Skip to main content

Medicinal Plant: Environment Interaction and Mitigation to Abiotic Stress

  • Chapter
  • First Online:
Medically Important Plant Biomes: Source of Secondary Metabolites

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 15))

Abstract

Herbal/traditional plant medicine is the most antioxidant-rich category. Abiotic stresses including climatic factors, plant species, extreme temperatures, light intensity, soil and air pollution, drought, flooding, salinity and osmotic changes, and other environmental factors affected both the enzymatic and nonenzymatic antioxidant defense system in plants. The activities of the antioxidant enzymes such as polyphenol oxidase (PPO), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL), ascorbate peroxidase (APX), and lipoxygenase (LOX) are altered in stressed conditions which lead to the changes in malondialdehyde (MDA), superoxide radical, and hydrogen peroxide content of the cells. The different components of nonenzymatic defense system such as glycine betaine (GB), proline, glutathione (GSH), ascorbic acid (AsA), tocopherols, carotenoids, flavonoids, and phenolic compounds also play a crucial role as they interact at cellular level. A common factor between most stresses is the active production of reactive oxygen species (ROS). They are actively produced and used as signaling molecules by cells in response to most abiotic stresses. Due to the highly reactive nature of ROS, their production and detoxification need to be strictly controlled. Studies on transformed plants expressing increased activities of single enzymes of the antioxidant defense system indicate that it is possible to confer a degree of tolerance to stress by these means. The advent of plant transformation has placed within our grasp the possibility of engineering greater stress tolerance in plants by enhancements of the antioxidant defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal SB, Rathore D (2007) Changes in oxidative stress defense system in wheat (Triticum aestivum L.) and mung bean (Vigna radiata L.) cultivars grown with and without mineral nutrients and irradiated by supplemental ultraviolet-B. Environ Exp Bot 59(1):21–33

    Article  CAS  Google Scholar 

  • Al Hassan M, Pacurar A, López-Gresa MP, Donat-Torres MP, Llinares JV, Boscaiu M, Vicente O (2016) Effects of salt stress on three ecologically distinct Plantago species. PLoS One 11(8):e0160236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107(4):1049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171(3):382–388

    Article  PubMed  CAS  Google Scholar 

  • Almeselmani M, Deshmukh P, Sairam R (2009) High temperature stress tolerance in wheat genotypes: role of antioxidant defense enzymes. Acta Agron Hung 57(1):1–14

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002 May 15) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Amirjani MR (2015) Effect of salinity stress on seed germination and antioxidative defense system of Catharanthus roseus. ARPN J Agric Biol Sci 10:163–171

    CAS  Google Scholar 

  • Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K (2002) Methods for testing antioxidant activity. Analyst 127(1):183–198

    Article  PubMed  CAS  Google Scholar 

  • Armstrong W, Drew MC (2002) Root growth and metabolism under oxygen deficiency. In: Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 729–761

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Biol 50(1):601–639

    Article  CAS  Google Scholar 

  • Basu U (2012) Identification of molecular processes underlying abiotic stress plants adaptation using, in: Benkeblia, N. (Ed) “Omics” technologies. In: Sustainable agriculture and new technologies. CRC, Boca Raton, pp 149–172

    Google Scholar 

  • Bayat L, Askari M, Fariba A, Morteza Z (2014) Effects of Rhizobium inoculation on Trifolium resupinatum antioxidant system under sulfur dioxide pollution. Biol J Microorg 2(8):37–50

    Google Scholar 

  • Bazin MJ, Markham P, Scott EM, Lynch JM (1990) Population dynamics and rhizosphere interactions. In: Lynch JM (ed) The rhizosphere, pp 99–127

    Google Scholar 

  • Bennoun P (1994) Chlororespiration revisited: mitochondrial-plastid interactions in Chlamydomonas. Biochim Biophys Acta (BBA) Bioenerg 1186(1):59–66

    Article  CAS  Google Scholar 

  • Biemelt S, Keetman U, Mock HP, Grimm B (2000) Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell Environ 23(2):135–144

    Article  CAS  Google Scholar 

  • Blokhina OB, Fagerstedt KV, Chirkova TV (1999) Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration. Physiol Plant 105(4):625–632

    Article  CAS  Google Scholar 

  • Blokhina OB, Chirkova TV, Fagerstedt KV (2001) Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot 52(359):1179–1190

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  PubMed  CAS  Google Scholar 

  • Burbott AJ, Loomis WD (1969) Evidence for metabolic turnover of monoterpenes in peppermint. Plant Physiol 44(2):173–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burke JJ, Gamble PE, Hatfield JL, Quisenberry JE (1985) Plant morphological and biochemical responses to field water deficits I. Responses of glutathione reductase activity and paraquat sensitivity. Plant Physiol 79(2):415–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caldwell MM, Björn LO, Bornman JF, Flint SD, Kulandaivelu G, Teramura AH, Tevini M (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J Photochem Photobiol B Biol 46(1):40–52

    Article  CAS  Google Scholar 

  • Calgaroto NS, Castro GY, Cargnelutti D, Pereira LB, Gonçalves JF, Rossato LV, Nicoloso FT (2010) Antioxidant system activation by mercury in Pfaffia glomerata plantlets. Biometals 23(2):295–305

    Article  PubMed  CAS  Google Scholar 

  • Campbell SA, Nishio JN (2000) Iron deficiency studies of sugar beet using an improved sodium bicarbonate-buffered hydroponic growth system. J Plant Nutr 23(6):741–757

    Article  CAS  Google Scholar 

  • Caplan A, Claes B, Dekeyser R, Van Montagu M (1990) Salinity and drought stress in rice. R.S. Sangwan and B.S. Sangwan-Norreel (eds.). The impact of biotechnology in agriculture. © 1990 Kluwer Academic Publishers, pp 391–402

    Google Scholar 

  • Castillo FJ, Greppin H (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ Exp Bot 28(3):231–238

    Article  CAS  Google Scholar 

  • Chandra A, Bhatt RK, Misra LP (1998) Effect of water stress on biochemical and physiological characteristics of oat genotypes. J Agron Crop Sci 181(1):45–48

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30(3):239–264

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Xing J, Lan H (2012) Comparative effects of neutral salt and alkaline salt stress on seed germination, early seedling growth and physiological response of a halophyte species Chenopodium glaucum. Afr J Biotechnol 11(40):9572–9581

    CAS  Google Scholar 

  • Chen J, Wang WH, Liu TW, Wu FH, Zheng HL (2013) Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain. Plant Physiol Biochem 64:41–51

    Article  PubMed  CAS  Google Scholar 

  • Chirkova TV, Novitskaya LO, Blokhina OB (1998) Lipid peroxidation and antioxidant systems under anoxia in plants differing in their tolerance to oxygen deficiency. Russ J Plant Physiol 45(1):55–62

    CAS  Google Scholar 

  • Covello PS, Chang A, Dumbroff EB, Thompson JE (1989) Inhibition of photosystem II precedes thylakoid membrane lipid peroxidation in bisulfite-treated leaves of Phaseolus vulgaris. Plant Physiol 90(4):1492–1497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies KJ (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem 262(20):9895–9901

    PubMed  CAS  Google Scholar 

  • Dhindsa RS (1991) Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein synthesis in Tortula ruralis. Plant Physiol 95(2):648–651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. J Exp Bot 32(1):79–91

    Article  CAS  Google Scholar 

  • Egneus H, Heber U, Matthiesen U, Kirk M (1975) Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Biochim Biophys Acta (BBA) Bioenerg 408(3):252–268

    Article  CAS  Google Scholar 

  • Elstner EF (1982) Oxygen activation and oxygen toxicity. Ann Rev Plant Physiol 33(1):73–96

    Article  CAS  Google Scholar 

  • Fischer BB, Krieger-Liszkay A, Hideg É, Šnyrychová I, Wiesendanger M, Eggen RI (2007) Role of singlet oxygen in chloroplast to nucleus retrograde signaling in Chlamydomonas reinhardtii. FEBS Lett 581(29):5555–5560

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2005) Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant Soil 276(1–2):133–141

    Article  CAS  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5(1):1–23

    Google Scholar 

  • Gjorgieva D, Panovska TK, Ruskovska T, Bačeva K, Stafilov T (2013) Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. Biomed Res Int 2013. Article Id 276417:6

    Article  Google Scholar 

  • Golemiec E, Tokarz K, Wielanek M, Niewiadomska E (2014) A dissection of the effects of ethylene, H2O2 and high irradiance on antioxidants and several genes associated with stress and senescence in tobacco leaves. J Plant Physiol 171(3):269–275

    Article  PubMed  CAS  Google Scholar 

  • Gong B, Wen D, Bloszies S, Li X, Wei M, Yang F, Wang X (2014) Comparative effects of NaCl and NaHCO3 stresses on respiratory metabolism, antioxidant system, nutritional status, and organic acid metabolism in tomato roots. Acta Physiol Plant 36(8):2167–2181

    Article  CAS  Google Scholar 

  • Grover A, Kapoor A, Lakshmi OS, Agarwal S, Sahi C, Katiyar-Agarwal S, Dubey H (2001) Understanding molecular alphabets of the plant abiotic stress responses. Curr Sci 80(2):206–216

    CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327(5968):1008–1010

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1991) Drug antioxidant effects. Drugs 42(4):569–605

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haribabu TE, Sudha PN (2011) Effect of heavy metals copper and cadmium exposure on the antioxidant properties of the plant Cleome gynandra. Int J Plant Anim Environ Sci 1(2):80–87

    CAS  Google Scholar 

  • Hartung W, Leport L, Ratcliffe RG, Sauter A, Duda R, Turner NC (2002) Abscisic acid concentration, root pH and anatomy do not explain growth differences of chickpea (Cicer arietinum L.) and lupin (Lupinus angustifolius L.) on acid and alkaline soils. Plant Soil 240(1):191–199

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • He H, Ding Y, Bartlam M, Sun F, Le Y, Qin X, Tang H, Zhang R, Joachimiak A, Liu J, Zhao N, Rao Z (2003) Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme a reveals the mechanism for beta-lactam acetylation. J Mol Biol 325(5):1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Heagle AS, Annu R (1989) Ozone and crop yield. Phytopathology 27:397–423

    Article  CAS  Google Scholar 

  • Heath RL (1987) The biochemistry of ozone attack on the plasma membrane of plant cells. Recent Adv Phytochem 21:29–54

    CAS  Google Scholar 

  • Hegde PK, Rao HA, Rao PN (2014) A review on Insulin plant (Costus igneus Nak). Pharmacogn Rev 8(15):67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci 11(1):57–61

    Google Scholar 

  • Hernandez JA, Corpas FJ, Gomez M, Río LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89(1):103–110

    Article  CAS  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, Del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105(2):151–167

    Article  CAS  Google Scholar 

  • Hossain MA, AL-Raqmi KAS, AL-Mijizy ZH, Weli AM, Al-Riyami Q (2013 Sep) Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac J Trop Biomed 3(9):705–710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu WH, Song XS, Shi K, Xia XJ, Zhou YH, Yu JQ (2008) Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica 46(4):581–588

    Article  CAS  Google Scholar 

  • Huang M, Guo Z (2005) Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol Plant 49(1):81–84

    Article  CAS  Google Scholar 

  • Jackson MB (1982) Ethylene as a growth promoting hormone under flooded conditions. In: Wareing PF (ed) Plant growth substances, 1982: the proceedings of the 11th international conference on plant growth substances, Aberystwyth, 12–16 July, 1982. Academic, London

    Google Scholar 

  • Jackson MB (2004) The impact of flooding stress on plants and crops. Available at: http://www.plantstress.com/Articles/waterlogging_i/waterlog_i.htm

  • Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot 91(2):227–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant 29(3):205–209

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Kishorekumar A, Manivannan P, Sankar B, Panneerselvam R (2008) Interactive effects of triadimefon and salt stress on antioxidative status and ajmalicine accumulation in Catharanthus roseus. Acta Physiol Plant 30(3):287

    Article  CAS  Google Scholar 

  • Kahrizi S, Sedighi M, Sofalian O (2012) Effect of salt stress on proline and activity of antioxidant enzymes in ten durum wheat cultivars. Ann Biol Res 3(8):3870–3874

    CAS  Google Scholar 

  • Kala S (2015) Effect of Nacl salt stress on antioxidant enzymes of Isabgol (Plantago ovata Forsk.) genotypes. Int J Food Sci Technol 4(2):40–43

    Google Scholar 

  • Kalashnikov JE, Balakhnina TI, Zakrzhevsky DA (1994) Effect of soil hypoxia on activation of oxygen and the system of protection from oxidative destruction in roots and leaves of Hordeum vulgare. Russ J Plant Physiol 41:583–588

    CAS  Google Scholar 

  • Kasote DM (2013) Flaxseed phenolics as natural antioxidants. Int Food Res J 20(1):27–34

    CAS  Google Scholar 

  • Khan NA, Singh S (2008) Abiotic stress and plant responses. IK International, New Delhi

    Google Scholar 

  • Khosh-Khui M, Ashiri F, Saharkhiz MJ (2012) Effects of irrigation regimes on antioxidant activity and total phenolic content of Thyme (Thymus vulgaris L.). Med Aromat Plants 1:114

    Google Scholar 

  • Kim K, Portis AR (2004) Oxygen-dependent H2O2 production by Rubisco. FEBS Lett 571(1–3):124–128

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274(1–2):175–195

    Article  CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316

    Article  PubMed  CAS  Google Scholar 

  • Koyama H, Toda T, Hara T (2001) Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana: pectin–Ca interaction may play an important role in proton rhizotoxicity. J Exp Bot 52(355):361–368

    PubMed  CAS  Google Scholar 

  • Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89(3):217–233

    Article  CAS  Google Scholar 

  • Laisk A, Pfanz H, Schramm MJ, Heber U (1988) Sulfur-dioxide fluxes into different cellular compartments of leaves photosynthesizing in a polluted atmosphere. Planta 173(2):230–240

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Kull O, Moldau H (1989) Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol 90(3):1163–1167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Landry LG, Pell EJ (1993) Modification of Rubisco and altered proteolytic activity in O3-stressed hybrid poplar (Populus maximowizii x trichocarpa). Plant Physiol 101(4):1355–1362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 4th edn. Springer, Berlin, pp 345–437

    Book  Google Scholar 

  • Latef AAA, Tran LSP (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7:1–10

    Google Scholar 

  • Li C, Xu H, Xu J, Chun X, Ni D (2011) Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant. Acta Physiol Plant 33(3):973–978

    Article  CAS  Google Scholar 

  • Liang B, Huang X, Zhang G, Zhang F, Zhou Q (2006) Effect of lanthanum on plants under supplementary ultraviolet-B radiation: effect of lanthanum on flavonoid contents in soybean seedlings exposed to supplementary ultraviolet-B radiation. J Rare Earths 24(5):613–616

    Article  Google Scholar 

  • Lidon FJC (2012) Micronutrients’ accumulation in rice after supplemental UV-B irradiation. J Plant Interact 7(1):19–28

    Article  CAS  Google Scholar 

  • Liu EU, Liu CP (2011) Effects of simulated acid rain on the antioxidative system in Cinnamomum philippinense seedlings. Water Air Soil Pollut 215(1–4):127–135

    Article  CAS  Google Scholar 

  • Liu TT, Wu P, Wang LH, Zhou Q (2011) Response of soybean seed germination to cadmium and acid rain. Biol Trace Elem Res 144(1–3):1186–1196

    Article  PubMed  CAS  Google Scholar 

  • Lutz HJ, Costello DF, Hickie P, Stone EL, Bates M, Ellison L (1957) Symposium on applications of ecology. Ecology 38(1):46–64

    Article  Google Scholar 

  • Luwe MW, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101(3):969–976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malan C, Greyling MM, Gresse J (1990) Correlation between CuZn superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69(2):157–166

    Article  CAS  Google Scholar 

  • Maleva MG, Nekrasova GF, Borisova GG, Chukina NV, Ushakova OS (2012) Effect of heavy metals on photosynthetic apparatus and antioxidant status of elodea. Russ J Plant Physiol 59(2):190–197

    Article  CAS  Google Scholar 

  • Marques TCLLD e MS, Soares AM (2011) Antioxidant system of ginseng under stress by cadmium. Sci Agric 68(4):482–488

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego, Kindly, p 889

    Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54(3):543

    Article  PubMed  CAS  Google Scholar 

  • McKee WH, McKevlin MR (1993) Geochemical processes and nutrient uptake by plants in hydric soils. Environ Toxicol Chem 12(12):2197–2207

    Article  CAS  Google Scholar 

  • Mehlhorn H (1990) Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ 13(9):971–976

    Article  CAS  Google Scholar 

  • Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378(3):203–206

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  PubMed  CAS  Google Scholar 

  • Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N,NDimethylformamide. Plant Physiol 65:478–479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morsy AA, Salama A, Hamid K, Kamel HA, Fahim Mansour MM (2012) Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eur Asian J Biosci 6:1–10

    CAS  Google Scholar 

  • Nagesh Babu R, Devaraj VR (2008) High temperature and salt stress response in French bean (Phaseolus vulgaris). Aust J Crop Sci 2(2):40–48

    Google Scholar 

  • Ormrod DP, Hale BA (1995) Physiological response of plants and crops to ultravoilet - B radiation stress. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker Inc, New York, pp 761–770

    Google Scholar 

  • Ou-yang C, Gao S, Mei LJ, Chung TW, Tang L, Wang SH, Chen F (2014) Effects of aluminum toxicity on the growth and antioxidant status in Jatropha curcas seedlings. J Med Plants Res 8(3):178–185

    Article  CAS  Google Scholar 

  • Paz RC, Rocco RA, Reinoso H, Menéndez AB, Pieckenstain FL, Ruiz OA (2012) Comparative study of alkaline, saline, and mixed saline–alkaline stresses with regard to their effects on growth, nutrient accumulation, and root morphology of Lotus tenuis. J Plant Growth Regul 31(3):448–459

    Article  CAS  Google Scholar 

  • Peiser G, Yang SF (1985) Biochemical and physiological effects of SO2 on non-photosynthetic processes in plants. AGRIS, Publisher: Stanford University Press, CA

    Google Scholar 

  • Pell EJ, Lukezic FL, Levine RG, Weissberger WC (1977) Response of soybean foliage to reciprocal challenges by ozone and a hypersensitive-response-inducing Pseudomonad. Phytopathology 67:1342–1345

    Article  Google Scholar 

  • Peng YL, Gao ZW, Gao Y, Liu GF, Sheng LX, Wang DL (2008) Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses. J Integr Plant Biol 50(1):29–39

    Article  PubMed  CAS  Google Scholar 

  • Polle A, Chakrabarti K, Chakrabarti S, Seifert F, Schramel P, Rennenberg H (1992) Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies L.) trees. Plant Physiol 99(3):1084–1089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ponnamperuma FN (1983) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth, vol 24. Academic, New York, pp 29–96

    Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MA (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32(2):158–169

    Article  PubMed  Google Scholar 

  • Radi AA, Abdel-Wahab DA, Hamada AM (2012) Evaluation of some bean lines tolerance to alkaline soil. J Biol Earth Sci 2(1):18–27

    Google Scholar 

  • Rahman SM (2013) Effect of temperature and extraction process on antioxidant activity of various leaves crude extracts of Thymus vulgaris. J Coast Life Med 1(2):130–134

    Google Scholar 

  • Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Ann Rev Nutr 22(1):19–34

    Article  CAS  Google Scholar 

  • Rout JR, Behera S, Keshari N, Ram SS, Bhar S, Chakraborty A, Sahoo SL (2015) Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants. Ecotoxicology 24(2):401–413

    Article  PubMed  CAS  Google Scholar 

  • Rozema J, van de Staaij JWM, Bjorn LO, Bakker N (1999) Depletion of stratospheric ozone and solar UV-B radiation: evolution of land plants, UV-screens and function of phenolis. Editors J. Rozema, In: Stratopheric ozone depletion: the effects of enhanced UV-B radiation on terrestrial ecosystems, Leiden, Publisher Backhuys Publishers, pp 1–19

    Google Scholar 

  • Russell AE, Laird DA, Mallarino AP (2006) Nitrogen fertilization and cropping system impacts on soil quality in Midwestern Mollisols. Soil Sci Soc Am J 70(1):249–255

    Article  CAS  Google Scholar 

  • Saha D, Mandal S, Saha A (2012) Copper induced oxidative stress in tea (Camellia sinensis) leaves. J Environ Biol 33(5):861

    PubMed  CAS  Google Scholar 

  • Sairam RK, Shukla DS, Saxena DC (1997) Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biol Plant 40(3):357–364

    Article  CAS  Google Scholar 

  • Sairam RK, Deshmukh PS, Saxena DC (1998) Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol Plant 41(3):387–394

    Article  CAS  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12(1):30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santhanakrishnan D, Perumal RK, Chandrasekaran B (2014) Effect of tannery soaking water on antioxidant enzymes of Salicornia brachiata. Int J Curr Microb Appl Sci 3(2):359–367

    CAS  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8):2073S–2085S

    Article  PubMed  CAS  Google Scholar 

  • Schubert S, Schubert E, Mengel K (1990) Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant Soil 124(2):239–244

    Article  CAS  Google Scholar 

  • Sekmen HA, Türkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131(3):399–411

    Article  PubMed  CAS  Google Scholar 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253(1):1–34

    Article  CAS  Google Scholar 

  • Shi QH, Zhu ZJ, Juan LI, Qian QQ (2006) Combined effects of excess Mn and low pH on oxidative stress and antioxidant enzymes in cucumber roots. Agric Sci China 5(10):767–772

    Article  CAS  Google Scholar 

  • Shimazaki KI, Sugahara K (1980) Inhibition site of the electron transport system in lettuce chloroplasts by fumigation of leaves with SO2. Plant Cell Physiol 21(1):125–135

    CAS  Google Scholar 

  • Siefermann D, Harms H (1987) The last harvesting and protective function of carotenoids in photosynthetic membranes. Physiol Plant 69:51–568

    Google Scholar 

  • Sielewiesiuk J (2002) Why there are photodamages to photosystem II at low light intensities. Acta Physiol Plant 24(4):399–406

    Article  CAS  Google Scholar 

  • Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171(3):382–388

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Anjum NA, Khan NA, Nazar R (2008) Metal-binding peptides and antioxidant defence system in plants: significance in cadmium tolerance. Abiotic stress and plant responses. IK International, New Delhi, pp 159–189

    Google Scholar 

  • Smirnoff N, Colombé SV (1988) Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J Exp Bot 39(8):1097–1108

    Article  CAS  Google Scholar 

  • Smith SR, Russell KA (1969) Occurrence of ethylene and its significance in anaerobic soil. Nature 222:769–771

    Article  CAS  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Sci 166(2):293–302

    Article  CAS  Google Scholar 

  • Stewart RR, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65(2):245–248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoop JM, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1(5):139–144

    Article  Google Scholar 

  • Surekha K (1997) Effect of drought and salinity on growth and development of isabgol (Platago ovate Forsk.). MSc thesis, CCS Haryana Agricultural University, Hisar, India

    Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126(1):45–51

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (1991) Plant physiology. The Benjamin/Cummings Publishing Company, Redwood City, pp 346–368

    Google Scholar 

  • Terzi R, Kadioglu A (2006) Drought stress tolerance and the antioxidant enzyme system. Acta Biol Cracov Ser Bot 48:89–96

    Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17(2):113–122

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya H, Panda SK (2013) Abiotic stress responses in tea [Camellia sinensis L. (O) Kuntze]: an overview. Rev Agric Sci 1:1–10

    Article  Google Scholar 

  • Vandana N (2003) Physiological response of Isabgol (Plantago ovata Forsk.) genotypes to salt stress. Doctoral dissertation, MSc thesis, CCS Haryana Agricultural University, Hisar, India

    Google Scholar 

  • Varshney UK, Surekha K (2001) Differential response of chloride and sulphate dominated salinity on growth and developmental aspects of isabgol (Plantago ovate Forsk.). Abstract number: 1121, National symposium on plant biodiversity and its conservation, Patiala, p 56

    Google Scholar 

  • Veljovic-Jovanovic S, Bilger W, Heber U (1993) Inhibition of photosynthesis, acidification and stimulation of zeaxanthin formation in leaves by sulfur dioxide and reversal of these effects. Planta 191(3):365–376

    Article  CAS  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120(2):219–228

    Article  PubMed  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23(9):893–902

    Article  Google Scholar 

  • Yan B, Dai Q, Liu X, Huang S, Wang Z (1996) Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179(2):261–268

    Article  CAS  Google Scholar 

  • Yin H, Chen Q, Yi M (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regul 54(1):45–54

    Article  CAS  Google Scholar 

  • Yuan Y, Liu Y, Luo Y, Huang L, Chen S, Yang Z, Qin S (2011) High temperature effects on flavones accumulation and antioxidant system in Scutellaria baicalensis Georgi cells. Afr J Biotechnol 10(26):5182–5192

    CAS  Google Scholar 

  • Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35(5):785–791

    Article  CAS  Google Scholar 

  • Zhang HM, Wang BR, Xu MG, Fan TL (2009) Crop yield and soil responses to long-term fertilization on a red soil in southern China. Pedosphere 19(2):199–207

    Article  CAS  Google Scholar 

  • Zhang XL, Jia XF, Yu B, Gao Y, Bai JG (2011) Exogenous hydrogen peroxide influences antioxidant enzyme activity and lipid peroxidation in cucumber leaves at low light. Sci Hortic 129(4):656–662

    Article  CAS  Google Scholar 

  • Zhao X, Nishimura Y, Fukumoto Y, Li J (2011) Effect of high temperature on active oxygen species, senescence and photosynthetic properties in cucumber leaves. Environ Exp Bot 70(2):212–216

    Article  CAS  Google Scholar 

  • Zheng G, Lv HP, Gao S, Wang SR (2010) Effects of cadmium on growth and antioxidant responses in Glycyrrhiza uralensis seedlings. Plant Soil Environ 56(11):508–515

    Article  CAS  Google Scholar 

  • Zróbek SA (2012) Temperature stress and responses of plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 113–134

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abid, M., Abid Ali Khan, M.M. (2019). Medicinal Plant: Environment Interaction and Mitigation to Abiotic Stress. In: Egamberdieva, D., Tiezzi, A. (eds) Medically Important Plant Biomes: Source of Secondary Metabolites. Microorganisms for Sustainability, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-13-9566-6_2

Download citation

Publish with us

Policies and ethics