Skip to main content

Thermo-economic Study of Phase Change Materials (PCMs) for Thermal Energy Storage

  • Conference paper
  • First Online:
Advances in Mechanical Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Thermal energy storage in the form of latent heat using phase change materials (PCMs) provides the advantages of high energy storage density and isothermal storage and retrieval behaviour. The thermal properties of PCMs are important in deciding the space requirement, heat exchanger design and its applicability with a given thermal energy source. Another important factor is the price of PCM, which limits certain materials from being used due to the high costs involved. Hence, a comprehensive evaluation of the thermal and economic aspects of PCMs would serve in making proper choice of energy storage material. This paper presents thermo-economic analysis of PCMs and estimations on energy storage densities and the cost of storage per unit of thermal energy stored. It was observed that NaOH and CaCl2.6H2O having thermal capacity of 106.85 and 100.53 kWh/m3 and low storage cost of 1.76 and 0.69 $/MJ, respectively, make them a good choice for energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eslami, M., Bahrami, M.A.: Sensible and latent thermal energy storage with constructal fins. Int. J. Hydrog. Energy 42(28), 17681–17691 (2017)

    Article  Google Scholar 

  2. Reddy, K.S., Mudgal, V., Mallick, T.K.: Review of latent heat thermal energy storage for improved material stability and effective load management. J. Energy Storage 15, 205–227 (2018)

    Article  Google Scholar 

  3. Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009)

    Article  Google Scholar 

  4. Bhatt, V.D., Gohil, K., Mishra, A.: Thermal energy storage capacity of some phase changing materials and ionic liquids. Int. J. Chem. Tech. Res. 2(3), 1771–1779 (2010)

    Google Scholar 

  5. Li, G.: Sensible heat thermal storage energy and energy performance evaluations. Renew. Sustain. Energy Rev. 53, 897–923 (2016)

    Google Scholar 

  6. Feldman, D., Shapiro, M.M., Banu, D.: Organic phase change materials for thermal energy storage. Solar Energy Mater. 13, 1–10 (1986)

    Article  Google Scholar 

  7. Chandrashekara, M., Yadav, A.: An experimental study of the effect of exfoliated graphite solar coating with a sensible heat storage and Scheffler dish for desalination. Appl. Therm. Eng. 123, 111–122 (2017)

    Article  Google Scholar 

  8. EL-Kaddadi, L., Asbik, M., Zari, N., Zeghmati, B.: Experimental study of the sensible heat storage in the water/TiO2 nanofluid enclosed in an annular space. Appl. Therm. Eng. 122, 673-684 (2017)

    Google Scholar 

  9. Patel, P., Kumar, R.: Comparative performance evaluation of modified passive solar still using sensible heat storage material and increased frontal height. Procedia Technol. 23, 431–438 (2016)

    Article  Google Scholar 

  10. Khare, S., Dell’Amico, M., Knight, C., McGarry, S.: Selection of materials for high temperature sensible energy storage. Sol. Energy Mater. Sol. Cells 115, 114–122 (2013)

    Article  Google Scholar 

  11. Velraj, R.: Sensible heat storage for solar heating and cooling systems. In: Wang, R.Z., Ge, T.S. (eds.) Advances in Solar Heating and Cooling, pp. 399–428. Woodhead Publishing (2016). https://doi.org/10.1016/B978-0-08-100301-5.00015-1

  12. Beltrán, J.I., Wang, J., Montero-Chacón, F., Cui, Y.: Thermodynamic modeling of nitrate materials for hybrid thermal energy storage: using latent and sensible mechanisms. Sol. Energy 155, 154–166 (2017)

    Article  Google Scholar 

  13. Deshmukh, H.S., Thombre, S.D.: Solar distillation with single basin solar still using sensible heat storage materials. Desalination 410, 91–98 (2017)

    Article  Google Scholar 

  14. Fernandez, A.I., Martínez, M., Segarra, M., Martorell, I., Cabeza, L.F.: Selection of materials with potential in sensible thermal energy storage. Sol. Energy Mater. Sol. Cells 94, 1723–1729 (2010)

    Google Scholar 

  15. Valkenburg, M.E.V., Vaughn, R.L., Williams, M., Wilkes, J.S.: Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 425, 181–188 (2005)

    Article  Google Scholar 

  16. Zauner, C., Hengstberger, F., Mörzinger, B., Hofmann, R., Walter, H.: Experimental characterization and simulation of a hybrid sensible-latent heat storage. Appl. Energy 189, 506–519 (2017)

    Article  Google Scholar 

  17. Hamed, M., Fallah, A., Brahim, A.B.: Numerical analysis of an integrated storage solar heater. Int. J. Hydrog. Energy 42(13), 8721–8732 (2016)

    Article  Google Scholar 

  18. Khedache, S., Makhlouf, S., Djefel, D., Lefebvre, G., Royon, L.: Preparation and thermal characterization of composite “Paraffin/Red Brick” as a novel form-stable of phase change material for thermal energy storage. Int. J. Hydrog. Energy 40, 13771–13776 (2015)

    Article  Google Scholar 

  19. Djefel, D., Makhlouf, S., Khedache, S., Lefebvre, G., Royon, L.: Preparation and characterization of stearic acid/olive pomace powder composite as form-stable phase change material. Int. J. Hydrog. Energy 40, 13764–13770 (2017)

    Article  Google Scholar 

  20. Bhouri, M., Burger, I., Linder, M.: Feasibility analysis of a novel solid-state H2 storage reactor concept based on thermochemical heat storage: MgH2 and Mg(OH)2 as reference materials. Int. J. Hydrog. Energy 41, 20549–20561 (2016)

    Article  Google Scholar 

  21. Odenthal, C., Steinmann, W.D., Eck, M.: The cell flux concept as an alternative solution for sensible heat storage. Energy Procedia 69, 957–967 (2015)

    Article  Google Scholar 

  22. Arjun, D., Hayavadana, J.: Thermal energy storage materials (PCMs) for textile applications. J. Text. E Appar. Technol. Manag. 8(4), 1–11 (2014)

    Google Scholar 

  23. Foong, C.W., Hustad, J.E., Lovseth, J., Nydal, O.J.: Numerical study of a high temperature latent heat storage (200–3000C) using eutectic nitrate salt of sodium nitrate and potassium nitrate. In: Proceedings of the COMSOL Conference 2010 Paris (2010). https://www.comsol.co.in/paper/numerical-study-of-a-high-temperature-latent-heat-storage-200-300-sup-o-sup-c-us-8912

  24. Li, Y.T., Yan, D.J., GUO, Y.F., Wang, S.Q., Deng, T.L.: Studies on magnesium chloride hexahydrate as phase change materials. Appl. Mech. Mater. 71–78, 2598-2601 (2011). https://doi.org/10.4028/www.scientific.net/AMM.71-78.2598

  25. Kamimoto, M., Abe, Y., Sawata, S., Tani, T., Ozawa, T.: Latent thermal storage unit using form-stable high density polyethylene; Part I: performance of the storage unit. J. Sol. Energy Eng. 108, 282–289 (1986)

    Article  Google Scholar 

  26. Lane, G.A.: Low temperature heat storage with phase change materials. Int. J. Ambient Energy 1(3), 155–168 (1980)

    Article  Google Scholar 

  27. Telkes, M.: Thermal energy storage in salt hydrates. Solar Energy Mater. 2, 381–393 (1980)

    Article  Google Scholar 

  28. Nagano, K., Mochida, T., Takeda, S., Domanski, R., Rebow, M.: Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl. Therm. Eng. 23, 229–241 (2003)

    Article  Google Scholar 

  29. Schroder, J.: Thermal energy storage and control. J. Eng. Ind 97(3), 893–896 (1975). https://doi.org/10.1115/1.3438700

    Article  Google Scholar 

  30. Abhat, A.: Low temperature latent heat thermal energy storage: heat storage materials. Sol. Energy 30(4), 313–332 (1983)

    Article  Google Scholar 

  31. Dincer, I., Rosen, M.A.: Thermal Energy Storage: Systems and Applications, 2nd edn. Wiley, UK (2011)

    Google Scholar 

  32. Graeter, F., Rheinlander, J.: Thermische Energiespeicherung mit Phasenwechsel im Bereich von 150 bis 400°C. In: Proceedings of the Warmespeicherung Workshop, Cologne (Germany) (2001)

    Google Scholar 

  33. Bauer, T., Liang, D., Kroner, U., Tamme, R.: Sodium nitrate for high temperature latent heat storage. In: 11th International Conference on Thermal Energy Storage—Effstock 14–17 June 2009 in Stockholm, Sweden (2009). https://www.semanticscholar.org/paper/Sodium-Nitrate-for-High-Temperature-Latent-Heat-Bauer-Laing/d9865870cf3e4c1105b10c11a6b2f504d6f363b5

  34. Nkhonjera, L., Bello-Ochende, T., John, G., King’ondu, C.K.: A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage. Renew. Sustain. Energy Rev. 75, 157–167 (2017)

    Google Scholar 

  35. Gabisa, E.W., Aman, A.: characterization and experimental investigation of NaNO3:KNO3 as solar thermal energy storage for potential cooking application. J. Solar Energy 2016, Article ID 2405094 (2016). http://dx.doi.org/10.1155/2016/2405094

  36. Heckenkamp, J., Baumann, H.: Latentwearmespeicher. Sonderdruck aus Nachrichten 11, 1075–1081 (1997)

    Google Scholar 

  37. Dinker, A., Agarwal, M., Agarwal, G.D.: Heat storage materials, geometry and applications: a review. J. Energy Inst. 90(1), 1–11 (2017)

    Article  Google Scholar 

  38. Alibaba. www.alibaba.com. Accessed 03 Jan 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, L., Sinha, A., Gupta, R. (2020). Thermo-economic Study of Phase Change Materials (PCMs) for Thermal Energy Storage. In: Biswal, B., Sarkar, B., Mahanta, P. (eds) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-0124-1_108

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0124-1_108

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0123-4

  • Online ISBN: 978-981-15-0124-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics