Skip to main content

A Generalized Partial Canonical Correlation Model to Measure Contribution of Individual Drug Features Toward Side Effects Prediction

  • Conference paper
  • First Online:
Advances in Data Science and Management

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 37))

  • 866 Accesses

Abstract

Identification of potential drug-side effects is an open problem of importance for drug development. Side effects are related to a variety of interlinked aspects such as chemical properties of drugs, drug–target interactions, pathways involved, and many more. Existing statistical methods and machine learning models toward creating models that incorporate such features to predict adverse drug reactions. One of the challenges in these efforts is to disentangle the interdependence of features to identify the contribution of individual features toward specifying side effects. We present a partial canonical correlation analysis (PCCA) model that facilitates enumeration of contribution from individual drug features toward the prediction of a class of side effects, irrespective of interdependence on other features. The model is a combination of analytical and numerical strategies, and can be used to arrive at the most effective set of drug features starting from a range of available descriptors. For eye and nose related side effects, we demonstrate the implementation of our model for identification of best 2D chemical features that are closely linked with organ-specific adverse reactions. Despite the presence of a large number of drugs that are simultaneously associated with both the organs, the model could discern distinct drug features specifically linked to each class. With the availability of large amounts of data with an array of interdependent drug descriptors, such a model is of value in the drug discovery process as it enables in dealing with multidimensional drug features space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.D. Demetri, Journal of Clin. Investig. 117, 3650–3653 (2007)

    Article  Google Scholar 

  2. C.P. Adams, V.V. Brantner, Health Aff. 25, 420–428 (2006)

    Article  Google Scholar 

  3. I. Kola, J. Landis, Nat. Rev. Drug Discov. 3, 1–5 (2004)

    Article  Google Scholar 

  4. M. Liu, Y. Wu, Y. Chen, J. Sun, Z. Zhao, X.W. Chen, M.E. Matheny, H. Xu, J. Am. Med. Inf. Assoc. JAMIA. 19, e25–e35 (2012)

    Google Scholar 

  5. M. Ammad-Ud-Din, E. Georgii, M. Gonen, T. Laitinen, O. Kallioniemi, K. Weenerberg, A. Poso, S. Kaski, J. Chem. Inf. Model. 54, 2347–2359 (2014)

    Article  Google Scholar 

  6. M.P. Menden, F. Irio, M. Garnett, U. Mecdormatt, C.H. Benes, P.J. Ballester, J. Seize-Rodriguez, Plos ONE.8 (2013)

    Article  Google Scholar 

  7. L. Chen, T. Huang, J. Zhang, M.-Y. Zhang, K.-Y. Feng, Y-D. Cai, K-C. Chou, BioMed Res. Int. 2013 (2013)

    Google Scholar 

  8. L.-C. Huang, X. Wu, J.Y. Chen, BMC Genomics 12 (2011)

    Article  MathSciNet  Google Scholar 

  9. L.-C. Huang, X. Wu, J.Y. Chen, Proteomics 18, 313–324 (2013)

    Article  Google Scholar 

  10. N. Atias, R. Sharan, J. Comput. Biol. 18, 207–218 (2011)

    Article  MathSciNet  Google Scholar 

  11. S. Mizutani, E. Pauwels, V. Stoven, S. Goto, Y. Yamanishi, Bioinformatics 28, 522–528 (2012)

    Article  Google Scholar 

  12. E. Pauwels, Y. Yamanishi, V. Stoven, BMC Bioinformatics, 12 (2011)

    Google Scholar 

  13. D. Weenik, Proceedinges of the institute of Phonetic Sciences of the University of Amesterdam, 81–99 (2003)

    Google Scholar 

  14. R. Kanji, A. Sharma, G. Bagler, Mol. BioSyst. 11, 2900–2906 (2015)

    Article  Google Scholar 

  15. Y. Yamanishi, E. Pawels, M. Kotera, J. Chem. Inf. Model. 52, 3284–3292 (2012)

    Article  Google Scholar 

  16. E. Bresso, R. Grisoni, G. Marchetti, A. Karaboga, M. Souchet, M.D. Devignes, M. Smail Tabbone, BMC Bioinformatics, 14 (2013)

    Google Scholar 

  17. M. Xiong, X. Fang, J. Zhao, Genome Res., 1878–1887 (2001)

    Article  Google Scholar 

  18. Z.E. Perlman, Science 306, 1194–1198 (2004)

    Article  Google Scholar 

  19. J. Weston, F. Perez-Cruz, O. Bousquet, O. Chapell, A. Elisseeff, B. Scholkoph, Bioinformatics, 19, 764–771 (2003)

    Article  Google Scholar 

  20. Y. Liu, J. Chem. Inf. Comput. Sci 44, 1823–1828 (2004)

    Article  Google Scholar 

  21. I. Guyon, S. Gunn, M. Nikravesh, L.A. Zedha, Feature Extraction: Foundations and Application. Springer, p. 207 (2008)

    Google Scholar 

  22. Y. Saeyes, I. Inza, P. Larranaga, Bioinformatics 23, 2507–2517 (2007)

    Article  Google Scholar 

  23. V. Bolon-Canedo, N. Sanchez-Marono, A. Alonso-Betanzos, Knowl. Inf. Syst. 34, 483–519 (2013)

    Article  Google Scholar 

  24. C. Ding, H. Peng, Comput. Syst. Bioinform.: IEEE Bioinform. Conf. 3, 185–203 (2003)

    Article  Google Scholar 

  25. H. Peng, F. Long, C. Ding, IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005)

    Article  Google Scholar 

  26. L. Yu, H. Liu, J. Mach. Learn. Res. 5, 1205–1224 (2004)

    Google Scholar 

  27. R. Tibshirani, J. Royal Stat. Soc., 267–288 (1996)

    Google Scholar 

  28. F.R. Bach, Proceedinges of the 25th international conference on Machine Learning, pp. 33–40 (2008)

    Google Scholar 

  29. S. Ma, J. Huang, Bioinformatics 21, 91–103 (2005)

    Article  Google Scholar 

  30. R.P. Li, I.B. Turksen M. Mukaidono, Fuzzy Sets Syst., 130, 101–108 (2002)

    Google Scholar 

  31. I. Inza, P. Larranaga, R. Blanco, A.J. Cerrolaza, Artif. Intell. Med. 31, 91–103 (2004)

    Article  Google Scholar 

  32. I. Inza, P. Larranaga, R. Etxeberria, B. Sierra, Artif. Intell. (Elsevier) 123, 157–184 (2000)

    Article  Google Scholar 

  33. M. Kuan, I. Letunic, L.J. Jensen, P. Bork, Nucleic Acid Res., 33–40 (2016)

    Google Scholar 

  34. M. Campilos, Persepect. Sci. 9, 49–52 (2016)

    Article  Google Scholar 

  35. S. Deghou, G. Zeller, M. Iskan, M. Driensen, M. Casollo, V. Van Noort, P. Bork, Bioinformatics 32, 2869–2872 (2016)

    Article  Google Scholar 

  36. B. Wooden, N. Goossen, Y. Hoshida, S.L. Friedman, Gastroentology, 835–847 (2016)

    Google Scholar 

  37. T. Anderson, Introduction to Multivariate Statistical Analysis, Vol. 121 (Eds. Second), Wiley, pp. 1–482 (2014)

    Google Scholar 

  38. D.M. Witten, R. Tibashirani, T. Hastie, Biostatistics 10, 515–534 (2009)

    Article  Google Scholar 

  39. C.D. Meyer, Matrix Analysis and Linear Algebra, Vol. 2, SIAM 2000, pp. 1–700

    Google Scholar 

  40. M. Bhasin, G.P.S. Raghava, Nucleic Acid Res. 32, 383–389 (2004)

    Article  Google Scholar 

  41. M. Hall, Correlation-based Feature Selection for Machine Learning. The University of Waikato, Newzealand

    Google Scholar 

Download references

Acknowledgements

GB acknowledges the support from Indraprastha Institute of Information Technology Delhi (IIIT-Delhi) and seed grant support from the Indian Institute of Technology Jodhpur (IITJ/SEED/2014/0003). RK thanks the Ministry of Human Resource Development, Government of India as well as Indian Institute of Technology Jodhpur for the Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rakesh Kanji or Ganesh Bagler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kanji, R., Bagler, G. (2020). A Generalized Partial Canonical Correlation Model to Measure Contribution of Individual Drug Features Toward Side Effects Prediction. In: Borah, S., Emilia Balas, V., Polkowski, Z. (eds) Advances in Data Science and Management. Lecture Notes on Data Engineering and Communications Technologies, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-15-0978-0_15

Download citation

Publish with us

Policies and ethics