Skip to main content

Conversion of Waste Biomass to Bio-oils and Upgradation by Hydrothermal Liquefaction, Gasification, and Hydrodeoxygenation

  • Chapter
  • First Online:
Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals

Abstract

Biofuels produced from biomass are clean, renewable, and eco-friendly alternatives to the conventional fossil fuels in the transportation sector. However, the presence of high-water content, low pH, high viscosity, and oxygenates limits the direct use of biofuel in vehicular engines. The in situ and ex situ catalytic as well as noncatalytic hydrothermal upgradation of bio-oil (converting into hydrocarbons or less oxygenated compounds) are very promising. The recent advances in thermochemical conversion processes, improved strategies in feedstock pretreatment, and optimized use of both homogeneous and heterogeneous catalysts have enhanced the fuel properties of biofuels. The available literature was reviewed extensively to perceive the pros and cons in the selection of the suitable upgrading process to produce the bio-oil based on the end use. In this chapter, the technical developments toward improving the bio-oil properties, both in quality and quantity, the influence of process parameters, reactor configurations, and their primal source were discussed in detail. By comparing the various conversion and upgrading technologies, hydrodeoxygenation is considered as the prominent alternative and the latest technology in contrast to gasification and liquefaction. However, the complexities of the hydrodeoxygenation mechanism, optimal processing conditions, and the choice of the catalysts are yet to be understood. Furthermore, the chapter points out the main barriers for the commercialization of bio-oil upgrading technologies for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abnisa F, Wan Daud WMA (2014) A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers Manag 87:71–85

    Article  CAS  Google Scholar 

  • Adams P, Bridgwater T, Lea-Langton A, Ross A, Watson I (2017) Biomass conversion technologies. In: Thornley P, Adams P (eds) Greenhouse gas balances of bioenergy systems. Academia Press, Elsevier Inc., Cambridge, pp 107–139

    Google Scholar 

  • Ahmadi S, Reyhanitash E, Yuan Z, Rohini S, Xu C (2017) Upgrading of fast pyrolysis oil via catalytic hydrodeoxygenation: effects of type of solvents. Renew Energy 114:376–382

    Article  CAS  Google Scholar 

  • Akash B (2015) Thermochemical depolymerization of biomass. Procedia Comput Sci 52:827–834

    Article  Google Scholar 

  • Arregi A, Amutio M, Lopez G, Bilbao J, Olazar M (2018) Evaluation of thermochemical routes for hydrogen production from biomass: a review. Energy Convers Manag 165:696–719

    Article  CAS  Google Scholar 

  • Ashter SA (2018) Biomass conversion approaches. In: Tillman DA, Duong DND, Harding NS (eds) Technology and applications of polymers derived from biomass. Elsevier Inc., Cambridge, pp 75–110

    Chapter  Google Scholar 

  • Bach QV, Sillero MV, Tran KQ, Skjermo J (2014) Fast hydrothermal liquefaction of a Norwegian macro-alga: screening tests. Algal Res 6:271–276

    Article  Google Scholar 

  • Basu P (2010) Gasification theory and modeling of gasifiers. In: Biomass gasification and pyrolysis: practical design and theory. Academia Press, Elsevier Inc., Cambridge, pp 117–166

    Chapter  Google Scholar 

  • Beckman D, Elliott DC (1985) Comparisons of the yields and properties of the oil products from direct thermochemical biomass liquefaction processes. Can J Chem Eng 63:99–104

    Article  CAS  Google Scholar 

  • Bhandari R, Volli V, Purkait MK (2015) Preparation and characterization of fly ash based mesoporous catalyst for transesterification of soybean oil. J Environ Chem Eng 3:906–914

    Article  CAS  Google Scholar 

  • Cai J, He Y, Yu X, Banks SW, Yang Y, Zhang X, Yu Y, Liu R, Bridgewater AV (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sust Energ Rev 76:309–322

    Article  CAS  Google Scholar 

  • Chaiwat W, Gunawan R, Gholizadeh M, Li X, Lievens C, Hu X, Wang Y, Mourant D, Rossiter A, Bromly J, Li CZ (2013) Upgrading of bio-oil into advanced biofuels and chemicals. Part II. Importance of holdup of heavy species during the hydrotreatment of bio-oil in a continuous packed-bed catalytic reactor. Fuel 112:302–310

    Article  CAS  Google Scholar 

  • Chen H, Wang L (2017) Microbial fermentation strategies for biomass conversion. In: Technologies for biochemical conversion of biomass. Academia Press, Elsevier Inc., Cambridge, pp 165–196

    Chapter  Google Scholar 

  • Chiaramonti D, Prussi M, Buffi M, Rizzo AM, Pari L (2016) Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Appl Energy 185:1–10

    Google Scholar 

  • Choudhary TV, Phillips CB (2011) Renewable fuels via catalytic hydrodeoxygenation. Appl Catal A Gen 397:1–12

    Article  CAS  Google Scholar 

  • Couhert C, Commandre JM, Salvador S (2009) Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel 88:408–417

    Article  CAS  Google Scholar 

  • Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716

    Article  CAS  Google Scholar 

  • Elkasabi Y, Mullen CA, Pighinelli ALMT, Boateng AA (2014) Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts. Fuel Process Technol 123:11–18

    Article  CAS  Google Scholar 

  • Furimsky E (1983) The mechanism of catalytic hydrodeoxygenation of furan. Appl Catal 6:159–164

    Article  CAS  Google Scholar 

  • Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A Gen 199:147–190

    Article  CAS  Google Scholar 

  • GarcĂ­a R, Pizarro C, LavĂ­n AG, Bueno JL (2017) Biomass sources for thermal conversion. Techno-economical overview. Fuel 195:182–189

    Article  CAS  Google Scholar 

  • Gebremariam SN, Marchetti JM (2018) Economics of biodiesel production: review. Energy Convers Manag 168:74–84

    Article  CAS  Google Scholar 

  • Ghosh S, Chowdhury R, Bhattacharya P (2017) Sustainability of cereal straws for the fermentative production of second generation biofuels: a review of the efficiency and economics of biochemical pretreatment processes. Appl Energy 198:284–298

    Article  CAS  Google Scholar 

  • Gollakota ARK, Reddy M, Subramanyam MD, Kishore N (2016) A review on the upgradation techniques of pyrolysis oil. Renew Sust Energ Rev 58:1543–1568

    Article  CAS  Google Scholar 

  • Gollakota ARK, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev 81:1378–1392

    Article  Google Scholar 

  • Gu H, Tang Y, Yao J, Chen F (2019) Study on biomass gasification under various operating conditions. J Energy Inst 92:1329–1336

    Article  CAS  Google Scholar 

  • Guedes RE, Lunaa AS, Torres AR (2018) Operating parameters for bio-oil production in biomass pyrolysis: a review. J Anal Appl Pyrolysis 129:134–149

    Article  CAS  Google Scholar 

  • Hanaoka T, Yoshida T, Fujimoto S et al (2005) Hydrogen production from woody biomass by steam gasification using CO2 sorbent. Biomass Bioenergy 28:63–68

    Article  CAS  Google Scholar 

  • He C, Tang C, Li C, Yuan J, Tran KQ, Bach QV, Qiu R, Yang Y (2018) Wet torrefaction of biomass for high quality solid fuel production: a review. Renew Sust Energ Rev 91:259–271

    Article  CAS  Google Scholar 

  • Huang BS, Chen HY, Kuo JH, Kamei K, Harada M, Suzuki Y, Hatano H, Yokoyama SY, Minowas T (2012) Catalytic upgrading of syngas from fluidized bed air gasification of sawdust. Bioresour Technol 110:670–675

    Article  CAS  PubMed  Google Scholar 

  • International Energy Outlook (2017) Energy Information Administration. USA

    Google Scholar 

  • Jahromi H, Agblevor FA (2018) Hydrodeoxygenation of pinyon-juniper catalytic pyrolysis oil using red mud-supported nickel catalysts. Appl Catal B Environ 236:1–12

    Article  CAS  Google Scholar 

  • Jia S, Ning S, Ying H, Sun Y, Xu W, Yin H (2017) High quality syngas production from catalytic gasification of woodchip char. Energy Convers Manag 151:457–464

    Article  CAS  Google Scholar 

  • JuĂ¡rez MC, Morales MP, Muñoz P, Mendivil MA (2012) Biomass gasification for electricity generation: review of current technology barriers. Renew Sust Energ Rev 18:174–183

    Google Scholar 

  • Kang K, Nanda S, Sun G, Qiu L, Gu Y, Zhang T, Zhu M, Sun R (2019) Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: optimization of process parameters and characterization of hydrochar. Energy 186:115795

    Article  CAS  Google Scholar 

  • Kumar A, Jones DD, Hanna MA (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581

    Article  CAS  Google Scholar 

  • Langè S, Pellegrini LA (2013) Economic analysis of a combined production of hydrogen-energy from empty fruit bunches. Biomass Bioenergy 59:520–531

    Article  Google Scholar 

  • Li J, Yin Y, Zhang X, Liu J, Tan R (2009) Hydrogen-rich gas production by steam gasification of palm oil wastes over supported tri-metallic catalyst. Int J Hydrog Energy 34:9108–9115

    Article  CAS  Google Scholar 

  • Li Q, Song G, Xiao J, Sun T, Yamg K (2019) Exergy analysis of biomass staged-gasification for hydrogen-rich syngas. Int J Hydrog Energy 44:2569–2579

    Article  CAS  Google Scholar 

  • Lopes JM, Cerqueira HS, Ribeiro MF (2012) Bio-oils upgrading for second generation biofuels. I&EC Res 52:275–287

    Google Scholar 

  • LĂ³pez BD, Riede S, Hornung U, Kruse A, Prins W (2015) Hydrothermal liquefaction of microalgae: effect on the product yields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil. Algal Res 12:206–212

    Article  Google Scholar 

  • Motta IL, Miranda NT, Maciel FR, Maciel MRW (2019) Sugarcane bagasse gasification: simulation and analysis of different operating parameters, fluidizing media, and gasifier types. Biomass Bioenergy 122:433–445

    Article  CAS  Google Scholar 

  • Nanda S, Maley J, Kozinski JA, Dalai AK (2015) Physico-chemical evolution in lignocellulosic feedstocks during hydrothermal pretreatment and delignification. J Biobased Mater Bioenerg 9:295–308

    Article  CAS  Google Scholar 

  • Nanda S, Gong M, Hunter HN, Dalai AK, Gökalp I, Kozinski JA (2017a) An assessment of pinecone gasification in subcritical, near-critical and supercritical water. Fuel Process Technol 168:84–96

    Article  CAS  Google Scholar 

  • Nanda S, Rana R, Zheng Y, Kozinski JA, Dalai AK (2017b) Insights on pathways for hydrogen generation from ethanol. Sustain Energ Fuel 1:1232–1245

    Article  CAS  Google Scholar 

  • Neumann J, Jäger N, Apfelbacher A, Saschner R, Binder S, Hornung A (2016) Upgraded biofuel from residue biomass by thermo-catalytic reforming and hydrodeoxygenation. Biomass Bioenergy 89:91–97

    Article  CAS  Google Scholar 

  • Neveux N, Yuen AKL, Jazrawi C, Magnusson M, Haynes BS, Masters AF, Montoya A, Paul MA, Maschmeyer T, de Nys R (2014) Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresour Technol 155:334–341

    Article  CAS  PubMed  Google Scholar 

  • Oh S, Choi HS, Kim UJ, Choi IG, Choi JW (2016) Storage performance of bio-oil after hydrodeoxygenative upgrading with noble metal catalysts. Fuel 182:154–160

    Article  CAS  Google Scholar 

  • Onay O, Kockar OM (2003) Slow, fast and flash pyrolysis of rapeseed. Renew Energy 28:2417–2433

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Dalai AK, Kozinski JA (2014) Supercritical water gasification of biomass for hydrogen production. Int J Hydrogen Energ 39:6912–6926

    Article  CAS  Google Scholar 

  • SĂ¡nchez J, Curt MD, Robert N, FernĂ¡ndez J (2019) Biomass resources. In: The role of bioenergy in the bioeconomy. Academia Press, Elsevier Inc, Cambridge, pp 25–111

    Chapter  Google Scholar 

  • Schaleger LL, Figueroa C, Davis HG (1982) Direct liquefaction of biomass: results from operation of continuous bench scale unit in liquefaction of water slurries of Douglas fir wood. In: Symposium on biotechnology in energy production and conservation, Gatlinburg, TN, pp 1–28

    Google Scholar 

  • Seçer A, KĂ¼Ă§et N, Fakı E, HasanoÄŸlu A (2018) Comparison of co–gasification efficiencies of coal, lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production. Int J Hydrog Energy 43:21269–21278

    Article  CAS  Google Scholar 

  • Shah K, Dhanavath KN, Bankupalli S, Parthasarathy R (2018) Oxygen–steam gasification of karanja press seed cake: fixed bed experiments, ASPEN plus process model development and benchmarking with saw dust, rice husk and sunflower husk. J Environ Chem Eng 6:3061–3069

    Article  CAS  Google Scholar 

  • Shakya R, Whelen J, Adhikari S, Mahadevan R, Neupane S (2015) Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Res 12:80–90

    Article  Google Scholar 

  • Shin JD, Xu C, Kim SH, Kim H, Mahmood N, Lim M (2017) Biomass conversion of plant residues. In: Grumezescu AM, Holban AM (eds) Food bioconversion. Academia Press, Elsevier Inc., Cambridge, pp 351–383

    Chapter  Google Scholar 

  • Si Z, Zhang X, Wang C, Ma L, Dong R (2017) An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catalysts 7:169

    Article  CAS  Google Scholar 

  • Sikarwar VS, Zhao M, Fennell PS, Shah N, Anthony EJ (2017) Progress in biofuel production from gasification. Prog Energy Combust Sci 61:189–248

    Article  Google Scholar 

  • Tekin K, Karagoz S, Bekta S (2014) A review of hydrothermal biomass processing. Renew Sust Energ Rev 40:673–687

    Article  CAS  Google Scholar 

  • Thakare S, Nandi S (2015) Study on potential of gasification technology for municipal solid waste (MSW) in Pune city. Energy Procedia 90:509–517

    Article  Google Scholar 

  • Thigpen PL (1982) An investigation of liquefaction of wood at the biomass liquefaction facility, Albany, Oregon, Battelle Pacific Northwest Laboratories. Department of Energy Contract AC01-78ET 23032 Wheelabrator Cleanfuel Corporation, United States

    Google Scholar 

  • Veses A, PuĂ©rtolas B, CallĂ©n MS, GarcĂ­a T (2015) Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: effect of different metal cations on the bio-oil final properties. Microporous Mesoporous Mater 209:189–196

    Article  CAS  Google Scholar 

  • Volli V, Singh RK (2012) Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel 96:579–585

    Article  CAS  Google Scholar 

  • Volli V, Kumar Purkait M, Shu CM (2019) Preparation and characterization of animal bone powder impregnated fly ash catalyst for transesterification. Sci Total Environ 669:314–321

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86

    Article  Google Scholar 

  • Widjaya ER, Chen G, Bowtell L, Hills C (2018) Gasification of non-woody biomass: a literature review. Renew Sust Energ Rev 89:184–193

    Article  CAS  Google Scholar 

  • Xu Y, Wang T, Ma L, Zhang Q, Liang W (2010) Upgrading of the liquid fuel from fast pyrolysis of biomass over MoNi/γ-Al2O3 catalysts. Appl Energy 87:2886–2891

    Article  CAS  Google Scholar 

  • Yang T, Jie Y, Li B, Kai X, Yan Z, Li R (2016) Catalytic hydrodeoxygenation of crude bio-oil over an unsupported bimetallic dispersed catalyst in supercritical ethanol. Fuel Process Technol 148:19–27

    Article  CAS  Google Scholar 

  • Yang T, Shi L, Li R, Li B, Kai X (2019) Hydrodeoxygenation of crude bio-oil in situ in the bio-oil aqueous phase with addition of zero-valent aluminum. Fuel Process Technol 184:65–72

    Article  CAS  Google Scholar 

  • Zhou G, Jensen PA, Le DM, Knidsen NO, Jensen AD (2016) Atmospheric hydrodeoxygenation of biomass fast pyrolysis vapor by MoO3. ACS Sustain Chem Eng 4:5432–5440

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the PS&DPL group, National Yunlin University of Science and Technology, Taiwan, for their cooperation and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vikranth Volli or Chi-Min Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volli, V., Gollakota, A.R.K., Purkait, M.K., Shu, CM. (2020). Conversion of Waste Biomass to Bio-oils and Upgradation by Hydrothermal Liquefaction, Gasification, and Hydrodeoxygenation. In: Nanda, S., N. Vo, DV., Sarangi, P. (eds) Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-1804-1_13

Download citation

Publish with us

Policies and ethics