Skip to main content

Nanoparticles: A Boon to Target Mitochondrial Diseases

  • Chapter
  • First Online:
Nanoparticles and their Biomedical Applications

Abstract

Mitochondrial medicine is a rapidly growing area in biomedical research. Armed with the much needed tools for probing, accessing, and manipulating subcellular organelles, nanoscience has leaped into the realm of mitochondrial research. It has become increasingly evident that mitochondrial dysfunction causes a variety of human disorders, including neurodegenerative and neuromuscular diseases, obesity and diabetes, ischemia–reperfusion injury, cancer and inherited mitochondrial diseases.

Mitochondria are a major source of superoxide anion and other free radicals. This in situ-generated reactive oxygen species alters the function of many metabolic enzymes in the mitochondrial matrix, as well as those comprising the electron transport chain. Antioxidant supplements and drugs are generally believed to scavenge toxic free radicals from mitochondrial environment. Because of the complex nature of the mitochondrion, different strategies may be required for mitochondrial uptake of different pharmacotherapeutic agents.

A variety of small-molecule drugs have been investigated as potential therapeutic agents for mitochondrial diseases, but with obvious limitations. This chapter deals with effective nanoparticulated drug delivery system for targeting biologically active compounds to brain and/or liver mitochondria in the pathogenesis of mitochondrial diseases. The aim is to evaluate the efficacy of vesiculated drug formulations (liposomes, nanoparticles) against oxidative-damage-evoked mitochondrial damage and their possible protection mechanism in preclinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson S, Bankier AT, Barrell BG, de-Bruijn MHL, Coulson AR et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):427–465

    Article  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  Google Scholar 

  • Bargiela D, Shanmugarajah P, Lo C, Blakely EL, Taylor RW, Horvath R, Wharton S, Chinnery PF, Hadjivassiliou M (2015) Mitochondrial pathology in progressive cerebellar ataxia. Cerebellum Ataxias 2:16. https://doi.org/10.1186/s40673-015-0035-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Batrakova EV, Li S, Reynolds AD, Mosley RL, Bronich TK, Kabanov AV et al (2007) A macrophage-nanozyme delivery system for Parkinson’s disease. Bioconjug Chem 18:1498–1506

    Article  CAS  Google Scholar 

  • Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3- nitropropionic acid. J Neurosci 13:4181–4192

    Article  CAS  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19

    Article  CAS  Google Scholar 

  • Delatycki MB, Williamson R, Forrest SM (2000) Friedreich ataxia: an overview. J Med Genet 37:1–8

    Article  CAS  Google Scholar 

  • Ghosh S, Das N, Mandal AK, Dungdung SR, Sarkar S (2010) Mannosylated liposomal cytidine 5′ diphosphocholine prevent age related global moderate cerebral ischemia reperfusion induced mitochondrial cytochrome c release in aged rat brain. Neuroscience 171(4):1287–1299

    Article  CAS  Google Scholar 

  • Ghosh D, Choudhury ST, Ghosh S, Mandal AK (2012) Nanocapsulated curcumin: oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chem Biol Interact 195(3):206–214

    Article  CAS  Google Scholar 

  • Ghosh S, Dungdung SR, Choudhury ST, Chakraborty S, Das N (2013) Mitochondria protection with ginkgolide B-loaded polymeric nanocapsules prevents diethylnitrosamine-induced hepatocarcinoma in rats. Nanomedicine 9(3):441–456

    Article  Google Scholar 

  • Ghosh S, Sarkar S, Choudhury ST, Ghosh T, Das N (2017) Triphenylphosphonium coated nano-quercetin for oral delivery: neuroprotective effects in attenuating age related global moderate cerebral ischemia reperfusion injury in rats. Nanomedicine 13(8):2439–2450

    Article  CAS  Google Scholar 

  • Hayyan M, Hashim MA, AlNashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116:3029–3085. https://doi.org/10.1021/acs.chemrev.5b00407

    Article  CAS  PubMed  Google Scholar 

  • Henze K, Martin W (2003) Evolutionary biology: essence of mitochondria. Nature 426(6963):127–128

    Article  CAS  Google Scholar 

  • Joo J-C, Do Seol M, Yoon JW, Lee YS, Kim D-K, Choi YH, SeongAhn H, Cho WH (2013) A case of myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MEALS) syndrome with intracardiac thrombus. Korean Circ J 43(3):204–206. https://doi.org/10.4070/kcj.2013.43.3.204

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18(1):44–51

    Article  CAS  Google Scholar 

  • Lin Y, Pan Y, Shi Y, Huang X, Jia N, Jiang JY (2012) Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain. Nanotechnology 23:165101

    Article  Google Scholar 

  • Malkki H (2016) Mitochondrial dysfunction could precipitate motor neuron loss in spinal muscular atrophy. Nat Rev Neurol 12:556

    Article  CAS  Google Scholar 

  • Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochimica et BiophysicaActa 1763(5–6):542–548

    Article  CAS  Google Scholar 

  • Martins EA, Meneghini R (1994) Cellular DNA damage by hydrogen peroxide is attenuated by hypotonicity. Biochem J 299(Pt 1):137–140. https://doi.org/10.1042/bj2990137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMillin JB, Dowhan W (2002) Cardiolipin and apoptosis. Biochim Et Biophys Acta 1585(2–3):97–107

    Article  CAS  Google Scholar 

  • Mello Filho AC, Hoffmann ME, Meneghini R (1984) Cell killing and DNA damage by hydrogen peroxide are mediated by intracellular iron. Biochem J 218:273–275

    Article  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  Google Scholar 

  • Niyazov DM, Kahler SG, Frye RE (2016) Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment. Mol Syndromol 7(3):122–137. https://doi.org/10.1159/000446586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh S (2016) Kearns–Sayre syndrome, mitochondrial case studies. Ann Neurol:43–47. https://doi.org/10.1016/B978-0-12-800877-5.00005-X

    Chapter  Google Scholar 

  • Qin J et al (2014) Enhanced antidepressant-like effects of the macromolecule trefoil factor 3 by loading into negatively charged liposomes. Int J Nanomedicine 9:5247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Yang L, Sheng X, Sa Z, Huang T, Li Q, Gao K, Chen Q, Ma J, Shen H (2018) Antitumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma in vivo. Oncol Lett 15(5):6137–6146

    PubMed  PubMed Central  Google Scholar 

  • Reddy MK, Labhasetwar V (2009) Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J 23:1384–1395

    Article  CAS  Google Scholar 

  • Sánchez-López E, Ettcheto M, Egea MA, Espina M, Cano A, Calpena AC, Camins A, Carmona N, Silva AM, Souto EB, García ML (2018) Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization. J Nanobiotechnol 16(1):32. https://doi.org/10.1186/s12951-018-0356-z

    Article  CAS  Google Scholar 

  • Saneto RP, Cohen BH, Copeland WC, Naviaux RK (2013) Alpers-Huttenlocher syndrome: a review. Pediatr Neurol 48(3):167–178. https://doi.org/10.1016/j.pediatrneurol.2012.09.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Scialabba C, Rocco F, Licciardi M, Pitarresi G, Ceruti M, Giammona G (2012) Amphiphilic polyaspartamide copolymer-based micelles for rivastigmine delivery to neuronal cells. Drug Deliv 19(6):307–316. https://doi.org/10.3109/10717544.2012.714813

    Article  CAS  PubMed  Google Scholar 

  • Singhal A, Morris VB, Labhasetwar V, Ghorpade A (2013) Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death Dis 4:e903

    Article  CAS  Google Scholar 

  • Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52. https://doi.org/10.1196/annals.1427.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Li N, Zhang W, Zhao Z, Mou Z, Huang D, Liu J, Wang W (2016) Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf B Biointerfaces 148:116–129. https://doi.org/10.1016/j.colsurfb.2016.08.052

    Article  CAS  PubMed  Google Scholar 

  • Tang P et al (2018) Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int J Pharm 545(1–2):74–83

    Article  CAS  Google Scholar 

  • Thomas C, Mackey MM, Diaz AA, Cox DP (2009) Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep 14(3):102–108. https://doi.org/10.1179/135100009X392566

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Pan R, Zhang B, Qu M, Lian B, Jiang H, Gao Z, Wu J (2019) Liver-targeted combination therapy basing on Glycyrrhizic acid-modified DSPE-PEGPEI nanoparticles for co-delivery of doxorubicin and Bcl-2 siRNA. Front Pharmacol 10:4. https://doi.org/10.3389/fphar.2019.00004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valko M (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  • Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL (2010) Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials 31(5):908–915. https://doi.org/10.1016/j.biomaterials.2009.09.104

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Wang J, Pu C, Quio L, Jiang C (2015) Wilson’s disease: a comprehensive review of the molecular mechanisms. Int J Mol Sci 16(3):6419–6431

    Article  CAS  Google Scholar 

  • Zhang J, Zhou X, Yu Q, Yang L, Sun D, Zhou Y, Liu J (2014) Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. ACS Appl Mater Interfaces 6(11):8475–8487. https://doi.org/10.1021/am501341u

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell permeable peptide antioxidants targeted to inner mitochondria membrane inhibit mitochondrial swelling, oxidative cell death and reperfusion injury. J Biol Chem 279(33):34682–34690

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Chatterjee, S. (2020). Nanoparticles: A Boon to Target Mitochondrial Diseases. In: Shukla, A. (eds) Nanoparticles and their Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0391-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0391-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0390-0

  • Online ISBN: 978-981-15-0391-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics