Skip to main content

Performance of Control Algorithms in Wind-Based Distributed Generation System with Power Quality Features: A Review

  • Chapter
  • First Online:
Microgrid: Operation, Control, Monitoring and Protection

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 625))

  • 1379 Accesses

Abstract

This work introduces the performance review regarding control algorithms implemented in wind-based distributed generation system for improving the system’s power quality. The system is comprised of three-phase self-excited induction generator, nonlinear load and voltage source converter. The nonlinear load is directly fed by the generator in off-grid operation. Due to this, the operation of the generator suffers as a whole means the voltage and frequency variation takes place according to variation in the load. Moreover, the power quality problems such as harmonics in the supply current, poor power factor, load unbalance and neutral current at the supply side are prominent. Therefore, the voltage source converter is used along with load to mitigate the power quality problems as well as voltage and frequency fluctuations. For frequency control, the input terminal of the converter uses a battery storage system. The converter operation is dependent on the dynamical performance of the control algorithm used for fundamental current extraction followed by reference current generation. Hence, authors have presented performance review of some control algorithms such as Lorentzian adaptive filter (LAF), momentum LMS, VCO-less PLL, adaptive vectorial filter (AVF) and nonlinear adaptive Volterra filter (NAVF) for reference current generation followed by gate pulses for converter for power quality features of the system. The control algorithms are selected based on their faster dynamics, less steady-state error and stable operation. The simulation and experimental performance of each have been carried out, and comparative analysis is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AVF:

Adaptive vectorial filter

DPG:

Distributed power generation

FRRLS:

Fast robust recursive least-squares

IRPT:

Instantaneous reactive power theory

LMS:

Least mean square

NLMS:

Normalized least mean square

PLL:

Phase-locked loop

SRFT:

Synchronous reference frame theory

SAPF:

Shunt active power filter

SEIG:

Self-excited induction generator

SD:

Steepest descent

VSC:

Voltage source converter

References

  1. Simoes M, Farret F (2008) Alternate energy systems, design and analysis with induction generators, 2nd edn. CRC Press, Tailor and Fransis, London

    Google Scholar 

  2. Lai L, Chan T (2007) Distributed generation: induction and permanent magnet generators. Wiley, London

    Google Scholar 

  3. Fox B, Flynn D (2007) Wind power integration connection and system operational aspects. The Institution of Engineering and Technology, London, United Kingdom

    Book  Google Scholar 

  4. Chapallaz J (1992) Manual on induction motors used as generators. Vieweg, Braunschweig

    Book  Google Scholar 

  5. Stiebler M (2008) Wind energy systems for electric power generation. Green energy and technology. Springer, Berlin

    Google Scholar 

  6. IEEE (1993) 519–1992 IEEE recommended practices and requirements for harmonic control in electrical power systems. ISBN-978-0-7381-0915-2

    Google Scholar 

  7. Borbely A, Kreider J (2001) Distributed generation: the power paradigm for the new millennium. CRC Press, Boca Raton, Florida (USA)

    Book  Google Scholar 

  8. Jha A (2011) Wind turbine technology. CRC Press, Taylor and Fransis Group, London

    Google Scholar 

  9. Boldea I (2016) Synchronous generators hand book. CRC Press, Tailor and Fransis Group

    Google Scholar 

  10. Akagi H, Kanazawa Y, Nabae A (1983) Generalized theory of the instantaneous reactive power in three-phase circuits. In: Proceeding IEEE/JIEE international power electronics conference (IPEC’83), pp 821–827

    Google Scholar 

  11. Singh B, Verma V (2008) Selective compensation of power-quality problems through active power filter by current decomposition. IEEE Trans Power Delivery 23:792–799. https://doi.org/10.1109/tpwrd.2007.911108

    Article  Google Scholar 

  12. Valdez-Fernandez A, Martinez-Rodriguez P, Escobar G et al (2013) A model-based controller for the cascade H-bridge multilevel converter used as a shunt active filter. IEEE Trans Industr Electron 60:5019–5028. https://doi.org/10.1109/tie.2012.2218558

    Article  Google Scholar 

  13. Al Chaer T, Gaubert J, Rambault L, Najjar M (2009) Linear feedback control of a parallel active harmonic conditioner in power systems. IEEE Trans Power Electron 24:641–653. https://doi.org/10.1109/tpel.2008.2008186

    Article  Google Scholar 

  14. Rao U, Mishra M, Ghosh A (2008) Control strategies for load compensation using instantaneous symmetrical component theory under different supply voltages. IEEE Trans Power Delivery 23:2310–2317. https://doi.org/10.1109/tpwrd.2008.923053

    Article  Google Scholar 

  15. Singh B, Arya S (2014) Back-propagation control algorithm for power quality improvement using DSTATCOM. IEEE Trans Industr Electron 61:1204–1212. https://doi.org/10.1109/tie.2013.2258303

