Skip to main content

Real-Time Implementation of Artificial Neural Network in FPGA Platform

  • Conference paper
  • First Online:
Embedded Systems and Artificial Intelligence

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1076))

Abstract

In this paper, we present the implementation of artificial neural networks in the FPGA embedded platform. The implementation is done by two different methods: a hardware implementation and a softcore implementation, in order to compare their performances and to choose the one that best approaches real-time systems and processes. For this, we have exploited the tools of this platform such as blocks Megafunctions and softcore NIOS II processor. The results obtained in terms of execution time have shown that the hardware implementation is much more efficient than that based on the NIOS II softcore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mellit, A., Mekki, H., Messai, A., Kalogirou, S.A.: FPGA-based implementation of intelligent predictor for global solar irradiation, part I: theory and simulation. Expert. Syst Appl. 38(3), 2668–2685 (2011)

    Article  Google Scholar 

  2. Savich, A.W., Moussa, M., Areibi, S.: The impact of arithmetic representation on implementing MLP-BP on FPGAs: a study. IEEE Trans. Neural Netw. 18(1), 240–252 (2007)

    Article  Google Scholar 

  3. Shah, N., Chaudhari, P., Varghese, K.: Runtime programmable and memory bandwidth optimized FPGA-based coprocessor for deep convolutional neural network. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–13 (2018)

    Google Scholar 

  4. Sun, Y., Cheng, A.C.: Machine learning on-a-chip: a high-performance low-power reusable neuron architecture for artificial neural networks in ECG classifications. Comput. Biol. Med. 42, 751757 (2012)

    Article  Google Scholar 

  5. Roy Chowdhury, S., Saha, H.: Development of a FPGA based fuzzy neural network system for early diagnosis of critical health condition of a patient. Comput. Biol. Med. 40(2), 190–200 (2010)

    Article  Google Scholar 

  6. Mohamed, A., Issam, A., Mohamed, B., Abdellatif, B.: Real-time detection of vehicles using the haar-like features and artificial neuron networks. Procedia Comput. Sci. 73, 24–31 (2015)

    Article  Google Scholar 

  7. Atibi, M., Atouf, I., Boussaa, M., Bennis, A.: Comparison between the MFCC and DWT applied to the roadway classification. In: 2016 7th International Conference on Computer Science and Information Technology (CSIT), pp. 1–6. IEEE (2016)

    Google Scholar 

  8. Mohamed, B., Issam, A., Mohamed, A., Abdellatif, B.: ECG image classification in real time based on the haar-like features and artificial neural networks. Procedia Comput. Sci. 73, 32–39 (2015)

    Article  Google Scholar 

  9. Boussaa, M., Atouf, I., Atibi, M., Bennis, A.: Comparison of MFCC and DWT features extractors applied to PCG classification. In: 2016 11th International Conference on Intelligent Systems: Theories and Applications (SITA), pp. 1–5. IEEE (2016)

    Google Scholar 

  10. Boussaa, M., Atouf, I., Atibi, M., Bennis, A.: ECG signals classification using MFCC coefficients and ANN classifier. In: 2016 International Conference on Electrical and Information Technologies (ICEIT), pp. 480–484. IEEE (2016)

    Google Scholar 

  11. Yadan, O., Adams, K., Taigman, Y., Ranzato, M.A.: Multi-gpu training of convnets. arXiv preprint arXiv:1312.5853 (2013)

  12. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE J. Solid-State Circuits 52(1), 127–138 (2017)

    Article  Google Scholar 

  13. Zhang, D., Wang, Q., Xu, C.: Data acquisition system of a self-balancing robot based on FPGA. J. Theor. Appl. Inf. Technol. 47(2) (2013)

    Google Scholar 

  14. Lin, C.J., Tsai, H.M.: FPGA implementation of a wavelet neural network with particle swarm optimization learning. Math. Comput. Model. 47(9), 982–996 (2008)

    Article  MathSciNet  Google Scholar 

  15. Atibi, M., Bennis, A., Boussaa, M.: Precise calculation unit based on a hardware implementation of a formal neuron in a FPGA platform. Int. J. Adv. Eng. Technol. 7(3) (2014)

    Google Scholar 

  16. Boussaa, M., Bennis, A., Atibi M.: Comparison between two hardware implementations of a formal neuron on FPGA platform. Int. J. Innov. Technol. Explor. Eng. 4(1) (2014)

    Google Scholar 

  17. Alin, M., Pehlivan, I., Koyuncu, I.: Hardware design and implementation of a novel ANN-based chaotic generator in FPGA. Optik (Stuttg) 127(13), 5500–5505 (2016)

    Article  Google Scholar 

  18. Mohammed, H.K., Ali, E.Z.: Hardware implementation of artificial neural network using field programmable gate array. Int. J. Comput. Theory Eng. 5(5), 780 (2013)

    Article  Google Scholar 

  19. Atibi, M., Atouf, I., Boussaa, M., Bennis, A.: Parallel and mixed hardware implementation of artificial neuron network on the FPGA platform. Int. J. Eng. Technol. 6(5), 0975–4024 (2014)

    Google Scholar 

  20. http://www.altera.com

  21. Pokale, M.S.M., Kulkarni, M.K., Rode, S.V.: NIOS II processor implementation in FPGA: an application of data logging system. Int. J. Sci. Technol. Res. 1(11) (2012)

    Google Scholar 

  22. Mukadam, M.S.B., Titarmare, A.S.: Design of power optimization using C2H hardware accelerator and NIOS II processor (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Atibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Atibi, M., Boussaa, M., Bennis, A., Atouf, I. (2020). Real-Time Implementation of Artificial Neural Network in FPGA Platform. In: Bhateja, V., Satapathy, S., Satori, H. (eds) Embedded Systems and Artificial Intelligence. Advances in Intelligent Systems and Computing, vol 1076. Springer, Singapore. https://doi.org/10.1007/978-981-15-0947-6_1

Download citation

Publish with us

Policies and ethics