322–329

    Article  CAS  Google Scholar 

  • García-Vargas JM, Valverde JL, Díez J, Dorado F, Sánchez P (2015a) Catalytic and kinetic analysis of the methane tri-reforming over a Ni–mg/β-SiC catalyst. Int J Hydrogen Energ 40:8677–8687

    Article  CAS  Google Scholar 

  • García-Vargas JM, Valverde JS, Díez J, Sánchez P, Dorado F (2015b) Preparation of Ni–mg/β-SiC catalysts for the methane tri-reforming: effect of the order of metal impregnation. Appl Catal B 164:316–323

    Article  CAS  Google Scholar 

  • Goula MA, Charisiou ND, Papageridis KN, Delimitis A, Pachatouridou E, Iliopoulou EF (2015) Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: influence of the synthesis method. Int J Hydrogen Energ 40:9183–9200

    Article  CAS  Google Scholar 

  • GRDF, Gaz Réseau Distribution France (2019). https://www.grdf.fr/dossiers/biomethane-biogaz/unites-injection-gaz-vert-biomethane-reseau. Accessed 11 May 2019

  • Grouset D, Ridart C (2018) Lowering energy spending together with compression, storage, and transportation costs for hydrogen distribution in the early market. In: Azzaro-Pantel C (ed) Hydrogen supply chains-design, deployment and operation. Academic Press, Waltham, MA, pp 207–270

    Chapter  Google Scholar 

  • Guharoy U, Le Saché E, Cai Q, Reina TR, Gu S (2018) Understanding the role of Ni-Sn interaction to design highly effective CO2 conversion catalysts for dry reforming of methane. J CO2 Util 27:1–10

    Google Scholar 

  • Hoo PY, Hashim H, Ho WS (2018) Opportunities and challenges: landfill gas to biomethane injection into natural gas distribution grid through pipeline. J Clean Prod 175:409–419

    Article  CAS  Google Scholar 

  • Horn R, Schlögl R (2015) Methane activation by heterogeneous catalysis. Catal Lett 145:23–39

    Article  CAS  Google Scholar 

  • Hou Z, Chen P, Fang H, Zheng X, Yashima T (2006) Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. Int J Hydrogen Energ 31:555–561

    Article  CAS  Google Scholar 

  • IRENA (2017) International Renewable Energy Agency: Renew Capacity Statistics 2016

    Google Scholar 

  • Jafarbegloo M, Tarlani A, Mesbah AW, Sahebdelfar S (2015) Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance. Int J Hydrogen Energ 40:2445–2451

    Article  CAS  Google Scholar 

  • Jaffrin A, Bentounes N, Joan A, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86:113–123

    Article  Google Scholar 

  • Jang WJ, Shim JO, Kim HM, Yoo SY, Roh HS (2019) A review on dry reforming of methane in aspect of catalytic properties. Catal Today 324:15–26

    Article  CAS  Google Scholar 

  • Jiang H, Li H, Xu H, Zhang Y (2007) Preparation of Ni/MgxTi1−xO catalysts and investigation on their stability in tri-reforming of methane. Fuel Process Technol 88:988–995

    Article  CAS  Google Scholar 

  • Jiang S, Lu Y, Wang S, Zhao Y, Ma X (2017) Insight into the reaction mechanism of CO2 activation for CH4 reforming over NiO-MgO: a combination of DRIFTS and DFT study. Appl Surf Sci 416:59–68

    Article  CAS  Google Scholar 

  • Kaparaju P, Rintala J (2013) Generation of heat and power from biogas for stationary applications: boilers, gas engines and turbines, combined heat and power (CHP) plants and fuel cells. In: Wellinger A, Murphy J, Baxter D (eds) The biogas handbook, science, production and applications. Woodhead Publishing, Oxford, Cambridge, Philadelphia, New Delhi, pp 404–427

    Chapter  Google Scholar 

  • Karam L, Hassan NE (2018) Advantages of mesoporous silica based catalysts in methane reforming by CO2 from kinetic perspective. J Env Chem Eng 6:4289–4297

    Article  CAS  Google Scholar 

  • Kawi S, Kathiraser Y, Ni J, Oemar U, Li Z, Saw ET (2015) Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane. ChemSusChem 8:3556–3575

    Article  CAS  PubMed  Google Scholar 

  • Kaza S, Yao L, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. The World Bank, Washington, DC

    Book  Google Scholar 

  • Khalil M, Berawi MA, Heryanto R, Rizalie A (2019) Waste to energy technology: the potential of sustainable biogas production from animal waste in Indonesia. Renew Sust Energ Rev 105:323–331

    Article  Google Scholar 

  • Khan IU, Othman MHD, Hashima H, Matsuura T, Ismail AF, Rezaei-DashtArzhandi M, Wan Azelee I (2017) Biogas as a renewable energy fuel—a review of biogas upgrading, utilization and storage. Energy Convers Manag 150:277–294

    Article  CAS  Google Scholar 

  • Kroll VCH, Swaan HM, Lacombe S, Mirodatos C (1997) Methane reforming reaction with carbon dioxide over Ni/SiO2 catalyst. J Catal 398:387–398

    Google Scholar 

  • Kumar R, Kumar K, Choudary NV, Pant KK (2019) Effect of support materials on the performance of Ni-based catalysts in tri-reforming of methane. Fuel Process Technol 186:40–52

    Article  CAS  Google Scholar 

  • Kvist T, Aryal N (2019) Methane loss from commercially operating biogas upgrading plants. Waste Manag 87:295–300

    Article  CAS  PubMed  Google Scholar 

  • Linde (2019) “Innovative Dry Reforming Process.” https://www.linde-engineering.com/en/innovations/innovate-dry-reforming/index.html. Accessed 15 May 2019

  • Lino AVP, Calderon YNC, Mastelaro VR, Assaf EM, Assaf JM (2019) Syngas for Fischer-Tropsch synthesis by methane tri-reforming using nickel supported on MgAl2O4 promoted with Zr, Ce and Ce-Zr. Appl Surf Sci 481:747–760

    Article  CAS  Google Scholar 

  • Liu K, Song C, Subramani V (2010) Hydrogen and syngas production and purification technologies. Wiley, Hoboken, USA

    Google Scholar 

  • Majewski AJ, Wood J (2014) Tri-reforming of methane over Ni@SiO2 catalyst. Int J Hydrogen Energ 39:12578–12585

    Article  CAS  Google Scholar 

  • Mittal S, Ahlgren EO, Shukla PR (2018) Barriers to biogas dissemination in India: a review. Energy Policy 112:361–370

    Article  CAS  Google Scholar 

  • Mo W, Ma F, Liu Y, Liu J, Zhong M, Nulahong A (2015) Preparation of porous Al2O3 by template method and its application in Ni-based catalyst for CH4/CO2 reforming to produce syngas. Int J Hydrogen Energ 40:16147–16158

    Article  CAS  Google Scholar 

  • Mohamedali M, Henni A, Ibrahim H (2018) Recent advances in supported metal catalysts for syngas production from methane. ChemEng 2:9

    Google Scholar 

  • Mudhoo A (2012) Biogas production: pretreatment methods in anaerobic digestion. Wiley/Scrivener Publishing LLC, Hoboken, NJ/Salem, MA

    Book  Google Scholar 

  • Nanda S, Li K, Abatzoglou N, Dalai AK, Kozinski JA (2017) Advancements and confinements in hydrogen production technologies. In: Dalena F, Basile A, Rossi C (eds) Bioenergy systems for the future. Woodhead Publishing, Sawston, UK, pp 373–418

    Chapter  Google Scholar 

  • Néron A, Lantagne G, Marcos B (2012) Computation of complex and constrained equilibria by minimization of the Gibbs free energy. Chem Eng Sci 82:260–271

    Article  CAS  Google Scholar 

  • Nikoo MK, Amin NAS (2011) Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process Technol 92:678–691

    Article  CAS  Google Scholar 

  • Okonkwo C, Onokpite E, Onokwai A (2018) Comparative study of the optimal ratio of biogas production for, various organic wastes and weeds for digester/restarted digester. J King Saud Univ-Eng Sci 30:123–129

    Google Scholar 

  • Osazuwa OU, Setiabudi HD, Abdullah S, Cheng CK (2017) Syngas production from methane dry reforming over SmCoO3 perovskite catalyst: kinetics and mechanistic studies. Int J Hydrogen Energ 42:9707–9721

    Article  CAS  Google Scholar 

  • Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43:7813–7837

    Article  CAS  PubMed  Google Scholar 

  • Pakhare D, Schwartz V, Abdelsayed V, Haynes D, Shekhawat D, Poston J, Spivey J (2014) Kinetic and mechanistic study of dry (CO2) reforming of methane over Rh-substituted La2Zr2O7 pyrochlores. J Catal 316:78–92

    Article  CAS  Google Scholar 

  • Papadopoulou C, Matralis H, Verykios X (2012) Utilization of biogas as a renewable carbon source: dry reforming of methane. In: Guczi L, Erdôhelyi A (eds) Catalysis for alternative energy generation. Springer Nature, New York, NY, pp 57–127

    Chapter  Google Scholar 

  • Persson M, Jönsson O, Wellinger A (2009) IEA Bioenergy, Task 37—Energy from biogas and landfill gas

    Google Scholar 

  • Pertiwiningrum A, Agus DKC, Wuri MA (2018) Renewable energy of biogas through integrated organic cycle system in tropical system. In: Gokten S, Kucukkocaoglu G (eds) Energy management for sustainable development. IntechOpen, London, UK, pp 99–117

    Google Scholar 

  • Pham Minh D, Phan TS, Grouset D, Nzihou A (2018a) Thermodynamic equilibrium study of methane reforming with carbon dioxide, water and oxygen. J Clean Energ Technol 6:309–313

    Google Scholar 

  • Pham Minh D, Siang TJ, Vo DVN, Phan TS, Ridart C, Nzihou A, Grouset D (2018b) Hydrogen production from biogas reforming: an overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane. In: Hydrogen supply chains. Elsevier, Amsterdam, pp 111–166

    Google Scholar 

  • Phan TS, Sane AR, Rego de Vasconcelos B, Nzihou A, Sharrock P, Grouset D, Minh DP (2018) Hydroxyapatite supported bimetallic cobalt and nickel catalysts for syngas production from dry reforming of methane. Appl Catal B 224:310–321

    Article  CAS  Google Scholar 

  • Pino L, Vita A, Cipitì F, Laganà M, Recupero V (2011) Hydrogen production by methane tri-reforming process over Ni–ceria catalysts: effect of La-doping. Appl Catal B 104:64–73

    Article  CAS  Google Scholar 

  • Pradhan BB, Limmeechokchai L (2017) Electric and biogas stoves as options for cooking in Nepal and Thailand. Energy Procedia 138:470–475

    Article  Google Scholar 

  • Puigjaner L (2011) Syngas from waste emerging technologies. Springer, New York, NY

    Book  Google Scholar 

  • Pullen T (2015) Anaerobic digestion- making biogas-making energy. Routledge, New York, NY

    Book  Google Scholar 

  • Rahnama H, Farniaei M, Abbasi M, Rahimpour MR (2014) Modeling of synthesis gas and hydrogen production in a thermally coupling of steam and tri-reforming of methane with membranes. J Ind Eng Chem 20:1779–1792

    Article  CAS  Google Scholar 

  • Rego de Vasconcelos BR (2016) Phosphates-based catalyst for synthetic gas (syngas) production using CO2 and CH4. Ph.D. thesis, Ecole Nationale Supérieure des Mines d’Albi-Carmaux, Albi, France

    Google Scholar 

  • Rego de Vasconcelos B, Lavoie JM (2018) Is dry reforming the solution to reduce natural gas carbon footprint? Int J Ener Prod Manag 3:44–56

    Google Scholar 

  • Rego de Vasconcelos B, Pham Minh D, Lyczko N, Phan TS, Sharrock P, Nzihou A (2018a) Upgrading greenhouse gases (methane and carbon dioxide) into syngas using nickel-based catalysts. Fuel 226:195–203

    Google Scholar 

  • Rego de Vasconcelos BR, Pham Minh D, Sharrock P, Nzihou A (2018c) Regeneration study of Ni/hydroxyapatite spent catalyst from dry reforming. Catal Today 310:107–115

    Google Scholar 

  • Rostrup-Nielsen JR, Hansen JHB (1993) CO2 reforming of methane over transition metals. J Catal 144:38–49

    Article  CAS  Google Scholar 

  • Sahota S, Shaha G, Ghosha P, Kapoor R, Sengupta S, Singh P, Vijay V, Sahay A, Vijay VK, Thakur IS (2018) Review of trends in biogas upgradation technologies and future perspectives. Biores Technol Rep 1:79–88

    Google Scholar 

  • San José-Alonso D, Illán-Gómez MJ, Román-Martínez MC (2011) K and Sr promoted co alumina supported catalysts for the CO2 reforming of methane. Catal Today 176:187–190

    Article  CAS  Google Scholar 

  • Sapountzi FM, Zhao C, Boréave A, Retailleau-Mevel L, Niakolas D, Neofytidis C, Vernoux P (2018) Sulphur tolerance of au-modified Ni/GDC during catalytic methane steam reforming. Cat Sci Technol 8:1578–1588

    Article  CAS  Google Scholar 

  • Scarlat N, Dallemand JF, Fahl F (2018) Biogas: developments and perspectives in Europe. Renew Energy 129:457–472

    Article  Google Scholar 

  • Schildhauer TJ, Biollaz MA (2016) Synthetic natural gas from coal, dry biomass, and power-to-gas applications. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Shah YT (2017) Chemical energy from natural gas and synthetic gas. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Si LJ, Wang CZ, Sun NN, Wen X, Zhao N, Xiao FK, Wei W, Sun YH (2012) Influence of preparation conditions on the performance of Ni-CaO-ZrO2 catalysts in the tri-reforming of methane. J Fuel Chem Technol 40:210–215

    Article  CAS  Google Scholar 

  • Singh SA, Madras G (2016) Sonochemical synthesis of Pt, Ru doped TiO2 for methane reforming. Appl Catal A Gen 518:102–114

    Article  CAS  Google Scholar 

  • Singha RK, Shukla A, Yadav A, Adak S, Iqbal Z, Siddiqui N, Bal R (2016) Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO2 catalyst. Appl Energy 178(2016):110–125

    Article  CAS  Google Scholar 

  • Song C, Pan W (2004) Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal Today 98:463–484

    Article  CAS  Google Scholar 

  • Tang P, Zhu Q, Wu Z, Ma D (2014) Methane activation: the past and future. Energy Environ Sci 7:2580–2591

    Article  CAS  Google Scholar 

  • Themelis N, Ulloa P (2007) Methane generation in landfills. Renew Energy 32:1243–1257

    Article  CAS  Google Scholar 

  • Tullo AH (2016) Dry reforming puts CO2 to work. Chem Eng News 94:30. https://cen.acs.org/content/cen/articles/94/i17/Dry-reforming-puts-CO2-work.html. Accessed 17 May 2019

    Google Scholar 

  • Wang S, Lu GQM (1996) Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art. Energ Fuels 10:896–904

    Article  CAS  Google Scholar 

  • Wei J, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 224:370–383

    Article  CAS  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  PubMed  Google Scholar 

  • Wolfbeisser A, Sophiphun O, Bernardi J, Wittayakun J, Föttinger K, Rupprechter G (2016) Methane dry reforming over ceria-zirconia supported Ni catalysts. Catal Today 277:234–245

    Article  CAS  Google Scholar 

  • Xu J, Zhou W, Li Z, Wang J, Ma J (2009) Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrogen Energ 34:6646–6654

    Article  CAS  Google Scholar 

  • Yasmin N, Grundmann P (2019) Adoption and diffusion of renewable energy—the case of biogas as alternative fuel for cooking in Pakistan. Renew Sust Energ Rev 101:255–264

    Article  Google Scholar 

  • Youcai Z, Ziyang L (2017) General structure of sanitary landfill. In: Pollution control and resource recovery: municipal solid wastes at landfill. Elsevier, Amsterdam, pp 1–10

    Google Scholar 

  • Zhou H, Zhang T, Sui Z, Zhu YA, Han C, Zhu K, Zhou X (2018) A single source method to generate Ru-Ni-MgO catalysts for methane dry reforming and the kinetic effect of Ru on carbon deposition and gasification. Appl Catal B 233:143–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doan Pham Minh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pham Minh, D., Torres, A.H., Rego de Vasconcelos, B., Siang, T.J., Vo, DV.N. (2020). Conversion of Biogas to Syngas via Catalytic Carbon Dioxide Reforming Reactions: An Overview of Thermodynamic Aspects, Catalytic Design, and Reaction Kinetics. In: Nanda, S., N. Vo, DV., Sarangi, P. (eds) Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-1804-1_18

Download citation

Publish with us

Policies and ethics