    Article  Google Scholar 

  16. Luo A, Xu X, Fang L et al (2010) Feedback-feedforward PI-type iterative learning control strategy for hybrid active power filter with injection circuit. IEEE Trans Industr Electron 57:3767–3779. https://doi.org/10.1109/tie.2010.2040567

    Article  Google Scholar 

  17. Zou Z, Zhou K, Wang Z, Cheng M (2015) Frequency-adaptive fractional-order repetitive control of shunt active power filters. IEEE Trans Industr Electron 62:1659–1668. https://doi.org/10.1109/tie.2014.2363442

    Article  Google Scholar 

  18. Sreeraj ES, Prejith EK, Chatterjee K, Bandyopadhyay S (2014) An active harmonic filter based on one-cycle control. IEEE Trans Ind Electron 61:3799–3809. https://doi.org/10.1109/tie.2013.2286558

    Article  Google Scholar 

  19. Kanjiya P, Khadkikar V, Zeineldin H (2013) A noniterative optimized algorithm for shunt active power filter under distorted and unbalanced supply voltages. IEEE Trans Industr Electron 60:5376–5390. https://doi.org/10.1109/tie.2012.2235394

    Article  Google Scholar 

  20. Singh B, Raj Arya S (2013) Composite observer-based control algorithm for distribution static compensator in four-wire supply system. IET Power Electron 6:251–260. https://doi.org/10.1049/iet-pel.2012.0412

    Article  Google Scholar 

  21. Yazdani D, Bakhshai A, Joos G (2008) A real-time sequence components decomposition for transient analysis in grid-connected distributed generation systems. In: Proceedings IEEE symposium on industrial electronics, pp 1651–1656

    Google Scholar 

  22. Yazdani D, Mojiri M, Bakhshai A, Joos G (2009) A fast and accurate synchronization technique for extraction of symmetrical components. IEEE Trans Power Electron 24:674–684. https://doi.org/10.1109/tpel.2008.2010321

    Article  Google Scholar 

  23. Cirrincione M, Pucci M, Vitale G, Miraoui A (2009) Current harmonic compensation by a single-phase shunt active power filter controlled by adaptive neural filtering. IEEE Trans Industr Electron 56:3128–3143. https://doi.org/10.1109/tie.2009.2022070

    Article  Google Scholar 

  24. Tey L, So P, Chu Y (2005) Improvement of power quality using adaptive shunt active filter. IEEE Trans Power Delivery 20:1558–1568. https://doi.org/10.1109/tpwrd.2004.838641

    Article  Google Scholar 

  25. Huang Shyh-Jier, Jinn-Chang Wu (1999) A control algorithm for three-phase three-wired active power filters under nonideal mains voltages. IEEE Trans Power Electron 14:753–760. https://doi.org/10.1109/63.774215

    Article  Google Scholar 

  26. Tolbert LM, Hablter TG (2000) Comparison of time-based non-active power definitions for active filtering. In: Proceedings of CIEP, Acapulco, Mexico, pp 73–79

    Google Scholar 

  27. Cardenas V, Moran L, Bahamondes A, Dixon J (2003) Comparative study of real time reference generation techniques forfour-wire shunt active power filters. In: Proceedings of IEEE (PESC), Acapulco, Mexico, pp 791–796

    Google Scholar 

  28. Chilipi R, Singh B, Murthy S (2014) Performance of a self-excited induction generator with DSTATCOM-DTC drive-based voltage and frequency controller. IEEE Trans Energy Convers 29:545–557. https://doi.org/10.1109/tec.2014.2321184

    Article  Google Scholar 

  29. Kasal G, Singh B (2011) Voltage and frequency controllers for an asynchronous generator-based isolated wind energy conversion system. IEEE Trans Energy Convers 26:402–416. https://doi.org/10.1109/tec.2010.2102029

    Article  Google Scholar 

  30. Ouazenne L, McPherson G (1983) Analysis of the Isolated Induction generator. IEEE Power Eng Rev PER 3:59–59. https://doi.org/10.1109/mper.1983.5518898

    Article  Google Scholar 

  31. Alolah A, Alkanhal M (2000) Optimization-based steady state analysis of three phase self-excited induction generator. IEEE Trans Energy Convers 15:61–65. https://doi.org/10.1109/60.849117

    Article  Google Scholar 

  32. Al Jabri A, Alolah A (1990) Capacitance requirement for isolated self-exicted induction generator. IEE Proc B Electr Power Appl 137:154. https://doi.org/10.1049/ip-b.1990.0016

    Article  Google Scholar 

  33. Murthy S, Singh B, Sandeep V (2012) A novel and comprehensive performance analysis of a single-phase two-winding self-excited induction generator. IEEE Trans Energy Convers 27:117–127. https://doi.org/10.1109/tec.2011.2170072

    Article  Google Scholar 

  34. Singh B, Kasal G, Chandra A, Haddad KA (2007) Battery based voltage and frequency controller for parallel operated isolated asynchronous generators. In: Proceedings of IEEE international symposium on industrial electronics (ISIE-2007), Vigo, Spain

    Google Scholar 

  35. Rajagopal V, Singh B, Kasal G (2011) Electronic load controller with power quality improvement of isolated induction generator for small hydro power generation. IET Renew Power Gener 5:202. https://doi.org/10.1049/iet-rpg.2010.0081

    Article  Google Scholar 

  36. Kalla U, Singh B, Murthy S (2014) Normalised adaptive linear element-based control of single-phase self excited induction generator feeding fluctuating loads. IET Power Electron 7:2151–2160. https://doi.org/10.1049/iet-pel.2013.0652

    Article  Google Scholar 

  37. Singh B, Murthy S, Gupta S (2006) A voltage and frequency controller for self-excited induction generators. Electr Power Compon Syst 34:141–157. https://doi.org/10.1080/15325000500244567

    Article  Google Scholar 

  38. Singh B, Murthy SS, Gupta S (2005) An electronic voltage and frequency controller for single-phase self-excited induction generators for pico hydro applications. Proc IEEE Power Electron Drives Syst Conf 1:240–245

    Article  Google Scholar 

  39. Yazdani D, Bakhshai A, Jain P (2010) A three-phase adaptive notch filter-based approach to harmonic/reactive current extraction and harmonic decomposition. IEEE Trans Power Electron 25:914–923. https://doi.org/10.1109/tpel.2009.2036621

    Article  Google Scholar 

  40. Mojiri M, Bakhshai A (2007) Stability analysis of periodic orbit of an adaptive notch filter for frequency estimation of a periodic signal. Automatica 43:450–455. https://doi.org/10.1016/j.automatica.2006.08.018

    Article  MathSciNet  MATH  Google Scholar 

  41. Yin G, Guo L, Li X (2013) An amplitude adaptive notch filter for grid signal processing. IEEE Trans Power Electron 28:2638–2641. https://doi.org/10.1109/tpel.2012.2226752

    Article  Google Scholar 

  42. Blaabjerg F, Teodorescu R, Liserre M, Timbus A (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Industr Electron 53:1398–1409. https://doi.org/10.1109/tie.2006.881997

    Article  Google Scholar 

  43. Rao U, Mishra M, Ghosh A (2008) Control strategies for load compensation using instantaneous symmetrical component theory under different supply voltages. IEEE Trans Power Deliv 23:2310–2317. https://doi.org/10.1109/tpwrd.2008.923053

    Article  Google Scholar 

  44. Karimi-Ghartemani M, Karimi H, Bakhshai A (2009) A filtering technique for three-phase power systems. IEEE Trans Instrum Meas 58:389–396. https://doi.org/10.1109/tim.2008.2003331

    Article  Google Scholar 

  45. Arya S, Singh B (2013) Performance of DSTATCOM using leaky LMS control algorithm. IEEE J Emerg Sel Top Power Electron 1:104–113. https://doi.org/10.1109/jestpe.2013.2266372

    Article  Google Scholar 

  46. Shinnaka S (2008) A robust single-phase PLL system with stable and fast tracking. IEEE Trans Ind Appl 44:624–633. https://doi.org/10.1109/tia.2008.916750

    Article  Google Scholar 

  47. Guo X, Wu W, Chen Z (2011) Multiple-complex coefficient-filter-based phase-locked loop and synchronization technique for three-phase grid-interfaced converters in distributed utility networks. IEEE Trans Industr Electron 58:1194–1204. https://doi.org/10.1109/tie.2010.2041738

    Article  Google Scholar 

  48. Arablouei R, Werner S, Dogancay K (2014) Analysis of the gradient-descent total least-squares adaptive filtering algorithm. IEEE Trans Signal Process 62:1256–1264. https://doi.org/10.1109/tsp.2014.2301135

    Article  MathSciNet  MATH  Google Scholar 

  49. Shuai Z, Luo A, Tu C, Liu D (2011) New control method of injection-type hybrid active power filter. IET Power Electron 4:1051. https://doi.org/10.1049/iet-pel.2010.0353

    Article  Google Scholar 

  50. Bhattacharya A, Chakraborty C, Bhattacharya S (2009) Shunt compensation. IEEE Ind Electron Mag 3:38–49. https://doi.org/10.1109/mie.2009.933881

    Article  Google Scholar 

  51. Suresh Y, Panda A, Suresh M (2012) Real-time implementation of adaptive fuzzy hysteresis-band current control technique for shunt active power filter. IET Power Electron 5:1188–1195. https://doi.org/10.1049/iet-pel.2011.0371

    Article  Google Scholar 

  52. Wu J, Jou H, Feng Y et al (2007) Novel circuit topology for three-phase active power filter. IEEE Trans Power Delivery 22:444–449. https://doi.org/10.1109/tpwrd.2006.881416

    Article  Google Scholar 

  53. Bristow D, Tharayil M, Alleynea A (2006) Learning-based method for high-performance tracking control. IEEE Control Syst Mag 96–114

    Google Scholar 

  54. Vazquez S, Sanchez J, Reyes M et al (2014) Adaptive vectorial filter for grid synchronization of power converters under unbalanced and/or distorted grid conditions. IEEE Trans Industr Electron 61:1355–1367. https://doi.org/10.1109/tie.2013.2258302

    Article  Google Scholar 

  55. Wang X, Sun L, Wen F, Salam MA, Ang SP (2015) Control strategies of battery energy storage systems for smoothing wind power fluctuations. In: 10th International conference on advances in power system control, operation and management (APSCOM 2015), Hongkong, China

    Google Scholar 

  56. Godavarti M, Hero A (2005) Partial update LMS algorithms. IEEE Trans Signal Process 53:2382–2399. https://doi.org/10.1109/tsp.2005.849167

    Article  MathSciNet  MATH  Google Scholar 

  57. Kohli A, Mehra D (2006) Tracking of time-varying channels using two-step LMS-type adaptive algorithm. IEEE Trans Signal Process 54:2606–2615. https://doi.org/10.1109/tsp.2006.874779

    Article  MATH  Google Scholar 

  58. Choi Y, Shin H, Song W (2006) Robust regularization for normalized LMS algorithms. IEEE Trans Circuits Syst II Express Briefs 53:627–631. https://doi.org/10.1109/tcsii.2006.877280

    Article  Google Scholar 

  59. Das D, Mohapatra S, Routray A, Basu T (2006) Filtered-s LMS algorithm for multichannel active control of nonlinear noise processes. IEEE Trans Audio Speech Lang Process 14:1875–1880. https://doi.org/10.1109/tsa.2005.858543

    Article  Google Scholar 

  60. Das D, Kuo S, Panda G (2007) New block filtered-X LMS algorithms for active noise control systems. IET Signal Proc 1:73–81. https://doi.org/10.1049/iet-spr:20060220

    Article  Google Scholar 

  61. Vega L, Rey H, Benesty J, Tressens S (2009) A fast robust recursive least-squares algorithm. IEEE Trans Signal Process 57:1209–1216. https://doi.org/10.1109/tsp.2008.2010643

    Article  MathSciNet  MATH  Google Scholar 

  62. Bhotto M, Antoniou A (2011) Robust recursive least-squares adaptive-filtering algorithm for impulsive-noise environments. IEEE Signal Process Lett 18:185–188. https://doi.org/10.1109/lsp.2011.2106119

    Article  Google Scholar 

  63. Singh B, Arya S (2013) Adaptive theory-based improved linear sinusoidal tracer control algorithm for DSTATCOM. IEEE Trans Power Electron 28:3768–3778. https://doi.org/10.1109/tpel.2012.2228884

    Article  Google Scholar 

  64. Foley J, Boland F (1987) Comparison between steepest descent and LMS algorithms in adaptive filters. IEE Proc F Commun Radar Signal Process 134:283. https://doi.org/10.1049/ip-f-1.1987.0056

    Article  Google Scholar 

  65. Gorriz J, Ramirez J, Cruces-Alvarez S et al (2009) A novel LMS algorithm applied to adaptive noise cancellation. IEEE Signal Process Lett 16:34–37. https://doi.org/10.1109/lsp.2008.2008584

    Article  Google Scholar 

  66. Srar J, Chung KS, Mansour A (2010) Adaptive array beam forming using a combined LMS-LMS algorithm. IEEE Trans Antennas Propag 58:3545–3557. https://doi.org/10.1109/tap.2010.2071361

    Article  Google Scholar 

  67. Zanella A, Chiani M, Win M (2011) Statistical analysis of steepest descend and LMS detection algorithms for MIMO systems. IEEE Trans Veh Technol 60:4667–4672. https://doi.org/10.1109/tvt.2011.2170185

    Article  Google Scholar 

  68. Andrade J Jr, de Campos M, Apolinário J Jr (2019) L1-constrained normalized LMS algorithms for adaptive beam forming. IEEE Trans Signal Process 63:6524–6539

    Article  MATH  Google Scholar 

  69. Das B, Chakraborty M (2014) Sparse adaptive filtering by an adaptive convex combination of the LMS and the ZA-LMS algorithms. IEEE Trans Circuits Syst I Regul Pap 61:1499–1507. https://doi.org/10.1109/tcsi.2013.2289407

    Article  MathSciNet  Google Scholar 

  70. Chien Y, Tseng W (2013) Switching-based variable step-size approach for partial update LMS algorithms. Electron Lett 49:1081–1083. https://doi.org/10.1049/el.2013.1762

    Article  Google Scholar 

  71. Eweda E, Bershad N (2017) Stochastic analysis of the signed LMS algorithms for cyclostationary white gaussian inputs. IEEE Trans Signal Process 65:1673–1684. https://doi.org/10.1109/tsp.2016.2646666

    Article  MathSciNet  MATH  Google Scholar 

  72. Kelly J, Siewiorek D, Smailagic A, Wang W (2016) An adaptive filter for the removal of drifting sinusoidal noise without a reference. IEEE J Biomed Health Inform 20:213–221. https://doi.org/10.1109/jbhi.2014.2375318

    Article  Google Scholar 

  73. Das R, Narwaria M (2017) Lorentzian based adaptive filters for impulsive noise environments. IEEE Trans Circuits Syst I Regul Pap 64:1529–1539. https://doi.org/10.1109/tcsi.2017.2667705

    Article  Google Scholar 

  74. Narasimhan S, Veena S, Lokesha H (2009) Variable step-size Griffiths’ algorithm for improved performance of feedforward/feedback active noise control. SIViP 4:309–317. https://doi.org/10.1007/s11760-009-0120-9

    Article  MATH  Google Scholar 

  75. Chan T, Lai L, Yan Lie-Tong (2003) Finite element analysis of a single-phase grid-connected induction generator with the Steinmetz connection. IEEE Trans Energy Convers 18:321–329. https://doi.org/10.1109/tec.2003.811737

    Article  Google Scholar 

  76. Sayed A (2003) Fundamentals of adaptive filtering. IEEE Press [u.a.], [Piscataway, NJ]

    Google Scholar 

  77. Koike S (1997) Adaptive threshold nonlinear algorithm for adaptive filters with robustness against impulse noise. IEEE Trans Signal Process 45:2391–2395. https://doi.org/10.1109/78.622963

    Article  Google Scholar 

  78. Carrillo R, Barner K, Aysal T (2010) Robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise. IEEE J Sel Top Signal Process 4:392–408. https://doi.org/10.1109/jstsp.2009.2039177

    Article  Google Scholar 

  79. Das RL, Chakraborty M (2012) Sparse adaptive filters—an overview and some new results. In: Proceedings of ISCAS, Seoul, South Korea, pp 2745–2748

    Google Scholar 

  80. Shao Tiange, Zheng Y, Benesty J (2010) An affine projection sign algorithm robust against impulsive interferences. IEEE Signal Process Lett 17:327–330. https://doi.org/10.1109/lsp.2010.2040203

    Article  Google Scholar 

  81. Singh B, Rajagopal V (2011) Neural-network-based integrated electronic load controller for isolated asynchronous generators in small hydro generation. IEEE Trans Industr Electron 58:4264–4274. https://doi.org/10.1109/tie.2010.2102313

    Article  Google Scholar 

  82. Bhotto Z, Antoniou A (2013) A family of shrinkage adaptive-filtering algorithms. IEEE Trans Signal Process 61:1689–1697. https://doi.org/10.1109/tsp.2012.2236831

    Article  MathSciNet  MATH  Google Scholar 

  83. Rey Vega L, Rey H, Benesty J, Tressens S (2008) A new robust variable step-size NLMS algorithm. IEEE Trans Signal Process 56:1878–1893. https://doi.org/10.1109/tsp.2007.913142

    Article  MathSciNet  MATH  Google Scholar 

  84. Gansler T, Gay S, Sondhi G, Benesty J (2000) Double-talk robust fast converging algorithms for network echo cancellation. IEEE Trans Speech Audio Process 8:656–663. https://doi.org/10.1109/89.876299

    Article  Google Scholar 

  85. Kuruoğlu E, Rayner P, Fitzgerald W (1998) Least Lp-norm impulsive noise cancellation with polynomial filters. Sig Process 69:1–14. https://doi.org/10.1016/s0165-1684(98)00083-8

    Article  Google Scholar 

  86. Sayin M, Vanli N, Kozat S (2014) A novel family of adaptive filtering algorithms based on the logarithmic cost. IEEE Trans Signal Process 62:4411–4424. https://doi.org/10.1109/tsp.2014.2333559

    Article  MathSciNet  MATH  Google Scholar 

  87. Chen WL, Lin YH, Gau HS, Yu CH (2008) STATCOM Controls for a self-excited induction generator feeding random loads. IEEE Trans Power Delivery 23:2207–2215. https://doi.org/10.1109/tpwrd.2008.923160

    Article  Google Scholar 

  88. Chilipi R, Murthy S, Madishetti S et al (2014) Design and implementation of dynamic electronic load controller for three-phase self-excited induction generator in remote small-hydro power generation. IET Renew Power Gener 8:269–280. https://doi.org/10.1049/iet-rpg.2013.0087

    Article  Google Scholar 

  89. Sharma S, Singh B (2014) Asynchronous generator with battery storage for standalone wind energy conversion system. IEEE Trans Ind Appl 50:2760–2767. https://doi.org/10.1109/tia.2013.2295475

    Article  Google Scholar 

  90. Chauhan P, Chatterjee J, Bhere H et al (2015) Synchronized operation of DSP-based generalized impedance controller with variable-speed isolated SEIG for novel voltage and frequency control. IEEE Trans Ind Appl 51:1845–1854. https://doi.org/10.1109/tia.2014.2356642

    Article  Google Scholar 

  91. Das R, Chakraborty M (2015) On convergence of proportionate-type normalized least mean square algorithms. IEEE Trans Circuits Syst II Express Briefs 62:491–495. https://doi.org/10.1109/tcsii.2014.2386261

    Article  Google Scholar 

  92. Kim S, Jeong J, Koo G, Kim S (2016) Robust convex combination of affine projection-type algorithms using an impulsive noise indicator. Sig Process 129:33–37. https://doi.org/10.1016/j.sigpro.2016.05.034

    Article  Google Scholar 

  93. Huang F, Zhang J, Zhang S (2016) Combined-step-size affine projection sign algorithm for robust adaptive filtering in impulsive interference environments. IEEE Trans Circuits Syst II Express Briefs 63:493–497. https://doi.org/10.1109/tcsii.2015.2505067

    Article  Google Scholar 

  94. Singh B, Sharma S (2012) Stand-alone single-phase power generation employing a three-phase isolated asynchronous generator. IEEE Trans Ind Appl 48:2414–2423. https://doi.org/10.1109/tia.2012.2227136

    Article  Google Scholar 

  95. Widrow B, Walach E (1984) On the statistical efficiency of the LMS algorithm with nonstationary inputs. IEEE Trans Inf Theory 30:211–221. https://doi.org/10.1109/tit.1984.1056892

    Article  Google Scholar 

  96. Patel S, Arya S, Maurya R (2017) Nonlinear adaptive Volterra filter for control of distribution static compensator. IEEE J Emerg Sel Top Power Electron 5:559–567. https://doi.org/10.1109/jestpe.2016.2633481

    Article  Google Scholar 

  97. Sharma P, Bhatti T (2013) Performance investigation of isolated wind-diesel hybrid power systems with WECS having PMIG. IEEE Trans Industr Electron 60:1630–1637. https://doi.org/10.1109/tie.2011.2175672

    Article  Google Scholar 

  98. Pathak G, Singh B, Panigrahi B (2016) Control of wind-diesel microgrid using affine projection-like algorithm. IEEE Trans Industr Inf 12:524–531. https://doi.org/10.1109/tii.2016.2518643

    Article  Google Scholar 

  99. Chittora P, Singh A, Singh M (2017) Gauss–Newton-based fast and simple recursive algorithm for compensation using shunt active power filter. IET Gener Transm Distrib 11:1521–1530. https://doi.org/10.1049/iet-gtd.2016.1222

    Article  Google Scholar 

  100. Roy S, Shynk J (1990) Analysis of the momentum LMS algorithm. IEEE Trans Acoust Speech Signal Process 38:2088–2098. https://doi.org/10.1109/29.61535

    Article  Google Scholar 

  101. Sharma R, Sethares W, Bucklew J (1998) Analysis of momentum adaptive filtering algorithms. IEEE Trans Signal Process 46:1430–1434. https://doi.org/10.1109/78.668805

    Article  Google Scholar 

  102. Niwas R, Jain C, Goel S, Singh B (2015) Unity power factor operation and neutral current compensation of diesel generator set feeding three-phase four-wire loads. IET Gener Transm Distrib 9:1738–1746. https://doi.org/10.1049/iet-gtd.2014.0745

    Article  Google Scholar 

  103. Tong Li, XudongZou ShuShuaiFeng et al (2014) An SRF-PLL-based sensorless vector control using the predictive deadbeat algorithm for the direct-driven permanent magnet synchronous generator. IEEE Trans Power Electron 29:2837–2849. https://doi.org/10.1109/tpel.2013.2272465

    Article  Google Scholar 

  104. Geng H, Xu D, Wu B (2011) A novel hardware-based all-digital phase-locked loop applied to grid-connected power converters. IEEE Trans Industr Electron 58:1737–1745. https://doi.org/10.1109/tie.2010.2053338

    Article  Google Scholar 

  105. Chen L (2004) PLL-based battery charge circuit topology. IEEE Trans Industr Electron 51:1344–1346. https://doi.org/10.1109/tie.2004.837891

    Article  Google Scholar 

  106. Barbosa Rolim L, Rodrigues da Costa D, Aredes M (2006) Analysis and software implementation of a robust synchronizing PLL circuit based on the pq theory. IEEE Trans Industr Electron 53:1919–1926. https://doi.org/10.1109/tie.2006.885483

    Article  Google Scholar 

  107. Luna A, Rocabert J, Candela J et al (2015) Grid voltage synchronization for distributed generation systems under grid fault conditions. IEEE Trans Ind Appl 51:3414–3425. https://doi.org/10.1109/tia.2015.2391436

    Article  Google Scholar 

  108. Ama N, Martinz F, Matakas L, Kassab F (2013) Phase-locked loop based on selective harmonics elimination for utility applications. IEEE Trans Power Electron 28:144–153. https://doi.org/10.1109/tpel.2012.2195506

    Article  Google Scholar 

  109. Freijedo F, Yepes A, Lopez Ó et al (2011) An optimized implementation of phase locked loops for grid applications. IEEE Trans Instrum Meas 60:3110–3119. https://doi.org/10.1109/tim.2011.2122550

    Article  Google Scholar 

  110. Chung SK (2000) A phase tracking system for three phase utility interface inverters. IEEE Trans Power Electron 15:431–438. https://doi.org/10.1109/63.844502

    Article  Google Scholar 

  111. Chung S (2000) Phase-locked loop for grid-connected three-phase power conversion systems. IEE Proc Electr Power Appl 147:213. https://doi.org/10.1049/ip-epa:20000328

    Article  Google Scholar 

  112. Freijedo F, Doval-Gandoy J, Lopez O, Acha E (2009) Tuning of phase-locked loops for power converters under distorted utility conditions. IEEE Trans Ind Appl 45:2039–2047. https://doi.org/10.1109/tia.2009.2031790

    Article  Google Scholar 

  113. Gonzalez-Espin F, Figueres E, Garcera G (2012) An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid. IEEE Trans Industr Electron 59:2718–2731. https://doi.org/10.1109/tie.2011.2166236

    Article  Google Scholar 

  114. Hadjidemetriou L, Kyriakides E, Blaabjerg F (2015) A robust synchronization to enhance the power quality of renewable energy systems. IEEE Trans Industr Electron 62:4858–4868. https://doi.org/10.1109/tie.2015.2397871

    Article  Google Scholar 

  115. Aiello M, Cataliotti A, Cosentino V, Nuccio S (2007) Synchronization techniques for power quality instruments. IEEE Trans Instrum Meas 56:1511–1519. https://doi.org/10.1109/tim.2007.903585

    Article  Google Scholar 

  116. Li W, Ruan X, Bao C et al (2014) Grid synchronization systems of three-phase grid-connected power converters: a complex-vector-filter perspective. IEEE Trans Industr Electron 61:1855–1870. https://doi.org/10.1109/tie.2013.2262762

    Article  Google Scholar 

  117. Park Y, Sul S, Kim W, Lee H (2014) Phase-locked loop based on an observer for grid synchronization. IEEE Trans Ind Appl 50:1256–1265. https://doi.org/10.1109/tia.2013.2279194

    Article  Google Scholar 

  118. Golestan S, Guerrero J, Vasquez J (2017) Three-phase PLLs: a review of recent advances. IEEE Trans Power Electron 32:1894–1907. https://doi.org/10.1109/tpel.2016.2565642

    Article  Google Scholar 

  119. Zheng L, Geng H, Yang G (2016) Fast and robust phase estimation algorithm for heavily distorted grid conditions. IEEE Trans Industr Electron 63:6845–6855. https://doi.org/10.1109/tie.2016.2585078

    Article  Google Scholar 

  120. BarghiLatran M, Yoldaş Y, Teke A (2015) Mitigation of power quality problems using distribution static synchronous compensator: a comprehensive review. IET Power Electronics 8:1312–1328. https://doi.org/10.1049/iet-pel.2014.0531

    Article  Google Scholar 

  121. Sebastián R (2016) Application of a battery energy storage for frequency regulation and peak shaving in a wind diesel power system. IET Gener Transm Distrib 10:764–770. https://doi.org/10.1049/iet-gtd.2015.0435

    Article  Google Scholar 

  122. Jou H, Wu J, Wu K et al (2005) Analysis of zig-zag transformer applying in the three-phase four-wire distribution power system. IEEE Trans Power Delivery 20:1168–1173. https://doi.org/10.1109/tpwrd.2005.844281

    Article  Google Scholar 

  123. Singh B, Sharma S (2012) Design and implementation of four-leg voltage-source-converter-based VFC for autonomous wind energy conversion system. IEEE Trans Industr Electron 59:4694–4703. https://doi.org/10.1109/tie.2011.2179271

    Article  Google Scholar 

  124. Perales M, Mora J, Carrasco J, Franquelo L (2001) A novel control method for active filters, based on filtered current. In: 2001 IEEE 32nd annual power electronics specialists conference (IEEE Cat No01CH37230). https://doi.org/10.1109/pesc.2001.954317

  125. Rodriguez P, Luna A, Candela I et al (2011) Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Trans Industr Electron 58:127–138. https://doi.org/10.1109/tie.2010.2042420

    Article  Google Scholar 

  126. Mojiri M, Karimi-Ghartemani M, Bakhshai A (2007) Time-domain signal analysis using adaptive notch filter. IEEE Trans Signal Process 55:85–93. https://doi.org/10.1109/tsp.2006.885686

    Article  MathSciNet  MATH  Google Scholar 

  127. Yazdani D, Bakhshai A, Joos G, Mojiri M (2009) A real-time extraction of harmonic and reactive current in a nonlinear load for grid-connected converters. IEEE Trans Industr Electron 56:2185–2189. https://doi.org/10.1109/tie.2009.2017100

    Article  Google Scholar 

  128. Wang F, Benhabib M, Duarte J, Hendrix M (2009) High performance stationary frame filters for symmetrical sequences or harmonics separation under a variety of grid conditions. In: 2009 24th annual IEEE applied power electronics conference and exposition. https://doi.org/10.1109/apec.2009.4802877

  129. Guo X (2010) Frequency-adaptive voltage sequence estimation for grid synchronisation. Electron Lett 46:980. https://doi.org/10.1049/el.2010.0843

    Article  Google Scholar 

  130. Asiminoael L, Blaabjerg F, Hansen S (2007) Detection is key—Harmonic detection methods for active power filter applications. IEEE Ind Appl Mag 13:22–33. https://doi.org/10.1109/mia.2007.4283506

    Article  Google Scholar 

  131. Chang G, Chen CI, Teng YF (2010) Radial-basis-function-based neural network for harmonic detection. IEEE Trans Industr Electron 57:2171–2179. https://doi.org/10.1109/tie.2009.2034681

    Article  Google Scholar 

  132. Lin H (2007) Intelligent neural network-based fast power system harmonic detection. IEEE Trans Industr Electron 54:43–52. https://doi.org/10.1109/tie.2006.888685

    Article  Google Scholar 

  133. Dong Gan, Ojo O (2007) Current regulation in four-leg voltage-source converters. IEEE Trans Industr Electron 54:2095–2105. https://doi.org/10.1109/tie.2007.895140

    Article  Google Scholar 

  134. Rahmani S, Mendalek N, Al-Haddad K (2010) Experimental design of a nonlinear control technique for three-phase shunt active power filter. IEEE Trans Industr Electron 57:3364–3375. https://doi.org/10.1109/tie.2009.2038945

    Article  Google Scholar 

  135. Griffith D, Arce G (1997) Partially decoupled Volterra filters: formulation and LMS adaptation. IEEE Trans Signal Process 45:1485–1494. https://doi.org/10.1109/78.599973

    Article  MATH  Google Scholar 

  136. Sayadi M, Fnaiech F, Najim M (1999) An LMS adaptive second-order Volterra filter with a zeroth-order term: steady-state performance analysis in a time-varying environment. IEEE Trans Signal Process 47:872–876. https://doi.org/10.1109/78.747794

    Article  MATH  Google Scholar 

  137. Tan Li, Jiang J (2001) Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Trans Signal Process 49:1667–1676. https://doi.org/10.1109/78.934136

    Article  Google Scholar 

  138. Krall C, Witrisal K, Leus G, Koeppl H (2008) Minimum mean-square error equalization for second-order Volterra systems. IEEE Trans Signal Process 56:4729–4737. https://doi.org/10.1109/tsp.2008.928167

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabha Raj Arya .

Editor information

Editors and Affiliations

Appendix

Appendix

  • A1. Three-Phase SEIG Rating and Parameters

Ratings: 4-pole, 50 Hz, 230 V and 3.7 kW;

Parameters: Rotor and stator resistance per phase Rr = 0.4816 Ω and Rs = 2.93 Ω, rotor and mutual inductance Lr = 0.002016 H and Lm = 0.0267544 H, constant of friction = 0.0023, Inertia constant (H) = 0.0011 J (Kg m2),

Capacitor for excitation (Ceg) = 4000 VAR;

  • A2. Compensator parameters: Ls = 10 mH; Cdc = 2300 µF, Six IGBT having 1200 V, 50 A.

  • A3. BESS: Lithium-ion type, 400 V, 7.5 AH, SOC (10–90%), rs = 0.05 Ω

  • A4. Nonlinear load in phases ‘a’, ‘b’ and phase ‘c’: Diode bridge ac/dc converter with R = 30 Ω, L = 100 mH in each phase.

Wind turbine simulation parameters [3]: 5 kW, radius of blades r = 1.4 m, CP (λ, β) = 0.87, VW = 12.5 m/s and ρ = 0.48.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giri, A.K., Arya, S.R., Maurya, R., Ray, P. (2020). Performance of Control Algorithms in Wind-Based Distributed Generation System with Power Quality Features: A Review. In: Ray, P., Biswal, M. (eds) Microgrid: Operation, Control, Monitoring and Protection. Lecture Notes in Electrical Engineering, vol 625. Springer, Singapore. https://doi.org/10.1007/978-981-15-1781-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1781-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1780-8

  • Online ISBN: 978-981-15-1781-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics