Skip to main content

Part of the book series: Industrial and Applied Mathematics ((INAMA))

  • 1043 Accesses

Abstract

This paper summarizes the contents of a plenary talk given at the 14th Biennial Conference of Indian SIAM in Amritsar in February 2018. We discuss here the effect of an abrupt spectral change for some classes of Schrödinger operators depending on the value of the coupling constant, from below bounded and partly or fully discrete, to the continuous one covering the whole real axis. A prototype of such a behavior can be found in the Smilansky–Solomyak model devised to illustrate that an irreversible behavior is possible even if the heat bath to which the systems are coupled has a finite number of degrees of freedom and analyze several modifications of this model, with regular potentials or a magnetic field, as well as another system in which \(x^py^p\) potential is amended by a negative radially symmetric term. Finally, we also discuss resonance effects in such models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, 2nd edn. (AMS Chelsea Publishing, Providence, 2005)

    MATH  Google Scholar 

  2. D. Barseghyan, P. Exner, A regular version of Smilansky model. J. Math. Phys. 55, 042104 (2014)

    Article  MathSciNet  Google Scholar 

  3. D. Barseghyan, P. Exner, A regular analogue of the Smilansky model: spectral properties. Rep. Math. Phys. 80, 177–192 (2017)

    Article  MathSciNet  Google Scholar 

  4. D. Barseghyan, P. Exner, A magnetic version of the Smilansky-Solomyak model. J. Phys. A: Math. Theor. 50, 485203 (24pp) (2017)

    Article  MathSciNet  Google Scholar 

  5. D. Barseghyan, P. Exner, A. Khrabustovskyi, M. Tater, Spectral analysis of a class of Schrödinger operators exhibiting a parameter-dependent spectral transition. J. Phys. A: Math. Theor. 49, 165302 (2016)

    Article  Google Scholar 

  6. W.D. Evans, M. Solomyak, Smilansky’s model of irreversible quantum graphs. I: the absolutely continuous spectrum. J. Phys. A: Math. Gen. 38, 4611–4627 (2005)

    Article  MathSciNet  Google Scholar 

  7. W.D. Evans, M. Solomyak, Smilansky’s model of irreversible quantum graphs. II: the point spectrum. J. Phys. A: Math. Gen. 38, 7661–7675 (2005)

    Article  MathSciNet  Google Scholar 

  8. P. Exner, D. Barseghyan, Spectral estimates for a class of Schrödinger operators with infinite phase space and potential unbounded from below. J. Phys. A: Math. Theor. 45, 075204 (14pp) (2012)

    Article  MathSciNet  Google Scholar 

  9. P. Exner, J. Lipovský, Smilansky-Solomyak model with a \(\delta ^{\prime }\)-interaction. Phys. Lett. A 382, 1207–1213 (2018)

    Article  MathSciNet  Google Scholar 

  10. P. Exner, V. Lotoreichik, M. Tater, Spectral and resonance properties of Smilansky Hamiltonian. Phys. Lett. A 381, 756–761 (2017)

    Article  MathSciNet  Google Scholar 

  11. P. Exner, V. Lotoreichik, M. Tater, On resonances and bound states of Smilansky Hamiltonian. Nanosyst.: Phys. Chem. Math. 7, 789–802 (2016)

    MATH  Google Scholar 

  12. L. Geisinger, T. Weidl, Sharp spectral estimates in domains of infinite volume. Rev. Math. Phys. 23, 615–641 (2011)

    Article  MathSciNet  Google Scholar 

  13. I. Guarneri, Irreversible behaviour and collapse of wave packets in a quantum system with point interactions. J. Phys. A: Math. Theor. 44, 485304 (22 pp) (2011)

    Article  MathSciNet  Google Scholar 

  14. I. Guarneri, A model with chaotic scattering and reduction of wave packets. J. Phys. A: Math. Theor. 51, 095304 (16 pp) (2018)

    Article  MathSciNet  Google Scholar 

  15. V. Jakšić, S. Molchanov, B. Simon, Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps. J. Funct. Anal. 106, 59–79 (1992)

    Article  MathSciNet  Google Scholar 

  16. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1995)

    Book  Google Scholar 

  17. A. Laptev, T. Weidl, Sharp Lieb-Thirring inequalities in high dimensions. Acta Math. 184, 87–111 (2000)

    Article  MathSciNet  Google Scholar 

  18. O. Mickelin, Lieb-Thirring inequalities for generalized magnetic fields. Bull. Math. Sci. 6, 1–14 (2016)

    Article  MathSciNet  Google Scholar 

  19. S. Naboko, M. Solomyak, On the absolutely continuous spectrum in a model of an irreversible quantum graph. Proc. Lond. Math. Soc. 92(3), 251–272 (2006)

    Article  MathSciNet  Google Scholar 

  20. M. Reed, B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, IV. Analysis of Operators (Academic Press, New York, 1975, 1978)

    Google Scholar 

  21. G. Rozenblum, M. Solomyak, On a family of differential operators with the coupling parameter in the boundary condition. J. Comput. Appl. Math. 208, 57–71 (2007)

    Article  MathSciNet  Google Scholar 

  22. B. Simon, Some quantum operators with discrete spectrum but classically continuous spectrum. Ann. Phys. 146, 209–220 (1983)

    Article  MathSciNet  Google Scholar 

  23. U. Smilansky, Irreversible quantum graphs. Waves Random Media 14, S143–S153 (2004)

    Article  MathSciNet  Google Scholar 

  24. M. Solomyak, On the discrete spectrum of a family of differential operators. Funct. Anal. Appl. 38, 217–223 (2004)

    Article  MathSciNet  Google Scholar 

  25. M. Solomyak, On a mathematical model of irreversible quantum graphs. St. Petersbg. Math. J. 17, 835–864 (2006)

    Article  MathSciNet  Google Scholar 

  26. M. Solomyak, On the limiting behaviour of the spectra of a family of differential operators. J. Phys. A: Math. Gen. 39, 10477–10489 (2006)

    Article  MathSciNet  Google Scholar 

  27. M. Znojil, Quantum exotic: a repulsive and bottomless confining potential. J. Phys. A: Math. Gen. 31, 3349–3355 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Our recent results discussed in this survey are the result of a common work with a number of colleagues, in the first place Diana Barseghyan, Andrii Khrabustovskyi, Vladimir Lotoreichik, and Miloš Tater whom I am grateful for the pleasure of collaboration. The research was supported by the Czech Science Foundation (GAČR) within the project 17-01706S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Exner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Exner, P. (2020). Schrödinger Operators with a Switching Effect. In: Manchanda, P., Lozi, R., Siddiqi, A. (eds) Mathematical Modelling, Optimization, Analytic and Numerical Solutions. Industrial and Applied Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-0928-5_2

Download citation

Publish with us

Policies and ethics