Skip to main content

If Truncated Wave Functions of Excited State Energy Saddle Points Are Computed as Energy Minima, Where Is the Saddle Point?

  • Chapter
  • First Online:
Theoretical Chemistry for Advanced Nanomaterials

Abstract

Theoretical computations tend to compute electronic properties of increasingly larger systems. To understand the properties, we should rather need small truncated but concise and comprehensible wave functions. For electronic processes, in particular charge transfer, which occur in excited states, we need both the energy and the wave function in order to draw and predict correct conclusions. But the excited states are saddle points in the Hilbert space, and, as shown here, the standard methods for excited states, based on the Hylleraas-Undheim and MacDonald (HUM) theorem, compute indeed the correct energy but may give misleadingly incorrect truncated wave functions, because they search for an energy minimum, not a saddle point (many functions can have the correct energy). Then, where is the saddle point? We shall see the use of a functional F n of the wave function that has a local minimum at the excited state saddle point, without using orthogonality to approximants of lower-lying states, provided these approximants are reasonable, even if they are crude. Therefore F n finds a correct, albeit small and concise, thus comprehensible truncated wave function, approximant of the desired excited state saddle point, allowing correct predictions for the electronic process. This could also lead to computational developments of more appropriate (to excited state) truncated basis sets. It is further shown that, via a correct approximant of the 1st excited state, we can improve the ground state. Finally it is shown that, in iterative computations, in cases of “root flipping” (which would deflect the computation), we can use F n to identify the flipped root. For all the above, demonstrations are given for excited states of He and Li. The grand apophthegm is that HUM finds an energy minimum which, only if the expansion is increased, can approach the excited state saddle point, whereas F n has local minimum at the saddle point, so it finds it independently of the size of the expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The computation is performed in 15 digit “double precision,” but the coexistence in the secular matrix of very large numbers with small ones reduces the accuracy to ∼ 6 digits

References

  1. E.A. Hylleraas, B. Undheim, Z. Phys. 65, 759 (1930); J.K.L. McDonald, Phys. Rev. 43, 830 (1933)

    Google Scholar 

  2. N.C. Bacalis, Z. Xiong, J. Zang, D. Karaoulanis, AIP Conference Proceedings, 1790 UNSP 020007 (2016) https://doi.org/10.1063/1.4968633; N.C. Bacalis, Z. Xiong, Z.X. Wang, Int. J. Quantum Chem (2017) (submitted)

  3. J. Golab, D. Yeager, P. Jørgensen, Chem. Phys. 93, 83 (1985)

    Article  CAS  Google Scholar 

  4. P. Jørgensen, J. Olsen, D. Yeager, J. Chem. Phys. 75, 5802 (1981)

    Article  Google Scholar 

  5. M. Reed, B. Simon, Methods of Modern Mathematical Physics. Analysis of Operators, vol IV (Academic, New York, 1978)

    Google Scholar 

  6. P. Jørgensen, P. Swanstrøm, D. Yeager, J. Chem. Phys. 78, 347 (1983)

    Article  Google Scholar 

  7. H. Jensen, P. Jørgensen, J. Chem. Phys. 80, 1204 (1984)

    Article  CAS  Google Scholar 

  8. H. Jensen, Electron correlation in molecules using direct second order MCSCF, in Relativistic and Electron Correlation Effects in Molecules and Solids (Plenum, New York, 1994), pp. 179–206

    Chapter  Google Scholar 

  9. E. Cancès, H. Galicher, M. Lewin, J. Comput. Phys. 212, 73 (2006)

    Article  CAS  Google Scholar 

  10. H. Nakatsuji, K. Hirao, J. Chem. Phys. 68, 2053 (1978)

    Article  CAS  Google Scholar 

  11. D. Hegarthy, M.A. Robb, Mol. Phys. 38, 1795 (1979)

    Article  Google Scholar 

  12. R.H.E. Eade, M.A. Robb, Chem. Phys. Lett. 83, 362 (1981)

    Article  CAS  Google Scholar 

  13. O. Christiansen, H. Koch, P. Jørgensen, J. Chem. Phys. 103, 7429 (1995)

    Article  CAS  Google Scholar 

  14. H. Koch, O. Christiansen, P. Jørgensen, T. Helgaker, A.S. de Meras, J. Chem. Phys. 106, 1808 (1997)

    Article  CAS  Google Scholar 

  15. C. Haettig, F. Weigend, J. Chem. Phys. 113, 5154 (2000)

    Article  Google Scholar 

  16. C. Haettig, Adv. Quantum Chem. 50, 37 (2005)

    Article  CAS  Google Scholar 

  17. E.S. Nielsen, P. Jørgensen, J. Oddershede, J. Chem. Phys. 73, 6238 (1980)

    Article  CAS  Google Scholar 

  18. S.P.A. Sauer, J. Phys. B 30, 3773 (1997)

    Article  CAS  Google Scholar 

  19. J.J. Eriksen, S. Sauer, K.V. Mikkelsen, H.J.A. Jensen, J. Kongsted, J. Comput. Chem. 33, 2012 (2013)

    Article  CAS  Google Scholar 

  20. J. Schirmer, Phys. Rev. A 26, 2395 (1982)

    Article  CAS  Google Scholar 

  21. A.B. Trofimov, J. Schirmer, J. Phys. B 28, 2299 (1995)

    Article  CAS  Google Scholar 

  22. J.H. Starcke, M. Wormit, A. Dreuw, J. Chem. Phys. 130, 024104 (2009)

    Article  PubMed  CAS  Google Scholar 

  23. M. Tassi, I. Theophilou, S. Thanos, Int. J. Quantum Chem. 113, 690 (2013)

    Article  CAS  Google Scholar 

  24. D.H. Weinstein, Proc. Natl. Acad. Sci. U. S. A. 20, 529 (1934)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J.E. Subotnik, J. Chem. Phys. 135, 071104 (2011)

    Article  PubMed  CAS  Google Scholar 

  26. A. Dreuw, M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. J. Autschbach, ChemPhysChem 10, 1757 (2009)

    Article  CAS  PubMed  Google Scholar 

  28. S. Grimme, F. Neese, J. Chem. Phys. 127, 154116 (2007)

    Article  PubMed  CAS  Google Scholar 

  29. H.J. Monkhorst, Int. J. Quantum Chem. Symp. 11, 421 (1977)

    Google Scholar 

  30. E. Dalgaard, H.J. Monkhorst, Phys. Rev. A 28, 1217 (1983)

    Article  CAS  Google Scholar 

  31. H. Koch, P. Jørgensen, J. Chem. Phys. 93, 3333 (1990)

    Article  CAS  Google Scholar 

  32. H. Koch, H.J.A. Jensen, P. Jørgensen, T. Helgaker, J. Chem. Phys. 93, 3345 (1990)

    Article  CAS  Google Scholar 

  33. K. Emrich, Nucl. Phys. A 351, 397 (1981)

    Article  Google Scholar 

  34. H. Sekino, R.J. Bartlett, Int. J. Quantum Chem. Symp. 18, 255 (1984)

    Article  CAS  Google Scholar 

  35. J. Geertsen, M. Rittby, R.J. Bartlett, Chem. Phys. Lett. 164, 57 (1989)

    Article  CAS  Google Scholar 

  36. J.F. Stanton, R.J. Bartlett, J. Chem. Phys. 98, 7029 (1993)

    Article  CAS  Google Scholar 

  37. D.C. Comeau, R.J. Bartlett, Chem. Phys. Lett. 207, 414 (1993)

    Article  CAS  Google Scholar 

  38. R.J. Rico, M. Head-Gordon, Chem. Phys. Lett. 213, 224 (1993)

    Article  CAS  Google Scholar 

  39. J.D. Watts, An introduction to equation-of-motion and linear-response coupled-cluster methods for electronically excited states of molecules, in Radiation Induced Molecular Phenomena in Nucleic Acids, ed. by M. K. Shukla, J. Leszczynski (Springer, Dordrecht, 2008), pp. 65–92

    Google Scholar 

  40. M. Nooijen, R.J. Bartlett, J. Chem. Phys. 107, 6812 (1997)

    Article  CAS  Google Scholar 

  41. J.F. Stanton, J. Chem. Phys. 101, 8928 (1994)

    Article  CAS  Google Scholar 

  42. M. Musial, R.J. Bartlett, J. Chem. Phys. 134, 034106 (2011)

    Article  PubMed  CAS  Google Scholar 

  43. C. Hättig, A. Hellweg, A. Köhn, J. Am. Chem. Soc. 128, 15672 (2006)

    Article  PubMed  CAS  Google Scholar 

  44. B.M. Wong, J.G. Cordaro, J. Chem. Phys. 129, 214703 (2008)

    Article  PubMed  CAS  Google Scholar 

  45. A.I. Krylov, Chem. Phys. Lett. 350, 522 (2001)

    Article  CAS  Google Scholar 

  46. Y. Shao, M. Head-Gordon, A.I. Krylov, J. Chem. Phys. 118, 4807 (2003)

    Article  CAS  Google Scholar 

  47. S.V. Levchenko, A.I. Krylov, J. Chem. Phys. 120, 175 (2004)

    Article  CAS  PubMed  Google Scholar 

  48. E.J. Sundstrom, M. Head-Gordon, J. Chem. Phys. 140, 114103 (2014)

    Article  PubMed  CAS  Google Scholar 

  49. B.O. Roos, Ab initio methods, in Quantum Chemistry, Part 2, Advances in Chemical Physics, ed. by K. P. Lawley, vol. 69 (Wiley, Hoboken, 1987), pp. 399–442

    Google Scholar 

  50. K. Andersson, P.-A. Malmqvist, B.O. Roos, J. Chem. Phys. 96, 1218 (1992)

    Article  CAS  Google Scholar 

  51. P.M. Zimmerman, F. Bell, M. Goldey, A.T. Bell, M. Head-Gordon, J. Chem. Phys. 137, 164110 (2012)

    Article  PubMed  CAS  Google Scholar 

  52. D. Casanova, J. Chem. Phys. 137, 084105 (2012)

    Article  PubMed  CAS  Google Scholar 

  53. M. Wormit, D.R. Rehn, P.H.P. Harbach, J. Wenzel, C.M. Krauter, E. Epifanovsky, A. Dreuw, Mol. Phys. 112, 774–784 (2014)

    Article  CAS  Google Scholar 

  54. P.-O. Löwdin, Phys. Rev. 97, 1509 (1955)

    Article  Google Scholar 

  55. P.-O. Löwdin, Adv. Chem. Phys. 2, 207 (1959)

    Google Scholar 

  56. R. Shepard, Adv. Chem. Phys. 69, 63 (1987)

    CAS  Google Scholar 

  57. M. Born, R. Oppenheimer, Ann. Phys. 84, 457 (1927)

    Article  CAS  Google Scholar 

  58. H.-J. Werner, Adv. Chem. Phys. 69, 1 (1987)

    CAS  Google Scholar 

  59. H.-J. Werner, W. Meyer, J. Chem. Phys. 73, 342 (1980)

    Google Scholar 

  60. M. Frisch, I. Ragazos, M. Robb, H. Schlegel, Chem. Phys. Lett. 189, 524 (1992)

    Article  CAS  Google Scholar 

  61. K. Ruedenberg, L.M. Cheung, S.T. Elbert, Int. J. Quantum Chem. 16, 1069 (1979)

    Article  CAS  Google Scholar 

  62. K. Docken, J. Hinze, J. Chem. Phys. 57, 4928 (1972)

    Article  CAS  Google Scholar 

  63. H.-J. Werner, W. Meyer, J. Chem. Phys. 74, 5794 (1981)

    Article  CAS  Google Scholar 

  64. D. Yeager, D. Lynch, J. Nichols, P. Jørgensen, J. Olsen, J. Phys. Chem. 86, 2140 (1982)

    Article  CAS  Google Scholar 

  65. J. Olsen, P. Jørgensen, D. Yeager, J. Chem. Phys. 76, 527 (1982)

    Article  CAS  Google Scholar 

  66. Z. Xiong, N.C. Bacalis, Chin. Phys. B 19, 023601 (2010). https://doi.org/10.1088/1674-1056/19/2/023601

    Article  Google Scholar 

  67. T.C. Chang, W.H.E. Schwarz, Theor. Chim. Acta (Berl) 44, 45 (1977)

    Article  CAS  Google Scholar 

  68. S. Matsumoto, M. Toyama, Y. Yasuda, T. Uchide, R. Ueno, Chem. Phys. Lett. 157, 142 (1989)

    Article  Google Scholar 

  69. M.R. Hoffmann, C.D. Sherrill, M.L. Leininger, H.F. Schaefer III, Chem. Phys. Lett. 355, 183 (2002)

    Article  CAS  Google Scholar 

  70. J.J. Dorando, J. Hachmann, G.K.-L. Chan, J. Chem. Phys. 127, 084109 (2007)

    Article  PubMed  CAS  Google Scholar 

  71. M. McCourt, J.W. McIver Jr., J. Comput. Chem. 8, 454 (1987)

    Article  CAS  Google Scholar 

  72. E.R. Davidson, L.Z. Stenkamp, Int. J. Quantum Chem. Symp. 10, 21 (1976)

    Article  CAS  Google Scholar 

  73. C.S. Sharma, S. Srirankanathan, Mol. Phys. 40, 1021 (1980)

    Article  CAS  Google Scholar 

  74. H.G. Miller, R.M. Dreizler, Nucl. Phys. A 316, 32 (1979)

    Article  Google Scholar 

  75. G.J. Atchity, S.S. Xantheas, K. Ruedenberg, J. Chem. Phys. 95, 1862 (1991)

    Article  Google Scholar 

  76. P.J. Knowles, H.-J. Werner, Theor. Chim. Acta 84, 95 (1992)

    Article  CAS  Google Scholar 

  77. M. Lewin, J. Math. Chem. 44, 967 (2008)

    Article  CAS  Google Scholar 

  78. J. Liu, W. Liang, J. Chem. Phys. 135, 014113 (2011)

    Article  PubMed  CAS  Google Scholar 

  79. Z. Xiong, N.C. Bacalis, Commun. Math. Comput. Chem. 53, 283 (2005); Z. Xiong, M. Velgakis, N.C. Bacalis, Int. J. Quantum Chem. 104, 418 (2005); Chin Phys. 15, 992 (2006)

    Google Scholar 

  80. C.L. Pekeris, Phys. Rev. 126, 1470 (1962)

    Article  CAS  Google Scholar 

  81. N.C. Bacalis, J. Comput. Methods Sci. Eng. 16, 253 (2016)

    CAS  Google Scholar 

  82. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Plenum, New York, 1977), pp. 146–162

    Book  Google Scholar 

  83. M.B. Ruiz, Int. J. Quantum Chem. 101, 246 (2005)

    Article  CAS  Google Scholar 

  84. N.C. Bacalis, Z. Xiong, D. Karaoulanis, J. Comput. Methods Sci. Eng. 8, 277 (2008). http://iospress.metapress.com/content/9270636750564km0/

    Google Scholar 

  85. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992), p. 374

    Google Scholar 

  86. C. Froese Fischer, T. Brage, P. Jönsson, Computational Atomic Structure: An MCHF Approach (Institute of Physics Publishing, Bristol, 1997), pp. 92–96

    Google Scholar 

  87. M.-K. Chen, J. Phys. B Atomic Mol. Phys. 27, 865 (1994)

    Article  CAS  Google Scholar 

  88. Z. Xiong, Z.-X. Wang, N.C. Bacalis, Acta Phys. Sin. 63, 053104 (2014)

    Google Scholar 

  89. A. Sarsa, E. Buendía, F.J. Gálvez, J. Phys. BQ At. Mol. Phys. 49, 145003 (2016)

    Article  CAS  Google Scholar 

  90. Z. Xiong, J. Zang, H.J. Liu, D. Karaoulanis, Q. Zhou, N.C. Bacalis, J. Comput. Methods Sci. Eng. 17(3), 347–361 (2017)

    Google Scholar 

Download references

Acknowledgments

The present work was supported in part by the project “Advanced Materials and Devices” (MIS 5002409) implemented under the “Action for the Strategic Development on the Research and Technological Sector,” funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Bacalis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bacalis, N.C. (2020). If Truncated Wave Functions of Excited State Energy Saddle Points Are Computed as Energy Minima, Where Is the Saddle Point?. In: Onishi, T. (eds) Theoretical Chemistry for Advanced Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-0006-0_13

Download citation

Publish with us

Policies and ethics