Skip to main content
  • 869 Accesses

Abstract

The application and development of genomic technologies using Saccharomyces cerevisiae as a valuable model organism have provided novel and useful insights for the identification of mechanism of action of small molecules and drugs in vivo. In this review, we focus on the development of yeast-based functional genomic and proteomic approaches for advancing the effectiveness of using yeast as an excellent model organism in the drug discovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armour CD, Lum PY (2005) From drug to protein: using yeast genetics for high-throughput target discovery. Curr Opinion Chem Biol 9:20–24

    Article  CAS  Google Scholar 

  • Auerbach D, Arnoldo A, Bogdan B, Fetchko M, Stagljar I (2005) Drug discovery using yeast as a model system: a functional genomic and proteomic view. Curr Proteomics 2:1–13

    Article  CAS  Google Scholar 

  • Awan AR, Blount BA, Bell DJ, Shaw WM, Ho JCH et al (2017) Biosynthesis of the antibiotic nonribosomal peptide penicillin in baker’s yeast. Nat Commun 8:15202

    Article  PubMed  PubMed Central  Google Scholar 

  • Baetz K, McHardy L, Gable K, Tarling T, Rebérioux D et al (2004) Yeast genome-wide drug-induced haploinsufficiency screen to determine drug mode of action. Proc Natl Acad Sci U S A 101:4525–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balibar CJ, Roemer T (2016) Yeast: a microbe with macro-implications to antimicrobial drug discovery. Brief Funct Genomics 15:147–154

    Article  PubMed  Google Scholar 

  • Baltz RH (2006) Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 33:507–513

    Article  CAS  PubMed  Google Scholar 

  • Barker CA, Farha MA, Brown ED (2010) Chemical genomic approaches to study model microbes. Chem Biol 17:624–632

    Article  CAS  PubMed  Google Scholar 

  • Baryshnikova A, Costanzo M, Dixon S, Vizeacoumar FJ, Myers CL et al (2010) Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Methods Enzymol 470:145–179

    Article  CAS  PubMed  Google Scholar 

  • Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR et al (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466:935–940

    Article  PubMed  Google Scholar 

  • Becker F, Murthi K, Smith C, Come J, Costa-Roldán N et al (2004) A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem Biol 1:211–223

    Article  CAS  Google Scholar 

  • Bennett JW, Chung KT (2001) Alexander Fleming and the discovery of penicillin. Adv Appl Microbiol 49:163–184

    Article  CAS  PubMed  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites: a personal view. J Antibiot 58:1–26

    Article  CAS  Google Scholar 

  • Bilinski T, Bylak A, Zadrag-Tecza R (2017) The budding yeast Saccharomyces cerevisiae as a model organism: possible implications for gerontological studies. Biogerontology 18:631–640

    Article  PubMed  PubMed Central  Google Scholar 

  • Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N et al (2018) Guidelines and recommendations on yeast cell death nomenclature. Microb Cell 5:4–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Nobel JG, Barnett JA (1991) Passage of molecules through yeast cell walls: a brief essay-review. Yeast 7:313–323

    Article  PubMed  Google Scholar 

  • Denny PW, Steel PG (2015) Yeast as a potential vehicle for neglected tropical disease drug discovery. J Biomol Screen 20:56–63

    Article  CAS  PubMed  Google Scholar 

  • DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22:151–185

    Article  PubMed  Google Scholar 

  • Dixon SJ, Stockwell BR (2009) Identifying druggable disease-modifying gene products. Curr Opin Chem Biol 13:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolinski K, Botstein D (2005) Changing perspectives in yeast research nearly a decade after the genome sequence. Genome Res 15:1611–1619

    Article  CAS  PubMed  Google Scholar 

  • Duina AA, Miller ME, Keeney JB (2014) Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 197:33–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farha MA, Brown ED (2015) Unconventional screening approaches for antibiotic discovery. Ann N Y Acad Sci 1354:54–66

    Article  PubMed  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  • Frearson JA, Brand S, McElroy SP et al (2010) N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature 464:728–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaever G, Nislow C (2014) The yeast deletion collection: a decade of functional genomics. Genetics 197:451–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaever G, Shoemaker DD, Jones TW, Liang H, Winzeler EA et al (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat Genet 21:278–283

    Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  • Giaever G, Flaherty P, Kumm J et al (2004) Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 101:793–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert IH (2014) Target-based drug discovery for human African trypanosomiasis: selection of molecular target and chemical matter. Parasitology 141:28–36

    Article  PubMed  Google Scholar 

  • Goffeau A, Barrell B, Bussey H, Davis RW, Dujon B et al (1996) Life with 6000 genes. Science 274:546–551

    Article  CAS  PubMed  Google Scholar 

  • Gomez L, Hack MD, Wu J, Wiener JJ, Venkatesan H et al (2007) Novel pyrazole derivatives as potent inhibitors of type II topoisomerases. Part 1: synthesis and preliminary SAR analysis. Bioorg Med Chem Lett 17:2723–2727

    Article  CAS  PubMed  Google Scholar 

  • Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S et al (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320:362–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoon S, Smith AM, Wallace IM et al (2008) An integrated platform of genomic assays reveals small-molecule bioactivities. Nat Chem Biol 4:498–506

    Article  CAS  PubMed  Google Scholar 

  • Hudson JRJ, Dawson EP, Rushing KL, Jackson CH, Lockshon D et al (1997) The complete set of predicted genes from Saccharomyces cerevisiae in a readily usable form. Genome Res 7:1169–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz L, Baltz RH (2016) Natural product discovery: past, present and future. J Ind Microbiol Biotechnol 43:155–176

    Article  CAS  PubMed  Google Scholar 

  • Knorre DA, Sokolov SS, Zyrina AN, Severin FF et al (2016) How do yeast sense mitochondrial dysfunction? Microb Cell 3:532–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalczuk M, Mackiewicz P, Gierlik A, Dudek MR, Cebrat S (1999) Total number of coding open reading frames in the yeast genome. Yeast 15:1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin E, Sharifpoor S, Baryshnikova A, Costanzo M, Myers CL et al (2014) Synthetic genetic array analysis for global mapping of genetic networks in yeast. Methods Mol Biol 1205:143–168

    Article  CAS  PubMed  Google Scholar 

  • Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M et al (2008) Discovery, in vivo activity and mechanism of action of a small-molecule p53 activator. Cancer Cell 13:454–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasserre JP, Dautant A, Aiyar RS, Kucharczyk R, Glatigny A et al (2015) Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 8:509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longo VD, Fabrizio P (2012) Chronological aging in Saccharomyces cerevisiae. Subcell Biochem 57:101–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK et al (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116:121–137

    Article  CAS  PubMed  Google Scholar 

  • Magtanong L, Ho CH, Barker SL, Jiao W, Baryshnikova A et al (2011) Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell. Nat Biotechnol 29:505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR et al (1998) Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 4:1293–1301

    Article  CAS  PubMed  Google Scholar 

  • McLeod SM, Fleming PR, MacCormack K, McLaughlin RE, Whiteaker JD et al (2015) Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening. J Bacteriol 197:1075–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menacho-Marquez M, Murguia JR (2007) Yeast on drugs: Saccharomyces cerevisiae as a tool for anticancer drug research. Clin Transl Oncol 9:221–228

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JI, Smith JF, Tomaras AP, Zaniewski R, McPherson CJ et al (2015) Discovery and characterization of a novel class of pyrazolopyrimidinedione tRNA synthesis inhibitors. J Antibiot 68:361–367

    Article  CAS  Google Scholar 

  • Oh J, Fung E, Schlecht U et al (2010) Gene annotation and drug target discovery in Candida albicans with a tagged transposon mutant collection. PLoS Pathog 6:e1001140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver SG (2006) From genomes to systems: the path with yeast. Philos Trans R Soc Lond Ser B Biol Sci 361:477–482

    Article  CAS  Google Scholar 

  • Pierce SE, Davis RW, Nislow C, Giaever G (2007) Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat Protoc 2:2958–2974

    Article  CAS  PubMed  Google Scholar 

  • Rine J, Hansen W, Hardeman E, Davis RW (1983) Targeted selection of recombinant clones through gene dosage effects. Proc Natl Acad Sci U S A 80:6750–6754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Kalita MC, Thakur D (2016) Broad spectrum antimicrobial activity of forest-derived soil Actinomycete, Nocardia sp. PB-52. Front Microbiol 7:347

    PubMed  PubMed Central  Google Scholar 

  • Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW (1996) Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet 14:450–456

    Article  CAS  PubMed  Google Scholar 

  • Sinclair DA, Mills K, Guarente L (1997) Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277:1313–1316

    Article  CAS  PubMed  Google Scholar 

  • Siqueira-Neto JL, Moon S, Jang J et al (2012) An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl Trop Dis 6:1671

    Article  CAS  Google Scholar 

  • Smith AM, Heisler LE, Mellor J et al (2009) Quantitative phenotyping via deep barcode sequencing. Genome Res 19:1836–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Ammar R, Nislow C, Giaever G (2010) A survey of yeast genomic assays for drug and target discovery. Pharmacol Ther 127:156–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder M, Kumar A (2002) Yeast genomics: past, present and future promise. Funct Integr Genomics 2:135–137

    Article  CAS  PubMed  Google Scholar 

  • Stefanini I, De Filippo C, Cavalieri D (2013) Yeast as a model in high-throughput screening of small-molecule libraries. In Trabocchi A (ed) Diversity-oriented synthesis. Wiley, Hoboken, pp 455–482

    Google Scholar 

  • Steinkraus KA, Kaeberlein M, Kennedy BK (2008) Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol 24:29–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker CL, Fields S (2004) Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp Funct Genom 5:216–224

    Article  CAS  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Wright GD (2015) Solving the antibiotic crisis. ACS Inf Dis 1:80–84

    Article  CAS  Google Scholar 

  • Zewail A, Xie MW, Xing Y, Lin L, Zhang PF (2003) Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin. Proc Natl Acad Sci U S A 100:3345–3350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann A, Hofer S, Pendl T, Kainz K, Madeo F et al (2018) Yeast as a tool to identify anti-aging compounds. FEMS Yeast Res 18:1–16

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P. (2020). Yeast: A Model Organism for Antimicrobial Drug Discovery. In: Siddhardha, B., Dyavaiah, M., Syed, A. (eds) Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-1695-5_28

Download citation

Publish with us

Policies and ethics