Skip to main content

Nanopolysaccharides-Based Green Additives

  • Chapter
  • First Online:
Advanced Functional Materials from Nanopolysaccharides

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 15))

  • 969 Accesses

Abstract

Due to their unique and excellent properties, nanopolysaccharides have been widely used in a variety of areas, including stabilizing agents in diet meals, active components in cosmetic products and important substances in polymer composites. This chapter covers the contents of nanopolysaccharides as green additives and the corresponding disciplines. Their roles in achieving enhanced performances in food, cosmetics, construction, paper industry, and some emerging fields will be discussed in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Sympos 37:815–827

    CAS  Google Scholar 

  2. Charreau HL, Foresti M, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotech 7:56–80

    Article  CAS  Google Scholar 

  3. Gómez HC, Serpa A, Velásquez-Cock J et al (2016) Vegetable nanocellulose in food science: a review. Food Hydrocolloids 57:178–186

    Article  CAS  Google Scholar 

  4. Andrade DRM, Mendonça MH, Helm CV et al (2015) Assessment of nanocellulose from peach palm residue as potential food additive: part II: preliminary studies. J Food Sci Tech 52:5641–5650

    Article  CAS  Google Scholar 

  5. DeLoid GM, Sohal IS, Lorente LR et al (2018) Reducing intestinal digestion and absorption of fat using a nature-derived biopolymer: interference of triglyceride hydrolysis by nanocellulose. ACS Nano 12:6469–6479

    Article  CAS  Google Scholar 

  6. Gao HM, Duan B, Lu A et al (2018) Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocolloids 79:473–481

    Article  CAS  Google Scholar 

  7. Cerrutti P, Roldan P, Galvagno MA et al (2016) Production of bacterial nanocellulose from wine industry residues: importance of fermentation time on pellicle characteristics. J Appl Polym Sci 133:43109 (1–9)

    Google Scholar 

  8. Shi Z, Zhang Y, Phillips GO et al (2014) Utilization of bacterial cellulose in food. Food Hydrocolloids 35:539–545

    Article  CAS  Google Scholar 

  9. Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23:2291–2314

    Article  CAS  Google Scholar 

  10. Corral ML, Cerrutti P, Vázquez A et al (2017) Bacterial nanocellulose as a potential additive for wheat bread. Food Hydrocolloids 67:189–196

    Article  CAS  Google Scholar 

  11. Marchetti L, Muzzio B, Cerrutti P et al (2017) Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Struct 14:52–59

    Article  Google Scholar 

  12. Kaur J, Kaur G, Sharma S et al (2018) Cereal starch nanoparticles-a prospective food additive: a review. Crit Rev Food Sci 58:1097–1107

    Article  CAS  Google Scholar 

  13. Lindström T, Aulin C (2014) Market and technical challenges and opportunities in the area of innovative new materials and composites based on nanocellulosics. Scand J Forest Res 29:345–351

    Article  Google Scholar 

  14. Hamed SAAKM, Hassan ML (2019) A new mixture of hydroxypropyl cellulose and nanocellulose for wood consolidation. J Cult Herit 35:140–144

    Article  Google Scholar 

  15. Mohammadkazemi F, Aguiar R, Cordeiro N (2017) Improvement of bagasse fiber-cement composites by addition of bacterial nanocellulose: an inverse gas chromatography study. Cellulose 24:1803–1814

    Article  CAS  Google Scholar 

  16. Giles A (1997) An introduction to the gel pen-commentary. J Forensic Sci 42:759

    Google Scholar 

  17. Mazzella WD, Buzzini P (2005) Raman spectroscopy of blue gel pen inks. Forensic Sci Int 152:241–247

    Article  CAS  Google Scholar 

  18. Roux C, Novotny M, Evans I et al (1999) A study to investigate the evidential value of blue and black ballpoint pen inks in Australia. Forensic Sci Int 101:167–176

    Article  Google Scholar 

  19. Bei GX, Sheng HE, Liu SH et al (2015) Green design study of gel pen. Mech Electr Eng Technol 44:43–46

    Google Scholar 

  20. Qian JJ, Chen AP, Liu ZX et al (2009) The rheological characterization of the writing performance of carbon black gel ink. Adv Mater Res 66:139–142

    Article  CAS  Google Scholar 

  21. Kito T, Senga K (1998) Preparation method for shear-thinning water-based ball-point pen inks compositions and ball-point pens employing the same. US patent

    Google Scholar 

  22. Williams RS, Fisher PC (1998) Pressurized roller pens and inks for such pens. US patent

    Google Scholar 

  23. Osada T (1999) Aqueous gel ink-filled ball point pen. US patent

    Google Scholar 

  24. Hanke DE, Gindelberger B, Heiman S (1995) Water-based ink composition for ballpoint pen. US patent

    Google Scholar 

  25. Reed G, Savage K, Edwards D et al (2014) Hyperspectral imaging of gel pen inks: an emerging tool in document analysis. Sci Justice 54:71–80

    Article  CAS  Google Scholar 

  26. Liu ZX, Chen AP, Qian JJ et al (2009) Effect of surfactant on the properties of gel ink. Adv Mater Res 66:143–146

    Article  CAS  Google Scholar 

  27. Yu PU, Chen AP, Qian JJ et al (2009) Rheological properties of gel ink with composite thickening agents. Mater Mech Eng 33:72–75

    Google Scholar 

  28. Puisto A, Illa X, Mohtaschemi M et al (2012) Modeling the rheology of nanocellulose suspensions. Nord Pulp Pap Res J 27:277–281

    Article  CAS  Google Scholar 

  29. Chen Y, Xu CJ, Huang J et al (2017) Rheological properties of nanocrystalline cellulose suspensions. Carbohyd Polym 157:303–310

    Article  CAS  Google Scholar 

  30. Wang WB, Fu SY, Leu SY et al (2018) A Nano-ink for gel pens based on scalable CNC preparation. Cellulose 25:6465–6478

    Article  CAS  Google Scholar 

  31. Tseng WJ, Chen CN (2006) Dispersion and rheology of nickel nanoparticle inks. J Mater Sci 41:1213–1219

    Article  CAS  Google Scholar 

  32. Wang WB, Fu SY (2019) Strategy for manufacturing a deep-red ink based on nanocellulose and reactive red 120. ACS Sustain Chem Eng 7:7233–7240

    Article  CAS  Google Scholar 

  33. Song KL, Wu QL, Li MC et al (2016) Water-based bentonite drilling fluids modified by novel biopolymer for minimizing fluid loss and formation damage. Colloid Surf A Physicochem Eng Aspects 507:58–66

    Article  CAS  Google Scholar 

  34. González J, Quintero F, Arellano J et al (2011) Effects of interactions between solids and surfactants on the tribological properties of water-based drilling fluids. Colloid Surf A Physicochem Eng Aspects 391:216–223

    Article  CAS  Google Scholar 

  35. Li M, Wu Q, Song K et al (2015) Soy protein isolate as fluid loss additive in bentonite-water based drilling fluids. ACS Appl Mater Inter 7:24799–24809

    Article  CAS  Google Scholar 

  36. Sun F, Lin M, Dong Z et al (2015) Nanosilica-induced high mechanical strength of nanocomposite hydrogel for killing fluids. J Colloid Interf Sci 458:45–52

    Article  CAS  Google Scholar 

  37. Farboda M, Asl RK, Abadi ARN (2015) Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures. Colloid Surf A Physicochem Eng Aspects 474:71–75

    Article  CAS  Google Scholar 

  38. Li M, Wu Q, Song K et al (2015) Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: rheological modeling and filtration mechanisms. Ind Eng Chem Res 55:133–143

    Article  CAS  Google Scholar 

  39. William JKM, Ponmani S, Samuel R et al (2014) Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids. J Petroleum Sci Technol 117:15–27

    CAS  Google Scholar 

  40. Ponmani S, Nagarajan R, Sangwai JS (2016) Effect of nanofluids of CuO and ZnO in polyethylene glycol and polyvinylpyrrolidone on the thermal, electrical, and filtration-loss properties of water-based drilling fluids. SPE J 21:405–415

    Article  CAS  Google Scholar 

  41. Cheraghian G, Hemmati M, Masihi M et al (2013) An experimental investigation of the enhanced oil recovery and improved performance of drilling fluids using titanium dioxide and fumed silica nanoparticles. J Nanostruct Chem 3:78–87

    Article  Google Scholar 

  42. Kosynkin DV, Ceriotti G, Wilson KC et al (2011) Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids. ACS Appl Mater Inter 4:222–227

    Article  CAS  Google Scholar 

  43. Mao H, Qiu Z, Shen Z et al (2015) Novel hydrophobic associated polymer based nano-silica composite with core-shell structure for intelligent drilling fluid under ultra-high temperature and ultra-high pressure. Prog Nat Sci 25:90–93

    Article  CAS  Google Scholar 

  44. Fazelabdolabadi B, Khodadadi AA, Sedaghatzadeh M (2015) Thermal and rheological properties improvement of drilling fluids using functionalized carbon nanotubes. Appl Nanosci 5:651–659

    Article  CAS  Google Scholar 

  45. Rincon-Torres MT, Hall LJ (2013) Cellulose nanowhiskers in well services. US patent

    Google Scholar 

  46. Hall LJ (2014) Chitin nanocrystal containing wellbore fluids. US patent

    Google Scholar 

  47. Lafitte V, Lee JC, James SG et al (2015) Fluids and methods including nanocellulose. US patent

    Google Scholar 

  48. Liu XL, Qu JL, Wang A et al (2019) Hydrogels prepared from cellulose nanofibrils via ferric ion-mediated crosslinking reaction for protecting drilling fluid. Carbohyd Polym 212:67–74

    Article  CAS  Google Scholar 

  49. Dias F, Souza R, Lucas E (2018) Rheological behavior of drilling fluids containing hydrophobically modified starch for filtrate reduction. Chem Chem Technol 12:86–92

    Article  CAS  Google Scholar 

  50. Alireza N, Javad ASM, Amin SNM et al (2018) Influence of monoethanolamine on thermal stability of starch in water based drilling fluid system. Petrol Explor Dev 45:167–171

    Google Scholar 

  51. Rose S, Prevoteau A, Elzie`re P et al (2014) Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505:382–385

    Article  CAS  Google Scholar 

  52. Dimic-Misic K, Gane PAC et al (2013) Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind Eng Chem Res 52:16066–16083

    Article  CAS  Google Scholar 

  53. Veigel S, Grüll G, Pinkl S et al (2014) Improving the mechanical resistance of waterborne wood coatings by adding cellulose nanofibres. React Funct Polym 85:214–220

    Article  CAS  Google Scholar 

  54. Azeredo HMC, Miranda KWE, Miranda HL et al (2012) Nanoreinforced alginate-acerola puree coatings on acerola fruits. J Food Eng 113:505–510

    Article  CAS  Google Scholar 

  55. Dong F, Li SJ, Jin CD et al (2016) Effect of nanocellulose/chitosan composite coatings on cucumber quality and shelf life. Toxicol Environ Chem Rev 98:450–461

    Article  CAS  Google Scholar 

  56. Thakur R, Pristijono P, Golding JB et al (2018) Development and application of rice starch based edible coating to improve the postharvest storage potential and quality of plum fruit (Prunus salicina). Sci Hortic-Amsterdam 237:59–66

    Article  CAS  Google Scholar 

  57. Thakur R, Pristijono P, Scarlett CJ et al (2019) Starch-based films: major factors affecting their properties. Int J Biol Macromol 132:1079–1089

    Article  CAS  Google Scholar 

  58. Chantarasataporn P, Yoksan R, Visessanguan W et al (2013) Water-based nano-sized chitin and chitosan as seafood additive through a case study of pacific white shrimp (Litopenaeus vannamei). Food Hydrocolloids 32:341–348

    Article  CAS  Google Scholar 

  59. Hubmann M, Kong XH, Curtis JM (2019) Kinetic stabilization of cellulose nanocrystals in a photocurable prepolymer for application as an adhesion promoter in UV-curable coatings. Prog Org Coat 129:101–115

    Article  CAS  Google Scholar 

  60. Liu C, Du HS, Dong L et al (2017) Properties of nanocelluloses and their application as rheology modifier in paper coating. Ind Eng Chem Res 56:8264–8273

    Article  CAS  Google Scholar 

  61. Ougiya H, Watanabe K, Morinaga Y et al (1997) Emulsion-stabilizing effect of bacterial cellulose. Biosci Biotechnol Biochem 61:1541–1545

    Article  CAS  Google Scholar 

  62. Amnuaikit T, Chusuit T, Raknam P et al (2011) Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Med Devices 4:77–81

    Google Scholar 

  63. Almeida IF, Pereira T, Silva NHCS et al (2014) Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. Eur J Pharm Biopharm 86:332–336

    Article  CAS  Google Scholar 

  64. Aramwit P, Bang N (2014) The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment. BMC Biotechnol 14:104

    Article  CAS  Google Scholar 

  65. Hasan N, Biak DRA, Kamarudin S (2012) Application of bacterial cellulose (BC) in natural facial scrub. Int J Adv Sci, Eng Inf Technol 2:1–4

    Article  Google Scholar 

  66. Barikani M, Oliaei E, Seddiqi H et al (2014) Preparation and application of chitin and its derivatives: a review. Iran Polym J 23:307–326

    Article  CAS  Google Scholar 

  67. Tozluoglu A, Poyraz B (2016) Effects of cellulose micro/nanofibers as paper additives in kraft and kraft-NaBH4 pulps. Nord Pulp Pap Res J 31:561–572

    Article  CAS  Google Scholar 

  68. Hubbe MA (2006) Bonding between cellulosic fibres in the absence and presence of dry-strength agents: a review. Bioresour Technol 1:281–318

    Google Scholar 

  69. Ahola S, Österberg M, Laine J (2008) Cellulose nanofibres-adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314

    Article  CAS  Google Scholar 

  70. Molin U, Daniel G (2004) Effects of beating on the fibre structure of kraft pulps as revealed by FE-SEM and TEM: influence of alkaline degradation. Holzforschung 58:226–232

    Article  CAS  Google Scholar 

  71. Minor JL, Atalla RH, Harten TM (1993) Improving interfiber bonding of recycled fibers. J Pulp Pap Sci 19:J152–J155

    Google Scholar 

  72. Lindström T, Aulin C (2014) Market and technical challenges and opportunities in the area of innovative new materials and composites based on nanocellulosics. Scand J For Res 29:345–351

    Article  Google Scholar 

  73. Herrera MA, Mathew AP, Oksman K (2017) Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications. Cellulose 24:3969–3980

    Article  CAS  Google Scholar 

  74. González I, Boufi S, Pèlach MA et al (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. Bioresource 7:5167–5180

    Article  Google Scholar 

  75. Adel AM, El-Gendy AA, Diab MA et al (2016) Microfibrillated cellulose from agricultural residues. Part I: papermaking application. Ind Crop Prod 93:161–174

    Article  CAS  Google Scholar 

  76. Taipale T, Österberg M, Nykänen A et al (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    Article  CAS  Google Scholar 

  77. González I, Boufi S, Pèlach MA et al (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7:5167–5180

    Article  Google Scholar 

  78. Petroudy SRD, Syverud K, Chinga-Carrasco G et al (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohyd Polym 99:311–318

    Article  CAS  Google Scholar 

  79. Shivyari NY, Tajvidi M, Bousfield DW et al (2016) Production and characterization of laminates of paper and cellulose nanofibrils. ACS Appl Mater Inter 8:25520–25528

    Article  CAS  Google Scholar 

  80. Balea A, Merayo N, Fuente E et al (2016) Valorization of corn stalk by the production of cellulose nanofibers to improve recycled paper properties. BioResources 11:3416–3431

    CAS  Google Scholar 

  81. Manninen M, Kajanto I, Happonen J et al (2011) The effect of microfibrillated cellulose addition on drying shrinkage and dimensional stability of wood-free paper. Nord Pulp Pap Res J 26:297–305

    Article  CAS  Google Scholar 

  82. Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23:299–304

    Article  CAS  Google Scholar 

  83. Merayo N, Balea A, Elena DLF et al (2017) Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose 24:2987–3000

    Article  CAS  Google Scholar 

  84. Chen GQ, Wu GC, Alriksson B et al (2017) Bioconversion of waste fiber sludge to bacterial nanocellulose and use for reinforcement of CTMP paper sheets. Polymers-Basel 9:458

    Article  CAS  Google Scholar 

  85. Huang JW, Zhou YX, Dong LY et al (2017) Enhancement of mechanical and electrical performances of insulating presspaper by introduction of nanocellulose. Compos Sci Technol 138:40–48

    Article  CAS  Google Scholar 

  86. Tarrés Q, Ehman NV, Vallejos ME et al (2017) Lignocellulosic nanofibers from triticale straw: the influence of hemicelluloses and lignin in their production and properties. Carbohyd Polym 163:20–27

    Article  CAS  Google Scholar 

  87. Baidya A, Ganayee MA, Ravindran SJ et al (2017) Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11:11091–11099

    Article  CAS  Google Scholar 

  88. Campano C, Merayo N, Balea A et al (2017) Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 25:269–280

    Article  CAS  Google Scholar 

  89. Sharma A, Thakur M, Bhattacharya M et al (2019) Commercial application of cellulose nanocomposites-a review. Biotechnol 21:00316–00331

    Google Scholar 

  90. Jahan Z, Niazi MBK, Hagg M et al (2019) Phosphorylated nanocellulose fibrils/PVA nanocomposite membranes for biogas upgrading at higher pressure. Sep Sci Technol 177:258–268

    Google Scholar 

  91. Torstensen J, Helberg RML, Deng LY et al (2019) PVA/nanocellulose nanocomposite membranes for CO2 separation from flue gas. Int J Greenh Gas Con 81:93–102

    Article  CAS  Google Scholar 

  92. Jiang E, Amiralian N, Maghe M et al (2017) Cellulose nanofibers as rheology modifiers and enhancers of carbonization efficiency in polyacrylonitrile. ACS Sustain Chem Eng 5:3296–3304

    Article  CAS  Google Scholar 

  93. Stephan AM, Kumar TP, Kulandainathan MA et al (2009) Chitin-incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries. J Phys Chem B 113:1963–1971

    Article  CAS  Google Scholar 

  94. Coltelli MB, Cinelli P, Gigante V et al (2019) Chitin nanofibrils in poly(lactic acid) (PLA) nanocomposites: dispersion and thermo-mechanical properties. Int J Mol Sci 20:504–524

    Article  CAS  Google Scholar 

  95. Shamshina JL, Zavgorodnya O, Berton P et al (2018) An ionic liquid platform for spinning composite chitin-poly(lactic acid) fibers. ACS Sustain Chem Eng 6:10241–10251

    Article  CAS  Google Scholar 

  96. Mikhailov GM, Lebedeva MF (2005) Preparation and modification of chitin-based fibers. Russ J Appl Chem 78:1479–1485

    Article  CAS  Google Scholar 

  97. Koh JJ, Zhang XW, He CB (2018) Fully biodegradable poly(lactic acid)/starch blends: a review of toughening strategies. Int J Biol Macromol 109:99–113

    Article  CAS  Google Scholar 

  98. Mirab F, Eslamian M, Bagheri R (2018) Fabrication and characterization of a starch-based nanocomposite scaffold with highly porous and gradient structure for bone tissue engineering. Biomed Phys Eng Express 4:055021

    Article  Google Scholar 

  99. Fourati Y, Tarrés Q, Mutjé P et al (2018) PBAT/thermoplastic starch blends: effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohyd Polym 199:51–57

    Article  CAS  Google Scholar 

  100. Garrido-Miranda KA, Rivas BL, Pérez MA et al (2018) Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly-(3-hydroxybutyrate)-thermoplastic starch. Food Sci Technol 98:260–267

    CAS  Google Scholar 

  101. Poonguzhali R, Basha SK, Kumari VS (2017) Nanostarch reinforced with chitosan/poly (vinyl pyrrolidone) blend for in vitro wound healing application. Polym-Plast Technol 57:1400–1410

    Article  CAS  Google Scholar 

  102. Poonguzhali R, Basha SK, Kumari VS (2018) Fabrication of asymmetric nanostarch reinforced Chitosan/PVP membrane and its evaluation as an antibacterial patch for, in vivo, wound healing application. Int J Biol Macromol 114:204–213

    Article  CAS  Google Scholar 

  103. Mol AS, Martins I, Oréfice RL (2015) Surface-pegylated chitin whiskers as an effective additive to enhance the mechanical properties of recycled ABS. J Appl Polym Sci 132:42463 (1–8)

    Google Scholar 

  104. Wang YK, Xu CJ, Wu DF et al (2018) Rheology of the cellulose nanocrystals filled poly(ε-caprolactone) biocomposites. Polymer 140:167–178

    Article  CAS  Google Scholar 

  105. Ying ZR, Wu DF, Wang ZF et al (2018) Rheological and mechanical properties of polylactide nanocomposites reinforced with the cellulose nanofibers with various surface treatments. Cellulose 25:3955–3971

    Article  CAS  Google Scholar 

  106. Chen JX, Xu CJ, Wu DF et al (2015) Insights into the nucleation role of cellulose crystals during crystallization of poly(β-hydroxybutyrate). Carbohyd Polym 134:508–515

    Article  CAS  Google Scholar 

  107. Chen JX, Wu DF, Tam KC et al (2016) Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohyd Polym 157:1821–1829

    Article  CAS  Google Scholar 

  108. Luo FB, Wu K, Li DF et al (2015) A novel intumescent flame retardant with nanocellulose as charring agent and its flame retardancy in polyurethane foam. Polym Composite 38:2762–2770

    Article  CAS  Google Scholar 

  109. Riehle F, Hoenders D, Guo JQ et al (2019) Sustainable chitin nanofibrils provide outstanding flame-retardant nanopapers. Biomacromol 20:1098–1108

    Article  CAS  Google Scholar 

  110. Awang N, Ramasamy D, Kadirgama K et al (2019) Study on friction and wear of Cellulose Nanocrystal (CNC) nanoparticle as lubricating additive in engine oil. Int J Heat Mass Transfer 131:1196–1204

    Article  CAS  Google Scholar 

  111. Li K, Zhang X, Du C et al (2019) Friction reduction and viscosity modification of cellulose nanocrystals as biolubricant additives in polyalphaolefin oil. Carbohyd Polym 220:228–235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. Tang wishes to acknowledge the funding from Hunan Provincial Natural Science Foundation of China (2019JJ60073). J. Chen wishes to acknowledge the financial support from Jiangsu University of Technology (KYY18027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxiang Chen or Juntao Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, J., Tang, C., Wu, D., Tang, J. (2019). Nanopolysaccharides-Based Green Additives. In: Lin, N., Tang, J., Dufresne, A., Tam, M. (eds) Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-15-0913-1_10

Download citation

Publish with us

Policies and ethics