Skip to main content

Prussian Blue and Other Metal–Organic Framework-based Nanozymes

  • Chapter
  • First Online:
Nanozymology

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Metal–organic frameworks (MOFs) is a class of crystalline solid materials, whose well-defined pore structure makes them good candidates for the mimicking of natural enzymes. On one hand, MOFs are suitable for enzyme immobilization due to their porosity and multiplex structures. On the other hand, transition metal nodes containing MOFs themselves can play as biomimetic catalysts. Typically, Prussian blue (PB) is meaningful and influencing for developing MOF . Not strictly, PB is the first MOF structure that has been used for electrode modification owing to their good redox activity and high electrochemical stability. These characteristics also endow PB the potential to become an “artificial enzyme”. In this chapter, the use of MOFs and Prussian blue nanoparticles (PBNPs) for mimicking natural enzymes is discussed. History, structure, and properties of MOFs and PB are elaborated. The peroxidase, catalase, superoxide dismutase, and ascorbic acid oxidase-like activities of PBNPs are summarized. The catalytic mechanisms are also discussed. Selected examples for in vitro biodetection, in vivo bioimaging, and therapeutics are covered to highlight the broad applications of MOFs and PBNPs based on their multienzyme-like activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Ascorbic acid

AAO:

Ascorbic acid oxidase

ABTS:

2,2′-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid

ALP:

Alkaline phosphatase

ApoA1:

Apolipoprotein A1

BDC:

1,4-benzenedicarboxylate

BG:

Berlin green

BTB:

1,3,5-benzenetribenzoate

BTC:

1,3,5-benzentricarboxylate

CD:

Cyclodextrin

CV:

Coefficients of variation

Cys:

Cysteine

FDA:

Food and Drug Administration

GOx:

Glucose oxidase

GSH:

Gluthione

GMP:

Guanosine monophosphate

HAP:

Hydroxyapatite

Hcy:

Homocysteine

HDS:

Hydroxy double salts

Hep:

Heparin

HKUST:

Hong Kong University of Science and Technology

HRP:

Horseradish peroxidase

HTA:

2-hydroxy terephthalic acid

IBD:

Inflammatory bowel disease

IONP:

Iron oxide nanoparticle

IRMOF:

Isoreticular metal–organic framework

LDA:

Linear discriminant analysis

LMG:

Leucomalachite green

LOx:

Lactate oxidase

MB:

Methylene blue

MEKP:

Methyl ethyl ketone peroxide

MG:

Malachite green

MIP:

Molecularly imprinted polymer

MIL:

Materials of Institute Lavoisier

MOF:

Metal–organic framework

MTV-MOF-5:

Multivariate MOF-5

NBT:

Nitro blue tetrazolium

NIR:

Near-infrared

PB:

Prussian blue

PBA:

Prussian blue analogs

PBNPs:

Prussian blue nanoparticles

PCN:

Porous coordination network

PDT:

Photodynamic therapy

PEC:

Photoelectrochemical

PMGO:

Prussian blue-incorporated magnetic graphene oxide

Pt NPs:

Platinum nanoparticles

PW:

Prussian white

PY:

Prussian yellow

ROS:

Reactive oxygen species

SAN:

Single-atom nanozyme

SDM:

Sulfadimethoxine

SERS:

Surface-enhanced Raman scattering

TA:

Terephthalic acid

TBHP:

Tert-butyl hydroperoxide

TCPP(Fe):

Fe-bound tetrakis(4-carboxyphenyl) porphyrin

TH:

Thiamine

TLR:

Toll-like receptor

TMB:

3,3′,5,5′-tetramethylbenzidine

UCNP:

Upconversion nanoparticle

ZIF:

Zeolitic imidazolate frameworks

References

  1. Batten SR, Champness NR, Chen XM, Garciamartinez J, Kitagawa S, Öhrström L, O’Keeffe M, Paik Suh M, Reedijk J (2013) Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl Chem 85(8):1715–1724

    CAS  Google Scholar 

  2. Keggin JF, Miles FD (1936) Structures and formulae of the Prussian blues and related compounds. Nature 137:577–578

    CAS  Google Scholar 

  3. Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Photoinduced magnetization of a cobalt–iron cyanide. Science 272(5262):704

    CAS  Google Scholar 

  4. Buser HJ, Ludi A, Petter W, Schwarzenbach D (1972) Single-crystal study of Prussian Blue: Fe4[Fe(CN)6]2, 14H2O. J Chem Soc, Chem Commun 23(23):1299–1299

    Google Scholar 

  5. Kitagawa S, Kitaura R, Noro SI (2010) Functional porous coordination polymers. Angew Chem Int Ed 35(29):2334–2375

    Google Scholar 

  6. Yaghi OM, Li G, Li H (1995) Selective binding and removal of guests in a microporous metal–organic framework. Nature 378(6558):703–706

    CAS  Google Scholar 

  7. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759):276–279

    CAS  Google Scholar 

  8. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472

    CAS  Google Scholar 

  9. Braga D (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129

    Google Scholar 

  10. Chae HK, Siberio-Pérez DY, Kim J, Go YB, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(6974):523–527

    CAS  Google Scholar 

  11. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042

    Google Scholar 

  12. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103(27):10186–10191

    CAS  Google Scholar 

  13. Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327(5967):846–850

    CAS  Google Scholar 

  14. Gassensmith JJ, Furukawa H, Smaldone RA, Forgan RS, Botros YY, Yaghi OM, Stoddart JF (2011) Strong and reversible binding of carbon dioxide in a green metal-organic framework. J Am Chem Soc 133(39):15312–15315

    CAS  Google Scholar 

  15. Wu D, Gassensmith JJ, Ushakov S, Stoddart JF, Navrotsky A (2013) Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. J Am Chem Soc 135(18):6790–6793

    CAS  Google Scholar 

  16. Nasser I, Yang XL, Dubale AA, Li RF, Xie MH (2018) Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. Bioresour Technol 270:377–382

    Google Scholar 

  17. Cui J, Feng Y, Lin T, Tan Z, Zhong C, Jia S (2017) Mesoporous metal-organic framework with well-defined cruciate flower-like morphology for enzyme immobilization. ACS Appl Mater Interfaces 9(12):10587–10594

    CAS  Google Scholar 

  18. Liao FS, Lo WS, Hsu YS, Wu CC, Wang SC, Shieh FK, Morabito JV, Chou LY, Wu KCW, Tsung CKF (2017) Shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach. J Am Chem Soc 139(19):6530–6533

    CAS  Google Scholar 

  19. Cai H, Shen T, Zhang J, Shan C, Jia J, Li X, Liu W, Tang Y (2017) A core-shell metal-organic-framework (MOF)-based smart nanocomposite for efficient NIR/H2O2-responsive photodynamic therapy against hypoxic tumor cells. J Mater Chem B 5(13):2390–2394

    CAS  Google Scholar 

  20. Jiang W, Yang J, Wang X, Han H, Yang Y, Tang J, Li Q (2017) Phenol degradation catalyzed by a peroxidase mimic constructed through the grafting of heme onto metal-organic frameworks. Bioresource Technol 247:1246–1248

    Google Scholar 

  21. Cheng H, Zhang L, He J, Guo W, Zhou Z, Zhang X, Nie S, Wei H (2016) Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal Chem 88(10):5489–5497

    CAS  Google Scholar 

  22. Yin Y, Chen LG, Qi X, Guo L, Lin Z, Cai Z, Yang HH (2016) Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform. ACS Appl Mater Interfaces 8(42):29052–29061

    CAS  Google Scholar 

  23. Cheng H, Liu Y, Hu Y, Ding Y, Lin S, Cao W, Wang Q, Wu J, Muhammad F, Zhao X (2017) Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal Chem 89(21):11552–11559

    CAS  Google Scholar 

  24. Wu Y, Ma Y, Xu G, Wei F, Ma Y, Song Q, Wang X, Tang T, Song Y, Shi M (2017) Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sensors Actuat B-Chem 249:195–202

    CAS  Google Scholar 

  25. Chen H, Qiu Q, Sharif S, Ying S, Ying Y, Wang Y (2018) Solution-phase synthesis of platinum nanoparticles decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzyme for biosensing applications. ACS Appl Mater Interfaces 10(28):24108–24115

    CAS  Google Scholar 

  26. Zhang Y, Wang F, Liu C, Wang Z, Kang L, Huang Y, Dong K, Ren J, Qu X (2018) Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1):651–661

    CAS  Google Scholar 

  27. Tan B, Zhao H, Wu W, Liu X, Zhang Y, Quan X (2017) Fe3O4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale 9(47):18699–18710

    CAS  Google Scholar 

  28. Cui F, Deng Q, Sun L (2015) Prussian blue modified metal–organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv 5(119):98215–98221

    CAS  Google Scholar 

  29. Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X (2017) Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv Mater 29(32):1700102

    Google Scholar 

  30. Hu Y, Cheng H, Zhao X, Wu J, Muhammad F, Lin S, He J, Zhou L, Zhang C, Deng Y (2017) Surface-enhanced Raman scattering-active gold nanoparticles with enzyme mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11(6):5558–5566

    CAS  Google Scholar 

  31. Liu X, Qi W, Wang YF, Lin DW, Yang XJ, Su RX, He ZM (2018) Rational design of mimic multienzyme systems in hierarchically porous biomimetic metal-organic frameworks. ACS Appl Mater Interfaces 10(39):33407–33415

    CAS  Google Scholar 

  32. Su L, Xiong Y, Yang H, Zhang P, Ye F (2015) Prussian blue nanoparticles encapsulated inside a metal–organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening. J Mater Chem B 4(1):128–134

    Google Scholar 

  33. Liu Z, Wang F, Ren J, Qu X (2019) A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 208:21–31

    CAS  Google Scholar 

  34. Li SY, Cheng H, Xie BR, Qiu WX, Zeng JY, Li CX, Wan SS, Zhang L, Liu WL, Zhang XZ (2017) Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7):7006–7018

    CAS  Google Scholar 

  35. Kan JL, Jiang Y, Xue A, Yu YH, Dong YB (2018) Surface decorated porphyrinic nanoscale metal-organic framework for photodynamic therapy. Inorg Chem 57(9):5420–5428

    CAS  Google Scholar 

  36. Li A, Mu X, Li TR, Wen H, Li W, Li Y, Wang B (2018) Formation of porous Cu hydroxy double salts nanoflowers derived from metal-organic frameworks with efficient peroxidase-like activity for label-free detection of glucose. Nanoscale 10:11948–11954

    CAS  Google Scholar 

  37. Tan H, Ma C, Gao L, Li Q, Song Y, Xu F, Wang T, Wang L (2015) Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chemistry 20(49):16377–16383

    Google Scholar 

  38. Yang W, Hao J, Zhang Z, Zhang B (2015) Metal-organic frameworks-derived synthesis of porous FeP nanocubes: an effective peroxidase mimetic. J Colloid Interface Sci 460:55–60

    CAS  Google Scholar 

  39. Dong W, Zhuang Y, Li S, Zhang X, Chai H, Huang Y (2017) High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal–organic frameworks derived carbon for biosensing. Sensors Actuat B-Chem 255:2050–2057

    Google Scholar 

  40. Niu X, Shi Q, Zhu W, Liu D, Tian H, Fu S, Cheng N, Li S, Smith JN, Du D (2019) Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosens Bioelectron 142:111495

    CAS  Google Scholar 

  41. Cao F, Zhang Y, Sun Y, Wang Z, Zhang L, Huang Y, Liu C, Liu Z, Ren J, Qu X (2018) Ultrasmall nanozymes isolated within porous carbonaceous frameworks for synergistic cancer therapy: enhanced oxidative damage and reduced energy supply. Chem Mater 30(21):7831–7839

    CAS  Google Scholar 

  42. Chen FF, Zhu YJ, Xiong ZC, Sun TW (2016) Hydroxyapatite nanowires@metal-organic framework core/shell nanofibers: templated synthesis, peroxidase-like activity, and derived flexible recyclable test paper. Chemistry 23(14):3328–3337

    Google Scholar 

  43. Dong W, Liu X, Shi W, Huang Y (2015) Metal–organic framework MIL-53(Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC Adv 5(23):17451–17457

    CAS  Google Scholar 

  44. Wang L, Yang H, He J, Zhang Y, Yu J, Song Y (2016) Cu-hemin metal-organic-frameworks/chitosan-reduced graphene oxide nanocomposites with peroxidase-like bioactivity for electrochemical sensing. Electrochim Acta 213:691–697

    CAS  Google Scholar 

  45. Qin FX, Jia SY, Wang FF, Wu SH, Song J, Liu Y (2013) Hemin@metal–organic framework with peroxidase-like activity and its application to glucose detection. Catal Sci Technol 3(10):2761–2768

    CAS  Google Scholar 

  46. Gao C, Zhu H, Chen J, Qiu H (2017) Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid. Chin Chem Lett 28(5):1006–1012

    CAS  Google Scholar 

  47. Li Y, You X, Shi X (2016) Enhanced chemiluminescence determination of hydrogen peroxide in milk sample using metal–organic framework Fe–MIL–88NH2 as peroxidase mimetic. Food Anal Meth 10(3):1–8

    Google Scholar 

  48. Liu YL, Zhao XJ, Yang XX, Li YF (2013) A nanosized metal-organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst 138(16):4526–4531

    CAS  Google Scholar 

  49. Xu WQ, Jiao L, Yan HY, Wu Y, Chen LJ, Gu WL, Du D, Lin YH, Zhu CZ (2019) Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl Mater Interfaces 11(25):22096–22101

    CAS  Google Scholar 

  50. Jiang Z, Liu Y, Hu X, Li Y (2014) Colorimetric determination of thiol compounds in serum based on Fe-MIL-88NH2 metal–organic framework as peroxidase mimetics. Anal Methods 6(15):5647–5651

    CAS  Google Scholar 

  51. Dalapati R, Sakthivel B, Ghosalya MK, Dhakshinamoorthy A, Biswas S (2017) A cerium-based metal-organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm 19(39):5915–5925

    CAS  Google Scholar 

  52. Juan SZ, Jun Ze J, Fang LY (2015) A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal-organic frameworks-hydrogen peroxide system. Analyst 140(24):8201–8208

    Google Scholar 

  53. Zhang GY, Zhuang YH, Shan D, Su GF, Cosnier S, Zhang X (2016) A zirconium based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprotein detection. Anal Chem 88(22):11207–11212

    CAS  Google Scholar 

  54. Ortiz-Gómez I, Salinas-Castillo A, García AG, Álvarez-Bermejo JA, Orbe-Payá ID, Rodríguez-Diéguez A, Capitán-Vallvey LF (2018) Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic. Microchim Acta 185(1):47

    Google Scholar 

  55. Lunhong A, Lili L, Caihong Z, Jian F, Jing J (2013) MIL-53(Fe): a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chemistry 19(45):15105–15108

    Google Scholar 

  56. Yi X, Dong W, Zhang X, Xie J, Huang Y (2016) MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose. Anal Bioanal Chem 408(30):1–8

    Google Scholar 

  57. Jian-Wei Z, Hao-Tian Z, Zi-Yi D, Xueqing W, Shu-Hong Y, Hai-Long J (2013) Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun 50(9):1092–1094

    Google Scholar 

  58. Dong W, Yang L, Huang Y (2017) Glycine post-synthetic modification of MIL-53(Fe) metal-organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing. Talanta 167:359–366

    CAS  Google Scholar 

  59. Li T, Hu P, Li J, Huang P, Tong W, Gao C (2019) Enhanced peroxidase-like activity of Fe@ PCN-224 nanoparticles and their applications for detection of H2O2 and glucose. Colloids Surf Physicochem Eng Aspects 577:456–463

    CAS  Google Scholar 

  60. Wang C, Gao J, Cao Y, Tan H (2018) Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta 1004:74–81

    CAS  Google Scholar 

  61. Chen J, Yun S, Li H, Qin X, Hu X (2018) Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta 189:254–261

    CAS  Google Scholar 

  62. Shu Y, Chen J, Xu Q, Hu X (2018) Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum. Talanta 184:136–142

    Google Scholar 

  63. Tan H, Li Q, Zhou Z, Ma C, Song Y, Xu F, Wang L (2015) A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal Chim Acta 856:90–95

    CAS  Google Scholar 

  64. Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F (2017) A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta 184(12):4629–4635

    CAS  Google Scholar 

  65. Bagheri N, Khataee A, Habibi B, Hassanzadeh J (2018) Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179:710–718

    CAS  Google Scholar 

  66. Dong W, Zhuang Y, Li S, Zhang X, Chai H, Huang Y (2017) High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal–organic frameworks derived carbon for biosensing. Sensors Actuat B Chem

    Google Scholar 

  67. Qin L, Xiaoyu W, Yufeng L, Hui W (2018) 2D-MOF nanozyme sensor arrays for probing phosphates and their enzymatic hydrolysis. Anal Chem 90(16):9983–9989

    CAS  Google Scholar 

  68. Cheng N, Zhu C, Wang Y, Du D, Zhu M-J, Luo Y, Xu W, Lin Y (2019) Nanozyme enhanced colorimetric immunoassay for naked-eye detection of salmonella enteritidis. J Anal Testing 3(1):99–106

    Google Scholar 

  69. Chen WH, Vázquez-González M, Kozell A, Cecconello A, Willner I (2017) Cu2+-modified metal-organic framework nanoparticles: a peroxidase-mimicking nanoenzyme. Small 23(62):1703149

    Google Scholar 

  70. Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J (2016) Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces 9(2):1352–1360

    Google Scholar 

  71. Zhang L, Zhang Y, Wang Z, Cao F, Sang Y, Dong K, Pu F, Ren J, Qu X (2019) Constructing metal–organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater Horiz

    Google Scholar 

  72. Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22):5814–5821

    CAS  Google Scholar 

  73. Yang F, Hu S, Zhang Y, Cai X, Huang Y, Wang F, Wen S, Teng G, Gu N (2012) A hydrogen peroxide-responsive O2 nanogenerator for ultrasound and magnetic-resonance dual modality imaging. Adv Mater 24(38):5205–5211

    CAS  Google Scholar 

  74. Davidson D, Welo LA (1928) The nature of Prussian blue. J Phys Chem 32(8):1191–1196

    CAS  Google Scholar 

  75. Robin MB (1961) The color and electronic configurations of Prussian blue. Spectrochim Acta 17(9–10):1095–1095

    Google Scholar 

  76. DeLongchamp DM, Hammond PT (2004) High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Adv Funct Mater 14(3):224–232

    CAS  Google Scholar 

  77. Buser H, Schwarzenbach D, Petter W, Ludi A (1977) The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O. Inorg Chem 16 (11):2704–2710

    Google Scholar 

  78. Johansson A, Widenkvist E, Lu J, Boman M, Jansson U (2005) Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template. Nano Lett 5(8):1603–1606

    CAS  Google Scholar 

  79. Shokouhimehr M, Soehnlen ES, Hao JH, Griswold M, Flask C, Fan XD, Basilion JP, Basu S, Huang SPD (2010) Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: A new generation of T-1-weighted MRI contrast and small molecule delivery agents. J Mater Chem 20(25):5251–5259

    CAS  Google Scholar 

  80. McConnell H, Davidson N (1950) Spectrophotometric investigation of the interaction between iron(II) and iron(III) in hydrochloric acid solutions. J Am Chem Soc 72(12):5557–5560

    CAS  Google Scholar 

  81. Thompson RC (1948) Some exchange experiments involving hexacynoferrate(II) and hexacyanoferrate(III) ions. J Am Chem Soc 70(3):1045–1046

    CAS  Google Scholar 

  82. Ibers JA, Davidson N (1951) On the interaction between hexacyanatoferrate(III) ions and (a) hexacyanatoferrate(II) or (b) iron(III) ions. J Am Chem Soc 73(1):476–478

    CAS  Google Scholar 

  83. Wood KC, Zacharia NS, Schmidt DJ, Wrightman SN, Andaya BJ, Hammond PT (2008) Electroactive controlled release thin films. Proc Natl Acad Sci USA 105(7):2280–2285

    CAS  Google Scholar 

  84. Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian blue. J Electroanal Chem 125(6):886–887

    CAS  Google Scholar 

  85. Qiu J-D, Peng H-Z, Liang R-P, Li J, Xia X-H (2007) Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2. Langmuir 23(4):2133–2137

    CAS  Google Scholar 

  86. Zhao G, Feng J-J, Zhang Q-L, Li S-P, Chen H-Y (2005) Synthesis and characterization of Prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H2O2. Chem Mater 17(12):3154–3159

    CAS  Google Scholar 

  87. Itaya K, Ataka T, Toshima S (1982) Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J Am Chem Soc 104(18):4767–4772

    CAS  Google Scholar 

  88. Larionova J, Guari Y, Sangregorio C, Guérin C (2009) Cyano-bridged coordination polymer nanoparticles. New J Chem 33(6):1177–1190

    CAS  Google Scholar 

  89. Zheng X-J, Kuang Q, Xu T, Jiang Z-Y, Zhang S-H, Xie Z-X, Huang R-B, Zheng L-S (2007) Growth of Prussian blue microcubes under a hydrothermal condition: possible nonclassical crystallization by a mesoscale self-assembly. J Phys Chem C 111(12):4499–4502

    CAS  Google Scholar 

  90. Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8(28):3271–3287

    CAS  Google Scholar 

  91. Hu M, Jiang J-S (2010) Non-classical crystallization controlled by centrifugation. Cryst Eng Comm 12(11):3391–3393

    CAS  Google Scholar 

  92. Uemura T, Ohba M, Kitagawa S (2004) Size and surface effects of Prussian blue nanoparticles protected by organic polymers. Inorg Chem 43(23):7339–7345

    CAS  Google Scholar 

  93. Shokouhimehr M, Soehnlen ES, Khitrin A, Basu S, Huang SD (2010) Biocompatible Prussian blue nanoparticles: preparation, stability, cytotoxicity, and potential use as an MRI contrast agent. Inorg Chem Commun 13(1):58–61

    CAS  Google Scholar 

  94. Wu X, Cao M, Hu C, He X (2006) Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor. Cryst Growth Des 6(1):26–28

    CAS  Google Scholar 

  95. Ding Y, Hu YL, Gu G, Xia XH (2009) Controllable synthesis and formation mechanism investigation of Prussian blue nanocrystals by using the polysaccharide hydrolysis method. J Phys Chem C 113(33):14838–14843

    CAS  Google Scholar 

  96. Liang GD, Xu JT, Wang XS (2009) Synthesis and characterization of organometallic coordination polymer nanoshells of prussian blue using miniemulsion periphery polymerization (MEPP). J Am Chem Soc 131(15):5378–5379

    CAS  Google Scholar 

  97. McHale R, Ghasdian N, Liu YB, Ward MB, Hondow NS, Wang HH, Miao YQ, Brydson R, Wang XS (2010) Prussian blue coordination polymer nanobox synthesis using miniemulsion periphery polymerization (MEPP). Chem Commun 46(25):4574–4576

    CAS  Google Scholar 

  98. Domínguez-Vera JM, Colacio E (2003) Nanoparticles of Prussian blue ferritin: a new route for obtaining nanomaterials. Inorg Chem 42(22):6983–6985

    Google Scholar 

  99. Zhang X-Q, Gong S-W, Zhang Y, Yang T, Wang C-Y, Gu N (2010) Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem 20(24):5110–5116

    CAS  Google Scholar 

  100. Zhang W, Hu S, Yin J-J, He W, Lu W, Ma M, Gu N, Zhang Y (2016) Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc 138(18):5860–5865

    CAS  Google Scholar 

  101. Zhang W, Wu Y, Dong H-J, Yin J-J, Zhang H, Wu H-A, Song L-N, Chong Y, Li Z-X, Gu N, Zhang Y (2018) Sparks fly between ascorbic acid and iron-based nanozymes: a study on Prussian blue nanoparticles. Colloid Surf B 163(1):379–384

    CAS  Google Scholar 

  102. Li R, Guo D, Ye J, Zhang M (2015) Stabilization of Prussian blue with polyaniline and carbon nanotubes in neutral media for in vivo determination of glucose in rat brains. Analyst 140(11):3746–3752

    CAS  Google Scholar 

  103. Peng KF, Zhao HW, Wu XF (2015) Signal-enhanced electrochemical immunosensor for CD36 based on cascade catalysis of a GOx labeled Prussian blue functionalized Ceria nanohybrid. RSC Adv 5(3):1812–1817

    CAS  Google Scholar 

  104. Shen GY, Hu X, Zhang SB (2014) A signal-enhanced electrochemical immunosensor based on dendrimer functionalized-graphene as a label for the detection of alpha-l-fetoprotein. J Electroanal Chem 717:172–176

    Google Scholar 

  105. Liu Z-H, Zhang G-F, Chen Z, Qiu B, Tang D (2014) Prussian blue-doped nanogold microspheres for enzyme-free electrocatalytic immunoassay of p53 protein. Microchim Acta 181(5–6):581–588

    CAS  Google Scholar 

  106. Wang G, Chen L, Zhu Y, He X, Xu G, Zhang X (2014) Prussian blue-Au nanocomposites actuated hemin/G-quadruplexes catalysis for amplified detection of DNA, Hg2+ and adenosine triphosphate. Analyst 139(20):5297–5303

    CAS  Google Scholar 

  107. Wang T, Fu YC, Chai LY, Chao L, Bu LJ, Meng Y, Chen C, Ma M, Xie QJ, Yao SZ (2014) Filling carbon nanotubes with Prussian blue nanoparticles of high peroxidase-like catalytic activity for colorimetric chemo- and biosensing. Chem-Eur J 20(9):2623–2630

    CAS  Google Scholar 

  108. Xu TS, Zhang HY, Li XG, Xie ZH, Li XY (2015) Enzyme-triggered tyramine-enzyme repeats on prussian blue-gold hybrid nanostructures for highly sensitive electrochemical immunoassay of tissue polypeptide antigen. Biosens Bioelectron 73:167–173

    CAS  Google Scholar 

  109. Gao ZD, Qu YF, Li TT, Shrestha NK, Song YY (2014) Development of amperometric glucose biosensor based on prussian blue functionlized TiO2 nanotube arrays. Sci Rep 4:6891

    CAS  Google Scholar 

  110. Pandey PC, Singh R, Pandey Y (2015) Controlled synthesis of functional Ag, Ag–Au/Au–Ag nanoparticles and its nanocomposite with Prussian blue for bioanalytical applications. RSC Adv 5:49671–49679

    CAS  Google Scholar 

  111. Zhang WM, Ma D, Du JX (2014) Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta 120:362–367

    CAS  Google Scholar 

  112. Zhang W, Zhang Y, Chen YH, Li SY, Gu N, Hu SL, Sun Y, Chen X, Li Q (2013) Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection. J Nanosci Nanotechnol 13(1):60–67

    CAS  Google Scholar 

  113. Peng C, Hua M-Y, Li N-S, Hsu Y-P, Chen Y-T, Chuang C-K, Pang S-T, Yang H-W (2019) A colorimetric immunosensor based on self-linkable dual-nanozyme for ultrasensitive bladder cancer diagnosis and prognosis monitoring. Biosens Bioelectron 126:581–589

    CAS  Google Scholar 

  114. Zhao JL, Gao W, Cai XJ, Xu JJ, Zou DW, Li ZS, Hu B, Zheng YY (2019) Nanozyme-mediated catalytic nanotherapy for inflammatory bowel disease. Theranostics 9(10):2843–2855

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (No. 2017YFA0205502), National Natural Science Foundation of China (No. 81801827, 81901833), and the Basic Research Program of Jiangsu Province (Natural Science Foundation, No. BK20181086, BK20191080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhang or Ning Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W., Wu, Y., Li, Z., Dong, H., Zhang, Y., Gu, N. (2020). Prussian Blue and Other Metal–Organic Framework-based Nanozymes. In: Yan, X. (eds) Nanozymology. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1490-6_6

Download citation

Publish with us

Policies and ethics