Skip to main content

Growth and Morphological Changes of Agronomic Crops Under Abiotic Stress

  • Chapter
  • First Online:
Book cover Agronomic Crops

Abstract

The escalating worldwide need for agricultural products accounts for twofold increase in crop yield by 2050. The agronomic crops especially wheat, maize, rice, barley, sugarcane, etc. contribute greatly to human food. The various environmental conditions impact the yield of agronomic crops globally. Complicating the problem, abiotic stresses especially temperature, heavy metal, drought, water, and salt stress induce toxicity in agronomic crops. Exposure to different abiotic stresses severely affects growth, morphology, productivity, and performance of crops all through the growing period. Further, increased generation of reactive oxygen species under stressful conditions might be linked to the decreased yield and development of agronomic crops. This chapter discusses an overview on the types of abiotic stress in crop plants and their effect on growth and morphological parameters. Additionally, inherent tolerance mechanisms adapted by agronomic crops to combat abiotic stress are also discussed briefly in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

CFC:

chlorofluorocarbon

CH4 :

methane

CO2 :

carbon dioxide

GPX:

guaiacol peroxidase

GR:

glutathione reductase

H2O2 :

hydrogen peroxide

MDA:

malondialdehyde

NaCl:

sodium chloride

O2 :

oxygen

O2 •− :

superoxide radical

OH :

hydroxyl radical

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Abbas SM (2012) Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. J Stress Physiol Biochem 8:268–286

    Google Scholar 

  • Aghaee A, Moradi F, Zare-Maivan H, Zarinkamar F, Irandoost HP, Sharifi P (2011) Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. Afr J Biotechnol 10:7617–7621

    Google Scholar 

  • Ahmad I, Akhtar MJ, Zahir ZA, Jamil A (2012) Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak J Bot 44:1569–1574

    Google Scholar 

  • Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9:43–50

    Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7:73–81

    Article  CAS  Google Scholar 

  • Amjad M, Akhtar J, Anwar-ul-Haq M, Yang A, Akhtar SS, Jacobsen SE (2014) Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci Hortic 172:109–116

    Article  CAS  Google Scholar 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Eyshi Rezaei E, Ruane AC, Semenov MA, Shcherbak I, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn PJ, Waha K, Wang E, Wallach D, Wolf J, Zhao Z, Zhu Y (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147

    Article  Google Scholar 

  • Ayaz FA, Kadioglu A (1997) Effects of Metals Zn, Cd, Cu and Hg on the soluble protein bands of germinating Lens esculenta L. seeds. Turk J Bot 21:85–88

    Google Scholar 

  • Bakht J, Shafi M, Jamal Y, Sher H (2011) Response of maize (Zea mays L.) to seed priming with NaCl and salinity stress. Span J Agric Res 9:252–261

    Article  Google Scholar 

  • Barlow KM, Christy BP, O’Leary GJ, Riffkin PA, Nuttall JG (2015) Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crop Res 171:109–119

    Article  Google Scholar 

  • Cannell RQ, Belford RK, Gales K, Dennis CW, Prew RD (1980) Effects of waterlogging at different stages of development on the growth and yield of winter wheat. J Sci Food Agric 31:117–132

    Article  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Gao X, Li S, Shi M, Javeed H, Jing X, Yang G, He G (2010) Proteomic analysis of soybean [Glycine max (L.) Meer.] seeds during imbibition at chilling temperature. Mol Breed 26:1–17

    Article  CAS  Google Scholar 

  • Dickin E, Wright D (2008) The effects of winter waterlogging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.). Eur J Agron 28:234–244

    Article  Google Scholar 

  • Efeoğlu B, Ekmekci Y, Cicek N (2009) Physiological responses of three maize cultivars to drought stress and recovery. S Afr J Bot 75:34–42

    Article  Google Scholar 

  • FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service, Rome. http://www.fao.org/ag/AGL/agll/spush

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Ghani A (2010) Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zeamays L.). Iran J Toxicol 4:325–334

    Google Scholar 

  • Grzesiak S, Hura T, Grzesiak MT, Pieńkowski S (1999) The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance. Acta Physiol Plant 21:305–315

    Article  Google Scholar 

  • Harris D, Tripathi RS, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: Pandey S, Mortimer M, Wade L, Tuong TP, Lopes K, Hardy B (eds) Direct seeding: research strategies and opportunities. International Research Institute, Manila, pp 231–240

    Google Scholar 

  • Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293–1302

    Article  CAS  PubMed  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Article  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    Article  CAS  Google Scholar 

  • Hussain S, Khaliq A, Matloob A, Wahid MA, Afzal I (2013) Germination and growth response of three wheat cultivars to NaCl salinity. Soil Environ 32:36–43

    CAS  Google Scholar 

  • Hütsch BW, Jung S, Schubert S (2015) Comparison of salt and drought-stress effects on maize growth and yield formation with regard to acid invertase activity in the kernels. J Agron Crop Sci 201:353–367

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the scientific basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Kamara AY, Menkir A, Badu-Apraku B, Ibikunle O (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes. J Agric Sci 141:43–50

    Article  Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81–89

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:1–10

    Article  CAS  Google Scholar 

  • Linkemer G, Board JE, Musgrave ME (1998) Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci 38:1576–1584

    Article  CAS  PubMed  Google Scholar 

  • Luan H, Guo B, Pan Y, Lv C, Shen H, Xu R (2018) Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes. J Plant Growth Regul 85:399–409

    Article  CAS  Google Scholar 

  • Mahmood T, Islam KR, Muhammad S (2007) Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak J Bot 39:451–462

    Google Scholar 

  • Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250:3–19

    Article  CAS  PubMed  Google Scholar 

  • Mostajeran A, Rahimi-Eichi V (2009) Effects of drought stress on growth and yield of rice (Oryza sativa L.) cultivars and accumulation of proline and soluble sugars in sheath and blades of their different ages leaves. Agric Environ Sci 5:264–272

    CAS  Google Scholar 

  • Mustafa Z, Pervez MA, Ayyub CM, Matloob A, Khaliq A, Hussain S, Ihsan MZ, Butt M (2014) Morpho-physiological characterization of chilli genotypes under NaCl salinity. Soil Environ 33:133–141

    Google Scholar 

  • Nemati I, Moradi F, Gholizadeh S, Esmaeili MA, Bihamta MR (2011) The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) seedlings. Plant Soil Environ 57:26–33

    Article  CAS  Google Scholar 

  • Pang J, Zhou M, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agric Res 55:895–906

    Article  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:1–16

    Article  Google Scholar 

  • Plaut Z, Federman E (1991) Acclimation of CO2 assimilation in cotton leaves to water stress and salinity. Plant Physiol 97:515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad PVV, Pisipati SR, Ristic Z, Bukovnik U, Fritz AK (2008a) Impact of nighttime temperature on physiology and growth of spring wheat. Crop Sci 48:2372–2380

    Article  Google Scholar 

  • Prasad PVV, Staggenborg SA, Ristic Z (2008b) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Ahuja LR, Reddy VR, Saseendran SA, Yu Q (eds) Response of crops to limited water: understanding and modeling water stress effects on plant growth processes. American Society of Agronomy, pp 301–355

    Google Scholar 

  • Rawson HM (1986) Gas exchange and growth in wheat and barley grown in salt. Funct Plant Biol 13:475–489

    Article  Google Scholar 

  • Ren B, Zhang J, Li X, Fan X, Dong S, Liu P, Zhao B (2014) Effects of waterlogging on the yield and growth of summer maize under field conditions. Can J Plant Sci 94:23–31

    Article  Google Scholar 

  • Rucker KS, Kvien CK, Holbrook CC, Hook JE (1995) Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci 24:14–18

    Article  Google Scholar 

  • Saleem M (2003) Response of durum and bread wheat genotypes to drought stress: biomass and yield components. Asian J Plant Sci 2:290–293

    Article  Google Scholar 

  • Sallam A, Scott HD (1987) Effects of prolonged flooding on soybeans during early vegetative growth. Soil Sci 144:61–66

    Article  Google Scholar 

  • Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149

    Article  Google Scholar 

  • Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2007) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132:209–219

    Google Scholar 

  • Savicka M, Škute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56:26–33

    Article  CAS  Google Scholar 

  • Schauberger B, Archontoulis S, Arneth A, Balkovic J, Ciais P, Deryng D, Elliott J, Folberth C, Khabarov N, Müller C, Pugh TAM, Rolinski S, Schaphoff S, Schmid E, Wang X, Schlenker W, Frieler K (2017) Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun 8:1–9

    Article  CAS  Google Scholar 

  • Shah F, Huang J, Cui K, Nie L, Shah T, Chen C, Wang K (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agric Sci 149:545–556

    Article  CAS  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. In: Hakeem KR (ed) Crop production and global environmental issues. Springer, Cham, pp 1–25

    Google Scholar 

  • Shibli RA, Kushad M, Yousef GG, Lila MA (2007) Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regul 51:159–169

    Article  CAS  Google Scholar 

  • Siddique MRB, Hamid AIMS, Islam MS (2000) Drought stress effects on water relations of wheat. Bot Bull Acad Sinica 41:35–39

    Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2016) Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiol Biochem 105:290–296

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2017a) Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicol Environ Saf 135:209–215

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2017b) Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils. Chemosphere 182:129–136

    Article  CAS  PubMed  Google Scholar 

  • Smethurst CF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270:31–45

    Article  CAS  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl–ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Sanjib P (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Zhang H, Pan X, Chen X, Zhang Z, Lu X, Huang R (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20:857–866

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Frei M (2011) Stressed food–the impact of abiotic environmental stresses on crop quality. Agric Ecosyst Environ 141:271–286

    Article  Google Scholar 

  • Wheeler TR, Craufurd PQ, Ellis RH, Porter JR, Prasad PV (2000) Temperature variability and the yield of annual crops. Agric Ecosyst Environ 82:159–167

    Article  Google Scholar 

  • Woznicki SA, Nejadhashemi AP, Parsinejad M (2015) Climate change and irrigation demand: uncertainty and adaptation. J Hydrol Reg Stud 3:247–264

    Article  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Article  Google Scholar 

  • Yoshida S (1978) Tropical climate and its influence on rice, IRRI research paper series 20. IRRI, Los Baños

    Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. IRRI, Los Baños

    Google Scholar 

  • Zhang M, Duan L, Zhai Z, Li J, Tian X, Wang B, He Z, Li Z (2004) Effects of plant growth regulators on water deficit-induced yield loss in soybean. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia

    Google Scholar 

  • Zhang Y, Kong X, Dai J, Luo Z, Li Z, Lu H, Xu S, Tang W, Zhang D, Li W, Xin C, Dong H (2017) Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress. PLoS One 12:1–24

    Google Scholar 

  • Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand JL, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 114:9326–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bali, A.S., Sidhu, G.P.S. (2020). Growth and Morphological Changes of Agronomic Crops Under Abiotic Stress. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_1

Download citation

Publish with us

Policies and ethics