Skip to main content

Endocrine-Distributing Chemicals and Reproductive Function

  • Chapter
  • First Online:
Health Impacts of Developmental Exposure to Environmental Chemicals

Abstract

Exposures to environmental chemicals affecting androgen action (endocrine-disrupting chemicals (EDCs)) are suspected to have a negative impact on male reproductive function by disrupting normal differentiation and development. In this chapter, the literature on the impact of exposure to endocrine-disrupting chemicals on male reproduction will be reviewed. We will specifically address the effects of exposure to organochlorine compounds, perfluorinated alkylate substances (PFAS), phthalates, and phenols on anogenital distance, reproductive hormones in childhood, puberty onset, and semen quality, focusing on prenatal or early exposures during vulnerable time points of development. Generally, anogenital distance (AGD) appears to be a promising, easily obtainable marker of male reproductive health. Maternal exposure to phthalates has consistently been associated with shorter AGD in male offspring, but no consistent associations between PFAS or bisphenol A exposure and AGD have been found. Prenatal exposure to organochlorine pesticides (OCPs) appears to lower children’s testosterone concentrations and increase aromatase activity after birth. In addition, prenatal exposure to dioxins and OCPs may delay puberty, whereas exposure to polychlorinated biphenyls (PCBs) accelerates the onset of puberty in boys. Maternal, childhood, or adult phthalate exposure has been associated with lower reproductive hormone concentrations, changed onset of puberty and semen quality. No consistent associations between PFAS or phenol exposure and AGD, reproductive hormones, puberty onset, or semen quality have been found. We suggest that more research is urgently needed focusing on birth cohort studies addressing the adverse effects of exposures during vulnerable time windows during development, e.g., in utero, during early childhood, and puberty. The cohorts should have the necessary size, include biological material, focus on multiple exposures, and have long-term follow-up with repeated clinical examinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO and UNEP. Global assessment of the state-of-the-science of endocrine disruptors. 2002.

    Google Scholar 

  2. WHO and UNEP. State of the science of endocrine disrupting chemicals-An assessment of the state of the science of endocrine disruptors prepared by a group of experts for the United Nations Environment Programme (UNEP) and WHO. 2012.

    Google Scholar 

  3. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. Executive summary to EDC-2: The Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):593–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharpe RM, Irvine DS. How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health? BMJ. 2004;328(7437):447–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Skakkebaek NE. Testicular dysgenesis syndrome: new epidemiological evidence. Int J Androl. 2004;27(4):189–91.

    Article  PubMed  Google Scholar 

  6. Juul A, Almstrup K, Andersson AM, Jensen TK, Jorgensen N, Main KM, et al. Possible fetal determinants of male infertility. Nat Rev Endocrinol. 2014;10(9):553–62.

    Article  CAS  PubMed  Google Scholar 

  7. Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM, Eisenberg ML, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96(1):55–97.

    Article  CAS  PubMed  Google Scholar 

  8. Hotchkiss AK, Parks-Saldutti LG, Ostby JS, Lambright C, Furr J, Vandenbergh JG, et al. A mixture of the “antiandrogens” linuron and butyl benzyl phthalate alters sexual differentiation of the male rat in a cumulative fashion. Biol Reprod. 2004;71(6):1852–61.

    Article  CAS  PubMed  Google Scholar 

  9. Scott HM, Hutchison GR, Jobling MS, McKinnell C, Drake AJ, Sharpe RM. Relationship between androgen action in the “male programming window,” fetal Sertoli cell number, and adult testis size in the rat. Endocrinology. 2008;149(10):5280–7.

    Article  CAS  PubMed  Google Scholar 

  10. Eisenberg ML, Hsieh MH, Walters RC, Krasnow R, Lipshultz LI. The relationship between anogenital distance, fatherhood, and fertility in adult men. PLoS One. 2011;6(5):e18973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mendiola J, Stahlhut RW, Jorgensen N, Liu F, Swan SH. Shorter anogenital distance predicts poorer semen quality in young men in Rochester, New York. Environ Health Perspect. 2011;119(7):958–63.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eisenberg ML, Jensen TK, Walters RC, Skakkebaek NE, Lipshultz LI. The relationship between anogenital distance and reproductive hormone levels in adult men. J Urol. 2012;187(2):594–8.

    Article  CAS  PubMed  Google Scholar 

  13. Thankamony A, Lek N, Carroll D, Williams M, Dunger DB, Acerini CL, et al. Anogenital distance and penile length in infants with hypospadias or cryptorchidism: comparison with normative data. Environ Health Perspect. 2014;122(2):207–11.

    Article  PubMed  Google Scholar 

  14. Convention S. Available from http://chm.pops.int/TheConvention/ThePOPs/ChemicalsProposedforListing/tabid/2510/Default.aspx.

  15. Kanazawa A, Miyasita C, Okada E, Kobayashi S, Washino N, Sasaki S, et al. Blood persistent organochlorine pesticides in pregnant women in relation to physical and environmental variables in The Hokkaido Study on Environment and Children’s Health. Sci Total Environ. 2012;426:73–82.

    Article  CAS  PubMed  Google Scholar 

  16. Warembourg C, Debost-Legrand A, Bonvallot N, Massart C, Garlantézec R, Monfort C, et al. Exposure of pregnant women to persistent organic pollutants and cord sex hormone levels. Hum Reprod. 2016;31(1):190–8.

    Article  CAS  PubMed  Google Scholar 

  17. Torres-Sanchez L, Zepeda M, Cebrián ME, Belkind-Gerson J, Garcia-Hernandez RM, Belkind-Valdovinos U, et al. Dichlorodiphenyldichloroethylene exposure during the first trimester of pregnancy alters the anal position in male infants. Ann N Y Acad Sci. 2008;1140(1):155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Longnecker MP, Gladen BC, Cupul-Uicab LA, Romano-Riquer SP, Weber JP, Chapin RE, et al. In utero exposure to the antiandrogen 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) in relation to anogenital distance in male newborns from Chiapas, Mexico. Am J Epidemiol. 2007;165(9):1015–22.

    Article  PubMed  Google Scholar 

  19. Loreto-Gomez C, Farias P, Moreno-Macias H, Guzman C, Riojas-Rodriguez H. Prenatal exposure to persistent organic compounds and their association with anogenital distance in infants. Reprod Biomed Online. 2018;37(6):732–40.

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Villarino M, Riano-Galan I, Rodriguez-Dehli AC, Vizcaino E, Grimalt JO, Tardon A, et al. Prenatal exposure to persistent organic pollutants and anogenital distance in children at 18 months. Horm Res Paediatr. 2018;90(2):116–22.

    Article  CAS  PubMed  Google Scholar 

  21. Dalsager L, Christensen LE, Kongsholm MG, Kyhl HB, Nielsen F, Schoeters G, et al. Associations of maternal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-D with birth outcomes and anogenital distance at 3 months in the Odense Child Cohort. Reprod Toxicol. 2018;76:53–62.

    Article  CAS  PubMed  Google Scholar 

  22. Lind DV, Priskorn L, Lassen TH, Nielsen F, Kyhl HB, Kristensen DM, et al. Prenatal exposure to perfluoroalkyl substances and anogenital distance at 3 months of age in a Danish mother-child cohort. Reprod Toxicol. 2017;68:200–6.

    Article  CAS  PubMed  Google Scholar 

  23. Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA. Phthalates impact human health: epidemiological evidences and plausible mechanism of action. J Hazard Mater. 2017;340:360–83.

    Article  CAS  PubMed  Google Scholar 

  24. Katsikantami I, Sifakis S, Tzatzarakis MN, Vakonaki E, Kalantzi O-I, Tsatsakis AM, et al. A global assessment of phthalates burden and related links to health effects. Environ Int. 2016;97:212–36.

    Article  CAS  PubMed  Google Scholar 

  25. Ait Bamai Y, Araki A, Kawai T, Tsuboi T, Yoshioka E, Kanazawa A, et al. Comparisons of urinary phthalate metabolites and daily phthalate intakes among Japanese families. Int J Hyg Environ Health. 2015;218(5):461–70.

    Article  CAS  PubMed  Google Scholar 

  26. Fromme H, Bolte G, Koch HM, Angerer J, Boehmer S, Drexler H, et al. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int J Hyg Environ Health. 2007;210(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  27. Koch HM, Drexler H, Angerer J. Internal exposure of nursery-school children and their parents and teachers to di(2-ethylhexyl)phthalate (DEHP). Int J Hyg Environ Health. 2004;207(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  28. Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005;113(8):1056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Swan SH. Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res. 2008;108(2):177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cai H, Zheng W, Zheng P, Wang S, Tan H, He G, et al. Human urinary/seminal phthalates or their metabolite levels and semen quality: a meta-analysis. Environ Res. 2015;142:486–94.

    Article  CAS  PubMed  Google Scholar 

  31. Zarean M, Keikha M, Feizi A, Kazemitabaee M, Kelishadi R. The role of exposure to phthalates in variations of anogenital distance: a systematic review and meta-analysis. Environ Pollut. 2019;247:172–9.

    Article  CAS  PubMed  Google Scholar 

  32. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24(2):139–77.

    Article  CAS  PubMed  Google Scholar 

  33. Christiansen S, Axelstad M, Boberg J, Vinggaard AM, Pedersen GA, Hass U. Low-dose effects of bisphenol A on early sexual development in male and female rats. Reproduction. 2014;147(4):477–87.

    Article  CAS  PubMed  Google Scholar 

  34. Miao M, Yuan W, He Y, Zhou Z, Wang J, Gao E, et al. In utero exposure to bisphenol-A and anogenital distance of male offspring. Birth Defects Res Pt A. 2011;91(10):867–72.

    Article  CAS  Google Scholar 

  35. Sun X, Li D, Liang H, Miao M, Song X, Wang Z, et al. Maternal exposure to bisphenol A and anogenital distance throughout infancy: a longitudinal study from Shanghai, China. Environ Int. 2018;121(Pt 1):269–75.

    Article  CAS  PubMed  Google Scholar 

  36. Liu C, Xu X, Zhang Y, Li W, Huo X. Associations between maternal phenolic exposure and cord sex hormones in male newborns. Hum Reprod. 2016;31(3):648–56.

    Article  CAS  PubMed  Google Scholar 

  37. Arbuckle TE, Agarwal A, MacPherson SH, Fraser WD, Sathyanarayana S, Ramsay T, et al. Prenatal exposure to phthalates and phenols and infant endocrine-sensitive outcomes: The MIREC Study. Environ Int. 2018;120:572–83.

    Article  CAS  PubMed  Google Scholar 

  38. Mammadov E, Uncu M, Dalkan C. High prenatal exposure to bisphenol A reduces anogenital distance in healthy male newborns. J Clin Res Pediatr Endocrinol. 2018;10(1):25–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hsu PC, Lai TJ, Guo NW, Lambert GH, Guo YL. Serum hormones in boys prenatally exposed to polychlorinated biphenyls and dibenzofurans. J Toxicol Environ Health A. 2005;68(17-18):1447–56.

    Article  CAS  PubMed  Google Scholar 

  40. Yang C-Y, Yu M-L, Guo H-R, Lai T-J, Hsu C-C, Lambert G, et al. The endocrine and reproductive function of the female Yucheng adolescents prenatally exposed to PCBs/PCDFs. Chemosphere. 2005;61(3):355–60.

    Article  CAS  PubMed  Google Scholar 

  41. Cao Y, Winneke G, Wilhelm M, Wittsiepe J, Lemm F, Fürst P, et al. Environmental exposure to dioxins and polychlorinated biphenyls reduce levels of gonadal hormones in newborns: results from The Duisburg Cohort Study. Int J Hyg Environ Health. 2008;211(1–2):30–9.

    Article  CAS  PubMed  Google Scholar 

  42. Araki A, Miyashita C, Mitsui T, Goudarzi H, Mizutani F, Chisaki Y, et al. Prenatal organochlorine pesticide exposure and the disruption of steroids and reproductive hormones in cord blood: The Hokkaido Study. Environ Int. 2018;110(Supplement C):1–13.

    Article  CAS  PubMed  Google Scholar 

  43. Eskenazi B, Rauch SA, Tenerelli R, Huen K, Holland NT, Lustig RH, et al. In utero and childhood DDT, DDE, PBDE and PCBs exposure and sex hormones in adolescent boys: The CHAMACOS Study. Int J Hyg Environ Health. 2017;220(2, Part B):364–72.

    Article  CAS  PubMed  Google Scholar 

  44. Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Stovring H, Kristensen SL, et al. In utero exposure to persistent organochlorine pollutants and reproductive health in the human male. Reproduction. 2014;148(6):635–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Toft G, Jonsson BA, Bonde JP, Norgaard-Pedersen B, Hougaard DM, Cohen A, et al. Perfluorooctane sulfonate concentrations in amniotic fluid, biomarkers of fetal Leydig cell function, and cryptorchidism and hypospadias in Danish boys (1980-1996). Environ Health Perspect. 2015;124(1):151–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Goudarzi H, Araki A, Itoh S, Sasaki S, Miyashita C, Mitsui T, et al. The association of prenatal exposure to perfluorinated chemicals with glucocorticoid and androgenic hormones in cord blood samples: The Hokkaido Study. Environ Health Perspect. 2017;125(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  47. Itoh S, Araki A, Mitsui T, Miyashita C, Goudarzi H, Sasaki S, et al. Association of perfluoroalkyl substances exposure in utero with reproductive hormone levels in cord blood in The Hokkaido Study on Environment and Children’s Health. Environ Int. 2016;94:51–9.

    Article  CAS  PubMed  Google Scholar 

  48. Maisonet M, Näyhä S, Lawlor DA, Marcus M. Prenatal exposures to perfluoroalkyl acids and serum lipids at ages 7 and 15 in females. Environ Int. 2015;82:49–60.

    Article  CAS  PubMed  Google Scholar 

  49. Lin LC, Wang SL, Chang YC, Huang PC, Cheng JT, Su PH, et al. Associations between maternal phthalate exposure and cord sex hormones in human infants. Chemosphere. 2011;83(8):1192–9.

    Article  CAS  PubMed  Google Scholar 

  50. Araki A, Mitsui T, Miyashita C, Nakajima T, Naito H, Ito S, et al. Association between maternal exposure to di(2-ethylhexyl) phthalate and reproductive hormone levels in fetal blood: The Hokkaido Study on Environment and Children’s Health. PLoS One. 2014;9(10):e109039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Araki A, Mitsui T, Goudarzi H, Nakajima T, Miyashita C, Itoh S. Prenatal di(2-ethylhexyl) phthalate exposure and disruption of adrenal androgens and glucocorticoids levels in cord blood: The Hokkaido Study. Sci Total Environ. 2017;581-582:297–304.

    Article  CAS  PubMed  Google Scholar 

  52. Main KM, Mortensen GK, Kaleva MM, Boisen KA, Damgaard IN, Chellakooty M, et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect. 2006;114(2):270–6.

    Article  CAS  PubMed  Google Scholar 

  53. Wen HJ, Sie L, Su PH, Chuang CJ, Chen HY, Sun CW, et al. Prenatal and childhood exposure to phthalate diesters and sex steroid hormones in 2-, 5-, 8-, and 11-year-old children: a pilot study of the Taiwan Maternal and Infant Cohort Study. J Epidemiol. 2017;27(11):516–23.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Watkins DJ, Sanchez BN, Tellez-Rojo MM, Lee JM, Mercado-Garcia A, Blank-Goldenberg C, et al. Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls. Environ Res. 2017;159:143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Watkins DJ, Sanchez BN, Tellez-Rojo MM, Lee JM, Mercado-Garcia A, Blank-Goldenberg C, et al. Impact of phthalate and BPA exposure during in utero windows of susceptibility on reproductive hormones and sexual maturation in peripubertal males. Environ Health. 2017;16(1):69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Fénichel P, Déchaux H, Harthe C, Gal J, Ferrari P, Pacini P, et al. Unconjugated bisphenol A cord blood levels in boys with descended or undescended testes. Hum Reprod. 2012;27(4):983–90.

    Article  PubMed  CAS  Google Scholar 

  57. Minatoya M, Sasaki S, Araki A, Miyashita C, Itoh S, Yamamoto J, et al. Cord blood bisphenol A levels and reproductive and thyroid hormone levels of neonates: The Hokkaido Study on Environment and Children’s Health. Epidemiology. 2017;28:S3–9.

    Article  PubMed  Google Scholar 

  58. Kuijper EAM, Ket JCF, Caanen MR, Lambalk CB. Reproductive hormone concentrations in pregnancy and neonates: a systematic review. Reprod Biomed Online. 2013;27(1):33–63.

    Article  CAS  PubMed  Google Scholar 

  59. WHO. Endocrine disrupters and child health. Possible developmental early effects of endocrine disrupters on child health. Geneva: WHO; 2012.

    Google Scholar 

  60. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Leijs MM, Koppe JG, Olie K, Aalderen WMCV, Voogt PD, Vulsma T, et al. Delayed initiation of breast development in girls with higher prenatal dioxin exposure; a longitudinal cohort study. Chemosphere. 2008;73(6):999–1004.

    Article  CAS  PubMed  Google Scholar 

  62. Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A, et al. Prenatal exposure to persistent organochlorine pollutants and female reproductive function in young adulthood. Environ Int. 2016;92-93:366–72.

    Article  CAS  PubMed  Google Scholar 

  63. Namulanda G, Maisonet M, Taylor E, Flanders WD, Olson D, Sjodin A, et al. In utero exposure to organochlorine pesticides and early menarche in the Avon Longitudinal Study of Parents and Children. Environ Int. 2016;94:467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Windham GC, Pinney SM, Voss RW, Sjodin A, Biro FM, Greenspan LC, et al. Brominated flame retardants and other persistent organohalogenated compounds in relation to timing of puberty in a longitudinal study of girls. Environ Health Perspect. 2015;123(10):1046–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Humblet O, Williams PL, Korrick SA, Sergeyev O, Emond C, Birnbaum LS, et al. Dioxin and polychlorinated biphenyl concentrations in mother’s serum and the timing of pubertal onset in sons. Epidemiology. 2011;22(6):827–35.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Korrick SA, Lee MM, Williams PL, Sergeyev O, Burns JS, Patterson DG, et al. Dioxin exposure and age of pubertal onset among Russian boys. Environ Health Perspect. 2011;119(9):1339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lam T, Williams PL, Lee MM, Korrick SA, Birnbaum LS, Burns JS, et al. Prepubertal organochlorine pesticide concentrations and age of pubertal onset among Russian boys. Environ Int. 2014;73:135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Burns JS, Lee MM, Williams PL, Korrick SA, Sergeyev O, Lam T, et al. Associations of peripubertal serum dioxin and polychlorinated biphenyl concentrations with pubertal timing among Russian boys. Environ Health Perspect. 2016;124(11):1801–7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Den Hond E, Roels HA, Hoppenbrouwers K, Nawrot T, Thijs L, Vandermeulen C, et al. Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environ Health Perspect. 2002;110(8):771–6.

    Article  Google Scholar 

  70. Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A, et al. Long-term effects of prenatal exposure to perfluoroalkyl substances on female reproduction. Hum Reprod. 2013;28(12):3337–48.

    Article  CAS  PubMed  Google Scholar 

  71. Christensen KY, Maisonet M, Rubin C, Holmes A, Calafat AM, Kato K, et al. Exposure to polyfluoroalkyl chemicals during pregnancy is not associated with offspring age at menarche in a contemporary British cohort. Environ Int. 2011;37(1):129–35.

    Article  CAS  PubMed  Google Scholar 

  72. Lopez-Espinosa M-J, Fletcher T, Armstrong B, Genser B, Dhatariya K, Mondal D, et al. Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with age of puberty among children living near a chemical plant. Environ Sci Technol. 2011;45(19):8160–6.

    Article  CAS  PubMed  Google Scholar 

  73. Su P-H, Chang C-K, Lin C-Y, Chen H-Y, Liao P-C, Hsiung CA, et al. Prenatal exposure to phthalate ester and pubertal development in a birth cohort in central Taiwan: a 12-year follow-up study. Environ Res. 2015;136(0):324–30.

    Article  CAS  PubMed  Google Scholar 

  74. Watkins DJ, Sánchez BN, Téllez-Rojo MM, Lee JM, Mercado-García A, Blank-Goldenberg C, et al. Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls. Environ Res. 2017;159:143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Watkins DJ, Sánchez BN, Téllez-Rojo MM, Lee JM, Mercado-García A, Blank-Goldenberg C, et al. Impact of phthalate and BPA exposure during in utero windows of susceptibility on reproductive hormones and sexual maturation in peripubertal males. Environ Health. 2017;16(1):69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wolff MS, Teitelbaum SL, Pinney SM, Windham G, Liao L, Biro F, et al. Investigation of relationships between urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect. 2010;118(7):1039–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wolff MS, Teitelbaum SL, McGovern K, Windham GC, Pinney SM, Galvez M, et al. Phthalate exposure and pubertal development in a longitudinal study of US girls. Hum Reprod. 2014;29(7):1558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wolff MS, Pajak A, Pinney SM, Windham GC, Galvez M, Rybak M, et al. Associations of urinary phthalate and phenol biomarkers with menarche in a multiethnic cohort of young girls. Reprod Toxicol. 2017;67:56–64.

    Article  CAS  PubMed  Google Scholar 

  79. Mieritz MG, Frederiksen H, Sørensen K, Aksglaede L, Mouritsen A, Hagen CP, et al. Urinary phthalate excretion in 555 healthy Danish boys with and without pubertal gynaecomastia. Int J Androl. 2012;35(3):227–35.

    Article  CAS  PubMed  Google Scholar 

  80. Frederiksen H, Sørensen K, Mouritsen A, Aksglaede L, Hagen CP, Petersen JH, et al. High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl. 2012;35(3):216–26.

    Article  CAS  PubMed  Google Scholar 

  81. Mouritsen A, Frederiksen H, Sørensen K, Aksglaede L, Hagen C, Skakkebaek NE, et al. Urinary phthalates from 168 girls and boys measured twice a year during a 5-year period: associations with adrenal androgen levels and puberty. J Clin Endocrinol Metab. 2013;98(9):3755–64.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Y, Cao Y, Shi H, Jiang X, Zhao Y, Fang X, et al. Could exposure to phthalates speed up or delay pubertal onset and development? A 1.5-year follow-up of a school-based population. Environ Int. 2015;83:41–9.

    Article  CAS  PubMed  Google Scholar 

  83. Leonardi A, Cofini M, Rigante D, Lucchetti L, Cipolla C, Penta L, et al. The effect of bisphenol A on puberty: a critical review of the medical literature. Int J Environ Res Public Health. 2017;14(9):E1044.

    Article  PubMed  CAS  Google Scholar 

  84. Bonde JP, Ernst E, Jensen TK, Hjollund NH, Kolstad H, Henriksen TB, et al. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet. 1998;352(9135):1172–7.

    Article  CAS  PubMed  Google Scholar 

  85. Jensen TK, Jacobsen R, Christensen K, Nielsen NC, Bostofte E. Good semen quality and life expectancy: a cohort study of 43,277 men. Am J Epidemiol. 2009;170(5):559–65.

    Article  PubMed  Google Scholar 

  86. Eisenberg ML, Li S, Behr B, Cullen MR, Galusha D, Lamb DJ, et al. Semen quality, infertility and mortality in the USA. Hum Reprod. 2014;29(7):1567–74.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305(6854):609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update. 2017;23(6):646–59.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vested A, Giwercman A, Bonde JP, Toft G. Persistent organic pollutants and male reproductive health. Asian J Androl. 2014;16(1):71–80.

    Article  PubMed  CAS  Google Scholar 

  90. Petersen MS, Halling J, Jorgensen N, Nielsen F, Grandjean P, Jensen TK, et al. Reproductive function in a population of young faroese men with elevated exposure to polychlorinated biphenyls (PCBs) and perfluorinated alkylate substances (PFAS). Int J Environ Res Public Health. 2018;15(9):E1880.

    Article  PubMed  CAS  Google Scholar 

  91. Petersen MS, Halling J, Weihe P, Jensen TK, Grandjean P, Nielsen F, et al. Spermatogenic capacity in fertile men with elevated exposure to polychlorinated biphenyls. Environ Res. 2015;138:345–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aneck-Hahn NH, Schulenburg GW, Bornman MS, Farias P, de Jager C. Impaired semen quality associated with environmental DDT exposure in young men living in a malaria area in the Limpopo Province, South Africa. J Androl. 2007;28(3):423–34.

    Article  CAS  PubMed  Google Scholar 

  93. De Jager C, Farias P, Barraza-Villarreal A, Avila MH, Ayotte P, Dewailly E, et al. Reduced seminal parameters associated with environmental DDT exposure and p,p′-DDE concentrations in men in Chiapas, Mexico: a cross-sectional study. J Androl. 2006;27(1):16–27.

    Article  PubMed  CAS  Google Scholar 

  94. Mocarelli P, Gerthoux PM, Needham LL, Patterson DG Jr, Limonta G, Falbo R, et al. Perinatal exposure to low doses of dioxin can permanently impair human semen quality. Environ Health Perspect. 2011;119(5):713–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang YX, You L, Zeng Q, Sun Y, Huang YH, Wang C, et al. Phthalate exposure and human semen quality: results from an infertility clinic in China. Environ Res. 2015;142:1–9.

    Article  CAS  PubMed  Google Scholar 

  96. Wang YX, Zeng Q, Sun Y, Yang P, Wang P, Li J, et al. Semen phthalate metabolites, semen quality parameters and serum reproductive hormones: a cross-sectional study in China. Environ Pollut. 2016;211:173–82.

    Article  CAS  PubMed  Google Scholar 

  97. Wang YX, Zhou B, Chen YJ, Liu C, Huang LL, Liao JQ, et al. Thyroid function, phthalate exposure and semen quality: exploring associations and mediation effects in reproductive-aged men. Environ Int. 2018;116:278–85.

    Article  CAS  PubMed  Google Scholar 

  98. Radke EG, Braun JM, Meeker JD, Cooper GS. Phthalate exposure and male reproductive outcomes: a systematic review of the human epidemiological evidence. Environ Int. 2018;121(Pt 1):764–93.

    Article  CAS  PubMed  Google Scholar 

  99. Axelsson J, Rylander L, Rignell-Hydbom A, Lindh CH, Jonsson BA, Giwercman A. Prenatal phthalate exposure and reproductive function in young men. Environ Res. 2015;138:264–70.

    Article  CAS  PubMed  Google Scholar 

  100. Hart RJ, Frederiksen H, Doherty DA, Keelan JA, Skakkebaek NE, Minaee NS, et al. The possible impact of antenatal exposure to ubiquitous phthalates upon male reproductive function at 20 years of age. Front Endocrinol. 2018;9:288.

    Article  Google Scholar 

  101. Bach CC, Vested A, Jørgensen KT, Bonde JPE, Henriksen TB, Toft G. Perfluoroalkyl and polyfluoroalkyl substances and measures of human fertility: a systematic review. Crit Rev Toxicol. 2016;46(9):735–55.

    Article  CAS  PubMed  Google Scholar 

  102. Joensen UN, Bossi R, Leffers H, Jensen AA, Skakkebaek NE, Jorgensen N. Do perfluoroalkyl compounds impair human semen quality? Environ Health Perspect. 2009;117(6):923–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Toft G, Jonsson BA, Lindh CH, Giwercman A, Spano M, Heederik D, et al. Exposure to perfluorinated compounds and human semen quality in Arctic and European populations. Hum Reprod. 2012;27(8):2532–40.

    Article  CAS  PubMed  Google Scholar 

  104. Louis GM, Chen Z, Schisterman EF, Kim S, Sweeney AM, Sundaram R, et al. Perfluorochemicals and human semen quality: the LIFE study. Environ Health Perspect. 2015;123(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  105. Den Hond E, Tournaye H, De Sutter P, Ombelet W, Baeyens W, Covaci A, et al. Human exposure to endocrine disrupting chemicals and fertility: a case-control study in male subfertility patients. Environ Int. 2015;84:154–60.

    Article  CAS  Google Scholar 

  106. Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Kristensen SL, Halldorsson TI, et al. Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and reproductive hormones in adult men. Environ Health Perspect. 2013;121(4):453–8.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Minguez-Alarcon L, Hauser R, Gaskins AJ. Effects of bisphenol A on male and couple reproductive health: a review. Fertil Steril. 2016;106(4):864–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li S, Dai J, Zhang L, Zhang J, Zhang Z, Chen B. An association of elevated serum prolactin with phthalate exposure in adult men. Biomed Environ Sci. 2011;24(1):31–9.

    CAS  PubMed  Google Scholar 

  109. Lassen TH, Jensen TK, Petersen JH, Joensen UN, Main KM, Skakkebæk NE, Juul A, Jørgensen N, Andersson AM. Elevated urinary bisphenol A excretion associated with higher serum testosterone, estradiol and LH and lower percentage progressive motile sperm in young men. Environ Health Perspect. 2013;122(5):478–84.

    Article  CAS  Google Scholar 

  110. Kobayashi S, Sata F, Sasaki S, Ban S, Miyashita C, Okada E, et al. Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women. Toxicol Lett. 2013;219(3):269–78.

    Article  CAS  PubMed  Google Scholar 

  111. Humblet O, Korrick SA, Williams PL, Sergeyev O, Emond C, Birnbaum LS, et al. Genetic modification of the association between peripubertal dioxin exposure and pubertal onset in a cohort of Russian boys. Environ Health Perspect. 2013;121(1):111–7.

    Article  PubMed  CAS  Google Scholar 

  112. Miyashita C, Araki A, Mitsui T, Itoh S, Goudarzi H, Sasaki S, et al. Sex-related differences in the associations between maternal dioxin-like compounds and reproductive and steroid hormones in cord blood: The Hokkaido Study. Environ Int. 2018;117:175–85.

    Article  CAS  PubMed  Google Scholar 

  113. Grandjean P, Grønlund C, Kjær IM, Jensen TK, Sørensen N, Andersson A-M, et al. Reproductive hormone profile and pubertal development in 14-year-old boys prenatally exposed to polychlorinated biphenyls. Reprod Toxicol. 2012;34(4):498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kolatorova L, Vitku J, Hampl R, Adamcova K, Skodova T, Simkova M, et al. Exposure to bisphenols and parabens during pregnancy and relations to steroid changes. Environ Res. 2018;163:115–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Kold Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araki, A., Jensen, T.K. (2020). Endocrine-Distributing Chemicals and Reproductive Function. In: Kishi, R., Grandjean, P. (eds) Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-0520-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0520-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0519-5

  • Online ISBN: 978-981-15-0520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics