Skip to main content

Abstract

This introductory chapter describes the motivation for writing this book. Then, head-related transfer functions (HRTFs) are defined, and the coordinate system used in this book is described. Finally, recent advancements in HRTF research are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 04 November 2021

    The book was inadvertently published with errors in chapters 1, 5 and 7.

Notes

  1. 1.

    There is another way to define the HRTF, in which the receiving point is the ear drum rather than the entrance of the ear canal (Wightman and Kistler 1989a, b). However, it is not easy to place a miniature microphone just before the ear drum to measure the HRTF. Moreover, the transfer function of the ear canal does not depend on the direction of the sound source (Møller 1992). As such, most of studies measure HRTFs using a miniature microphone located at the entrance of the ear canal.

References

  • Asano F, Suzuki Y, Sone T (1990) Role of spectral cues in median plane localization. J Acoust Soc Am 88:159–168

    Article  CAS  PubMed  Google Scholar 

  • Blauert J (1969/70) Sound localization in the median plane. Acust 22: 205–213

    Google Scholar 

  • Burkhard MD, Sachs RM (1975) Anthropometric manikin for acoustic research. J Acoust Soc Am 58:214–222

    Article  CAS  PubMed  Google Scholar 

  • Butler A, Belendiuk K (1977) Spectral cues utilized in the localization of sound in the median sagittal plane. J Acoust Soc Am 61:1264–1269

    Article  CAS  PubMed  Google Scholar 

  • Gardner MB, Gardner RS (1973) Problem of localization in the median plane: effect of pinnae cavity occlusion. J Acoust Soc Am 53:400–408

    Article  CAS  PubMed  Google Scholar 

  • Hebrank J, Wright D (1974) Spectral cues used in the localization of sound sources on the median plane. J Acoust Soc Am 56:1829–1834

    Article  CAS  PubMed  Google Scholar 

  • Iida K, Ishii Y (2018) Effects of adding a spectral peak generated by the second pinna resonance to a parametric model of head-related transfer functions on upper median plane sound localization. Appl Acoust 129:239–247

    Article  Google Scholar 

  • Iida K, Yairi M, Morimoto M (1998) Role of pinna cavities in median plane localization. In: Proceedings of 16th international congress on acoustics. Acoustical Society of America, Seattle, pp 845–846

    Google Scholar 

  • Iida K, Itoh M, Itagaki A, Morimoto M (2007) Median plane localization using parametric model of the head-related transfer function based on spectral cues. Appl Acoust 68:835–850

    Article  Google Scholar 

  • Iida K, Ishii Y, Nishioka S (2014) Personalization of head-related transfer functions in the median plane based on the anthropometry of the listener’s pinnae. J Acoust Soc Am 136:317–333

    Article  PubMed  Google Scholar 

  • Iwaya Y (2006) Individualization of head–related transfer functions with tournament–style listening test: listening with other’s ears. Acoust Sci Tech 27:340–343

    Article  Google Scholar 

  • Kahana Y, Nelson PA (2006) Numerical modelling of the spatial acoustic response of the human pinna. J Sound Vibration 292:148–178

    Article  Google Scholar 

  • Kato M, Uematsu H, Kashio M, Hirahara T (2003) The effect of head motion on the accuracy of sound localization. Acoust Sci Tech 24:315–317

    Article  Google Scholar 

  • Katz BFG (2001) Boundary element method calculation of individual head–related transfer function. I. Rigid model calculation. J Acoust Soc Am 110:2440–2448

    Article  CAS  PubMed  Google Scholar 

  • Kistler DJ, Wightman FL (1992) A model of head–related transfer functions based on principal components analysis and minimum–phase reconstruction. J Acoust Soc Am 91:1637–1647

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol 133:13–21

    Article  Google Scholar 

  • Kulkarni A, Colburn HS (1998) Role of spectral detail in sound–source localization. Nature 396:747–749

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni A, Isabelle SK, Colburn HS (1999) Sensitivity of human subjects to head-related transfer-function phase spectra. J Acoust Soc Am 105:2821–2840

    Article  CAS  PubMed  Google Scholar 

  • Langendijk EHA, Bronkhorst AW (2002) Contribution of spectral cues to human sound localization. J Acoust Soc Am 112:1583–1596

    Article  PubMed  Google Scholar 

  • Lord Rayleigh (1877) Acoustical observations. Phil Mag 3, 6th series: 456–464

    Google Scholar 

  • Lord Rayleigh (1907) On our perception of sound direction. Phil Mag 13, 6th series: 214–232

    Google Scholar 

  • Macpherson EA, Sabin AT (2013) Vertical–plane sound localization with distorted spectral cues. Hear Res 306:76–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehrgardt S, Mellert V (1977) Transformation characteristics of the external human ear. J Acoust Soc Am 61:1567–1576

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC (1992) Narrow–band sound localization related to external ear acoustics. J Acoust Soc Am 92:2607–2624

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC (1999) Individual differences in external–ear transfer functions reduced by scaling in frequency. J Acoust Soc Am 106:1480–1492

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Green DM (1992) Observations on a principal components analysis of head–related transfer functions. J Acoust Soc Am 92:597–599

    Article  CAS  PubMed  Google Scholar 

  • Mokhtari P, Takemoto H, Nishimura R, Kato H (2007) Comparison of simulated and measured HRTFs: FDTD simulation using MRI head data. 123rd Audio Engineering Society Convention, New York, Preprint 7240: 1–12

    Google Scholar 

  • Møller H (1992) Fundamentals of binaural technology. Appl Acoust 36:171–218

    Article  Google Scholar 

  • Morimoto M, Ando Y (1980) On the simulation of sound localization. J Acoust Soc Jpn (E) 1:167–174

    Article  Google Scholar 

  • Morimoto M, Saito A (1977) On sound localization in the median plane – effects of frequency range and intensity of stimuli. Technical report of technical committee of psychological and physiological acoustics, Acoust Soc Jpn H-40-1 (in Japanese)

    Google Scholar 

  • Morimoto M, Joren N, Ando Y, Maekawa Z (1976) On the head-related transfer function. Technical report of technical committee of psychological and physiological acoustics. Acoust Soc Jpn H-31-1 (in Japanese)

    Google Scholar 

  • Musicant AD, Butler RA (1984) The influence of pinnae-based spectral cues on sound localization. J Acoust Soc Am 75:1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Nojima R, Morimoto M, Sato H, Sato H (2013) Do spontaneous head movements occur during sound localization? J Acoust Sci & Tech 34:292–295

    Article  Google Scholar 

  • Otani M, Ise S (2003) A fast calculation method of the head–related transfer functions for multiple source points based on the boundary element method. Acoust Sci Tech 24:259–266

    Article  Google Scholar 

  • Perrett S, Noble W (1997) The effect of head rotations on vertical plane sound localization. J Acoust Soc Am 104:2325–2332

    Article  Google Scholar 

  • Raykar VC, Duraiswami R, Yegnanarayana B (2005) Extracting the frequencies of the pinna spectral notches in measured head related impulse responses. J Acoust Soc Am 118:364–374

    Article  PubMed  Google Scholar 

  • Reiss LAJ, Young ED (2005) Spectral edge sensitivity in neural circuits of the dorsal cochlear nucleus. J Neuroscience 25:3680–3691

    Article  CAS  Google Scholar 

  • Sayers BM (1964) Acoustic-image lateralization judgement with binaural tones. J Acoust Soc Am 36:923–926

    Article  Google Scholar 

  • Seeber BU, Fastl H (2003) Subjective selection of non–individual head–related transfer functions. In: Proceedings of the 2003 international conference on auditory display, Boston

    Google Scholar 

  • Shaw EAG (1997) Acoustical features of the human external ear. In: Gilkey RH, Anderson TR (eds) Binaural and spatial hearing in real and virtual environments. Erlbaum, Mahwah, pp 25–47

    Google Scholar 

  • Shaw EAG, Teranishi R (1968) Sound pressure generated in an external-ear replica and real human ears by a nearby point source. J Acoust Soc Am 44:240–249

    Article  CAS  PubMed  Google Scholar 

  • Takemoto H, Mokhtari P, Kato H, Nishimura R, Iida K (2012) Mechanism for generating peaks and notches of head-related transfer functions in the median plane. J Acoust Soc Am 132:3832–3841

    Article  PubMed  Google Scholar 

  • Thurlow WR, Runge PS (1967) Effect of induced head movements on localization of direction of sounds. J Acoust Soc Am 42:480–487

    Article  CAS  PubMed  Google Scholar 

  • Toole FE, Sayers BM (1965) Lateralization judgements and the nature of binaural acoustic images. J Acoust Soc Am 37:319–324

    Article  Google Scholar 

  • Wiener FM, Ross DA (1946) The pressure distribution in the auditory canal in a progressive sound field. J Acoust Soc Am 18:401–408

    Article  Google Scholar 

  • Wightman FL, Kistler DJ (1989a) Headphone simulation of free-field listening. I: Stimulus synthesis. J Acoust Soc Am 85:858–867

    Article  CAS  PubMed  Google Scholar 

  • Wightman FL, Kistler DJ (1989b) Headphone simulation of free-field listening. II: Psychophysical validation. J Acoust Soc Am 85:868–878

    Article  CAS  PubMed  Google Scholar 

  • Xiao T, Liua QH (2003) Finite difference computation of head–related transfer function for human hearing. J Acoust Soc Am 113:2434–2441

    Article  PubMed  Google Scholar 

  • Zotkin DN, Hwang J, Duraiswami R, Davis LS (2003) HRTF Personalization using anthropometric measurements. In: IEEE workshop on applications of signal processing to audio and acoustics

    Google Scholar 

  • Zotkin DN, Duraiswami R, Grassi E, Gumerov NA (2006) Fast head–related transfer function measurement via reciprocity. J Acoust Soc Am 120:2202–2215

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iida, K. (2019). Introduction. In: Head-Related Transfer Function and Acoustic Virtual Reality. Springer, Singapore. https://doi.org/10.1007/978-981-13-9745-5_1

Download citation

Publish with us

Policies and ethics