Skip to main content

Recent Advances in Steam Reforming of Glycerol for Syngas Production

  • Chapter
  • First Online:
Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals

Abstract

Syngas, a mixture of carbon monoxide and hydrogen, has recently emerged as an important intermediate feedstock in petrochemical industry and an efficient and eco-friendly energy carrier to substitute petroleum-based fuels. Although methane is conventionally employed as a main feedstock for syngas production via industrial methane steam reforming process, a rising interest about the implementation of glycerol for generating syngas is widely reported in literature due to its great abundance, low cost, and hydrogen-rich content. This chapter summarizes the recent progress in catalytic steam reforming of glycerol for syngas yield in terms of catalytic design using various supports and promoters and the manipulation of operating variables. The mechanistic pathways and their fundamentally derived kinetic models for expressing glycerol reaction rate and estimating associated kinetic parameters are also comprehensively reviewed throughout this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari S, Fernando SD, Haryanto A (2009) Kinetics and reactor modeling of hydrogen production from glycerol via steam reforming process over Ni/CeO2 catalysts. Chem Eng Technol 32:541–547

    Article  CAS  Google Scholar 

  • Arcotumapathy V, Alenazey FS, Al-otaibi L, Vo DVN, Alotaibi FM, Adesina AA (2015) Mechanistic investigation of methane steam reforming over Ce-promoted Ni/SBA-15 catalyst. Appl Petrochem Res 5:393–404

    Article  CAS  Google Scholar 

  • Arif NNM, Vo DVN, Azizan MT, Abidin SZ (2016) Carbon dioxide dry reforming of glycerol for hydrogen production using Ni/ZrO2 and Ni/CaO as catalysts. Bull Chem React Eng Catal 11:200–209

    Article  CAS  Google Scholar 

  • Arif NNM, Harun N, Yunus NM, Vo DVN, Azizan MT, Abidin SZ (2017) Reforming of glycerol for hydrogen production over Ni based catalysts: effect of support type. Energ Sour Part A: Rec Util Environ Effect 39:657–663

    Article  CAS  Google Scholar 

  • Bahari MB, Goo BC, Pham TLM, Siang TJ, Danh HT, Ainirazali N, Vo DVN (2016) Hydrogen-rich syngas production from ethanol dry reforming on La-doped Ni/Al2O3 catalysts: effect of promoter loading. Process Eng 148:654–661

    CAS  Google Scholar 

  • Bobadilla LF, Penkova A, Álvarez A, Domínguez MI, Romero-Sarria F, Centeno MA, Odriozola JA (2015) Glycerol steam reforming on bimetallic NiSn/CeO2–MgO–Al2O3 catalysts: influence of the support, reaction parameters and deactivation/regeneration processes. Appl Catal A–Gen 492:38–47

    Article  CAS  Google Scholar 

  • Carrero A, Vizcaíno AJ, Calles JA, García-Moreno L (2017) Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La. J Energ Chem 26:42–48

    Article  Google Scholar 

  • Charisiou ND, Polychronopoulou K, Asif A, Goula MA (2018) The potential of glycerol and phenol towards H2 production using steam reforming reaction: a review. Surf Coat Technol 352:92–111

    Article  CAS  Google Scholar 

  • Chen H, Ding Y, Cong NT, Dou B, Dupont V, Ghadiri M, Williams PT (2011) A comparative study on hydrogen production from steam-glycerol reforming: thermodynamics and experimental. Renew Energy 36:779–788

    Article  CAS  Google Scholar 

  • Cheng CK, Foo SY, Adesina AA (2010a) Glycerol steam reforming over bimetallic Co-Ni/Al2O3. Ind Eng Chem Res 49:10804–10817

    Article  CAS  Google Scholar 

  • Cheng CK, Foo SY, Adesina AA (2010b) H2-rich synthesis gas production over Co/Al2O3 catalyst via glycerol steam reforming. Catal Commun 12:292–298

    Article  CAS  Google Scholar 

  • Cheng CK, Foo SY, Adesina AA (2011) Steam reforming of glycerol over Ni/Al2O3 catalyst. Catal Today 178:25–33

    Article  CAS  Google Scholar 

  • Dave CD, Pant KK (2011) Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst. Renew Energy 36:3195–3202

    Article  CAS  Google Scholar 

  • Demsash HD, Mohan R (2016) Steam reforming of glycerol to hydrogen over ceria promoted nickel–alumina catalysts. Int J Hydrogen Energ 41:22732–22742

    Article  CAS  Google Scholar 

  • Demsash HD, Kondamudi KVK, Upadhyayula S, Mohan R (2018) Ruthenium doped nickel-alumina-ceria catalyst in glycerol steam reforming. Fuel Process Technol 169:150–156

    Article  CAS  Google Scholar 

  • Dobosz J, Cichy M, Zawadzki M, Borowiecki T (2018) Glycerol steam reforming over calcium hydroxyapatite supported cobalt and cobalt-cerium catalysts. J Energy Chem 27:404–412

    Article  Google Scholar 

  • EDGAR, Emissions Database for Global Atmospheric Research (2017) European Commission. http://edgar.jrc.ec.europa.eu. Accessed 3 June 2019

  • FAO, Food and Agriculture Organization (2015) OECD-FAO agricultural outlook 2015. OECD Publishing, Paris

    Google Scholar 

  • Fayaz F, Bach LG, Bahari MB, Nguyen TD, Vu KB, Kanthasamy R, Samart C, Nguyen-Huy C, Vo DVN (2019) Stability evaluation of ethanol dry reforming on Lanthania-doped cobalt-based catalysts for hydrogen-rich syngas generation. Int J Energy Res 43:405–416

    Article  CAS  Google Scholar 

  • Ghasemzadeh K, Ghahremani M, Amiri TY, Basile A (2019) Performance evaluation of Pd-Ag membrane reactor in glycerol steam reforming process: development of the CFD model. Int J Hydrogen Energ 44:1000–1009

    Article  CAS  Google Scholar 

  • Hajjaji N, Baccar I, Pons M-N (2014) Energy and exergy analysis as tools for optimization of hydrogen production by glycerol autothermal reforming. Renew Energy 71:368–380

    Article  CAS  Google Scholar 

  • He L, Parra JMS, Blekkan EA, Chen D (2010) Towards efficient hydrogen production from glycerol by sorption enhanced steam reforming. Energy Environ Sci 3:1046–1056

    Article  CAS  Google Scholar 

  • Hefner RA III (1995) Toward sustainable economic growth: the age of energy gases. Int J Hydrogen Energ 20:945–948

    Article  CAS  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    Article  CAS  Google Scholar 

  • Huang C, Xu C, Wang B, Hu X, Li J, Liu J, Jie L, Li C (2018) High production of syngas from catalytic steam reforming of biomass glycerol in the presence of methane. Biomass Bioenergy 119:173–178

    Article  CAS  Google Scholar 

  • Inayat M, Sulaiman SA, Kurnia JC, Shahbaz M (2019) Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: a review. Renew Sust Energ Rev 105:252–267

    Article  CAS  Google Scholar 

  • Jun LN, Bahari MB, Phuong PTT, Phuc NHH, Samart C, Abdullah B, Setiabudi HD, Vo DVN (2018) Ethylene glycol dry reforming for syngas generation on Ce-promoted Co/Al2O3 catalysts. Appl Petrochem Res 8:253–261

    Article  CAS  Google Scholar 

  • Kim SM, Woo SI (2012) Sustainable production of syngas from biomass–derived glycerol by steam reforming over highly stable Ni/SiC. ChemSusChem 5:1513–1522

    Article  CAS  Google Scholar 

  • Kousi K, Chourdakis N, Matralis H, Kontarides D, Papadopoulou C, Verykios X (2016) Glycerol steam reforming over modified Ni-based catalysts. Appl Catal A Gen 518:129–141

    Article  CAS  Google Scholar 

  • Lin YC (2013) Catalytic valorization of glycerol to hydrogen and syngas. Int J Hydrogen Energ 38:2678–2700

    Article  CAS  Google Scholar 

  • Menezes JPDSQ, Manfro RL, Souza MM (2018) Hydrogen production from glycerol steam reforming over nickel catalysts supported on alumina and niobia: deactivation process, effect of reaction conditions and kinetic modeling. In J Hydrogen Energ 43:15064–15082

    Article  CAS  Google Scholar 

  • Minh DP, Siang TJ, Vo DVN, Phan TS, Ridart C, Nzihou A, Grouset D (2018) Hydrogen production from biogas reforming: an overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane. In: Azzaro-Pantel C (ed) Hydrogen supply chains design, deployment and operation. Academic Press, Waltham, MA, pp 111–166

    Chapter  Google Scholar 

  • Mitran G, Pavel OD, Mieritz DG, Seo DK, Florea M (2016) Effect of Mo/Ce ratio in Mo–Ce–Al catalysts on the hydrogen production by steam reforming of glycerol. Cat Sci Technol 6:7902–7912

    Article  CAS  Google Scholar 

  • Nanda S, Azargohar R, Dalai AK, Kozinski JA (2015) An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sust Energ Rev 50:925–941

    Article  CAS  Google Scholar 

  • Nanda S, Isen J, Dalai AK, Kozinski JA (2016a) Gasification of fruit wastes and agro-food residues in supercritical water. Energ Convers Manage 110:296–306

    Article  CAS  Google Scholar 

  • Nanda S, Kozinski JA, Dalai AK (2016b) Lignocellulosic biomass: a review of conversion technologies and fuel products. Curr Biochem Eng 3:24–36

    Article  CAS  Google Scholar 

  • Nanda S, Li K, Abatzoglou N, Dalai AK, Kozinski JA (2017a) Advancements and confinements in hydrogen production technologies. In: Dalena F, Basile A, Rossi C (eds) Bioenergy systems for the future. Woodhead Publishing, Elsevier, Sawston, pp 373–418

    Chapter  Google Scholar 

  • Nanda S, Rana R, Zheng Y, Kozinski JA, Dalai AK (2017b) Insights on pathways for hydrogen generation from ethanol. Sustain Energ Fuel 1:1232–1245

    Article  CAS  Google Scholar 

  • Nanda S, Reddy SN, Vo DVN, Sahoo BN, Kozinski JA (2018) Catalytic gasification of wheat straw in hot compressed (subcritical and supercritical) water for hydrogen production. Energ Sci Eng 6:448–459

    Article  CAS  Google Scholar 

  • Okolie JA, Rana R, Nanda S, Dalai AK, Kozinski JA (2019) Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustain Energ Fuel 3:578–598

    Article  CAS  Google Scholar 

  • Pant KK, Jain R, Jain S (2011) Renewable hydrogen production by steam reforming of glycerol over Ni/CeO2 catalyst prepared by precipitation deposition method. Korean J Chem Eng 28:1859–1866

    Article  CAS  Google Scholar 

  • Papageridis KN, Siakavelas G, Charisiou ND, Avraam DG, Tzounis L, Kousi K, Goula MA (2016) Comparative study of Ni, Co, Cu supported on γ-alumina catalysts for hydrogen production via the glycerol steam reforming reaction. Fuel Process Technol 152:156–175

    Article  CAS  Google Scholar 

  • Pham TLM, Vo DVN, Nguyen HNT, Pham-Tran NN (2019) CH versus OH bond scission in methanol decomposition on Pt (111): role of the dispersion interaction. Appl Surf Sci 481:1327–1334

    Article  CAS  Google Scholar 

  • Ramesh S, Venkatesha NJ (2017) Template free synthesis of Ni-perovskite: an efficient catalyst for hydrogen production by steam reforming of bioglycerol. ACS Sustain Chem Eng 5:1339–1346

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Dalai AK, Kozinski JA (2014) Supercritical water gasification of biomass for hydrogen production. Int J Hydrogen Energ 39:6912–6926

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Kozinski JA (2016) Supercritical water gasification of glycerol and methanol mixtures as model waste residues from biodiesel refinery. Chem Eng Res Des 113:17–27

    Article  CAS  Google Scholar 

  • Schwengber CA, Alves HJ, Schnaffner RA, Silva FA, Sequinel R, Bach VR, Ferracin RJ (2016) Overview of glycerol reforming for hydrogen production. Renew Sust Energ Rev 58:259–266

    Article  CAS  Google Scholar 

  • Senseni AZ, Rezaei M, Meshkani F (2017) Glycerol steam reforming over noble metal nanocatalysts. Chem Eng Res Des 123:360–366

    Article  CAS  Google Scholar 

  • Shao S, Shi AW, Liu CL, Yang RZ, Dong WS (2014) Hydrogen production from steam reforming of glycerol over Ni/CeZrO catalysts. Fuel Process Technol 125:1–7

    Article  CAS  Google Scholar 

  • Shejale AD, Yadav GD (2018) Ni–cu and Ni–Co supported on La–Mg based metal oxides prepared by coprecipitation and impregnation for superior hydrogen production via steam reforming of glycerol. Ind Eng Chem Res 57:4785–4797

    Article  CAS  Google Scholar 

  • Siang TJ, Singh S, Omoregbe O, Bach LG, Phuc NHH, Vo DVN (2018) Hydrogen production from CH4 dry reforming over bimetallic Ni–Co/Al2O3 catalyst. J Energy Inst 91:683–694

    Article  CAS  Google Scholar 

  • Siang TJ, Minh DP, Singh S, Setiabudi HD, Vo DVN (2019) Recent advances in hydrogen production through bi-reforming of biogas. In: Nanda S, Sarangi PK, Vo DVN (eds) Fuel processing and energy utilization. CRC Press, New York, pp 69–90

    Google Scholar 

  • Singh S, Kumar R, Setiabudi HD, Nanda S, Vo DVN (2018) Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: a state-of-the-art review. Appl Catal A Gen 559:57–74

    Article  CAS  Google Scholar 

  • Statista (2018) Global biofuel production by select country 2017. https://www.statista.com/statistics/274168/biofuel-production-in-leading-countries-in-oil-equivalent. Accessed 3 June 2019

  • Tavanarad M, Meshkani F, Rezaei M (2018) Production of syngas via glycerol dry reforming on Ni catalysts supported on mesoporous nanocrystalline Al2O3. J CO2 Util 24:298–305

    Article  CAS  Google Scholar 

  • Vo DVN, Adesina AA (2011) Kinetics of the carbothermal synthesis of Mo carbide catalyst supported on various semiconductor oxides. Fuel Process Technol 92:1249–1260

    Article  CAS  Google Scholar 

  • Vo DVN, Cooper CG, Nguyen TH, Adesina AA, Bukur DB (2012) Evaluation of alumina-supported Mo carbide produced via propane carburization for the Fischer–Tropsch synthesis. Fuel 93:105–116

    Article  CAS  Google Scholar 

  • Wang W (2010) Thermodynamic analysis of glycerol partial oxidation for hydrogen production. Fuel Process Technol 91:1401–1408

    Article  CAS  Google Scholar 

  • Wang D, Czernik S, Montane D, Mann M, Chornet E (1997) Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions. Ind Eng Chem Res 36:1507–1518

    Article  CAS  Google Scholar 

  • Wang C, Dou B, Chen H, Song Y, Xu Y, Du X, Luo T, Tan C (2013) Hydrogen production from steam reforming of glycerol by Ni–Mg–Al based catalysts in a fixed-bed reactor. Chem Eng J 220:133–142

    Article  CAS  Google Scholar 

  • Wang Y, Chen M, Yang Z, Liang T, Liu S, Zhou Z, Li X (2018) Bimetallic Ni-M (M= Co, Cu and Zn) supported on attapulgite as catalysts for hydrogen production from glycerol steam reforming. Appl Catal A Gen 550:214–227

    Article  CAS  Google Scholar 

  • Wei Z, Karim AM, Li Y, King DL, Wang Y (2015) Elucidation of the roles of Re in steam reforming of glycerol over Pt–Re/C catalysts. J Catal 322:49–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Viet N. Vo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siang, T.J. et al. (2020). Recent Advances in Steam Reforming of Glycerol for Syngas Production. In: Nanda, S., N. Vo, DV., Sarangi, P. (eds) Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-1804-1_17

Download citation

Publish with us

Policies and ethics