Skip to main content

Nanotechnology as a Key Enabler for Effective Environmental Remediation Technologies

  • Chapter
  • First Online:
A New Paradigm for Environmental Chemistry and Toxicology

Abstract

Overview This chapter provides an overview and outlook of nanotechnology’s enabling roles in developing effective environmental remediation processes. Nanotechnology has the potential to substantially improve environmental remediation technologies. Here, instead of an exhaustive review of all developments related to nano-enabled environmental remediation processes/technologies, we present a brief overview and then specific comparison(s) between the two most common application approaches—individual (free) nanoparticles and those systems with integrated nanomaterials/nanotechnology. Specifically, we review examples of metal oxide nanoparticles (as nano-adsorbents) and graphene oxide enabled membranes to illustrate key technological aspects regarding their application potential in environmental remediation. Lastly, we highlight three key steps to further advance material development: the establishment of structure-property-function relationships, delineating the effects of environmental factors and the addressing of potential risk issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez PJJ, Chan CK, Elimelech M, Halas NJ, Villagrán D (2018) Emerging opportunities for nanotechnology to enhance water security. Nat Nanotechnol 13(8):634–641.

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Proux O, Borschneck D, Masion A, Chaurand P, Hazemann J-L, Chaneac C, Jolivet J-P, Wiesner MR (2008) Enhanced adsorption of arsenic onto maghemites nanoparticles: as (III) as a probe of the surface structure and heterogeneity. Langmuir 24(7):3215–3222

    Article  CAS  Google Scholar 

  • Ben-Sasson M, Lu X, Nejati S, Jaramillo H, Elimelech M (2016) In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. Desalination 388:1–8.

    Article  CAS  Google Scholar 

  • Camtakan Z, Erenturk S, Yusan S (2012) Magnesium oxide nanoparticles: preparation, characterization, and uranium sorption properties. Environ Prog Sustain Energy 31(4):536–543

    Article  CAS  Google Scholar 

  • Crock CA, Rogensues AR, Shan W, Tarabara VV (2013) Polymer nanocomposites with graphene-based hierarchical fillers as materials for multifunctional water treatment membranes. Water Res 47(12):3984–3996.

    Article  CAS  Google Scholar 

  • Davis ME, Saldarriaga C, Montes C, Garces J, Crowdert C (1988) A molecular sieve with eighteen-membered rings. Nature 331(6158):698–699.

    Article  CAS  Google Scholar 

  • Dui J, Zhu G, Zhou S (2013) Facile and Economical Synthesis of Large Hollow Ferrites and Their Applications in Adsorption for As(V) and Cr(VI). ACS Appl Mater Interfaces 5(20):10081–10089.

    Article  CAS  Google Scholar 

  • Elimelech M, Zhu X, Childress AE, Hong S (1997) Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J Membr Sci 127(1):101–109

    Article  CAS  Google Scholar 

  • Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217:439–446

    Google Scholar 

  • Ganesh BM, Isloor AM, Ismail AF (2013) Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 313:199–207.

    Article  CAS  Google Scholar 

  • Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546

    Article  CAS  Google Scholar 

  • GĂłmez-Pastora J, Bringas E, Ortiz I (2014) Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem Eng J 256:187–204

    Article  Google Scholar 

  • Igbinigun E, Fennell Y, Malaisamy R, Jones KL, Morris V (2016) Graphene oxide functionalized polyethersulfone membrane to reduce organic fouling. J Membr Sci 514:518–526.

    Article  CAS  Google Scholar 

  • Jiang Y, Biswas P, Fortner JD (2016a) A review of recent developments in graphene-enabled membranes for water treatment. Environ Sci Water Res Technol 2(6):915–922.

    Article  CAS  Google Scholar 

  • Jiang Y, Liu D, Cho M, Lee SS, Zhang F, Biswas P, Fortner JD (2016b) In situ photocatalytic synthesis of Ag nanoparticles (nAg) by crumpled graphene oxide composite membranes for filtration and disinfection applications. Environ Sci Technol 50(5):2514–2521

    Article  CAS  Google Scholar 

  • Jiang Y, Quan X, Jiang G, Li X (2019a) Current prospective on environmental nanotechnology research in China. Environ Sci Technol 53(8):4001–4002.

    Article  CAS  Google Scholar 

  • Jiang Y, Zeng Q, Biswas P, Fortner JD (2019b) Graphene oxides as nanofillers in polysulfone ultrafiltration membranes: shape matters. J Membr Sci 581:453–461.

    Article  CAS  Google Scholar 

  • Jiang Y, Wang W-N, Liu D, Nie Y, Li W, Wu J, Zhang F, Biswas P, Fortner JD (2015) Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. Environ Sci Technol 49(11):6846–6854

    Article  CAS  Google Scholar 

  • Kaneda M, Lu X, Cheng W, Zhou X, Bernstein R, Zhang W, Kimura K, Elimelech M (2019) Photografting graphene oxide to inert membrane materials to impart antibacterial activity. Environ Sci Technol Lett 6(3):141–147.

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in Situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813–1831.

    Article  Google Scholar 

  • Kim C, Lee SS, Lafferty BJ, Giammar DE, Fortner JD (2018a) Engineered superparamagnetic nanomaterials for arsenic(v) and chromium(vi) sorption and separation: quantifying the role of organic surface coatings. Environ Sci Nano 5(2):556–563.

    Article  CAS  Google Scholar 

  • Kim C, Lee SS, Reinhart BJ, Cho M, Lafferty BJ, Li W, Fortner JD (2018b) Surface-optimized core–shell nanocomposites (Fe3O4@MnxFeyO4) for ultra-high uranium sorption and low-field separation in water. Environ Sci Nano 5(10):2252–2256.

    Article  CAS  Google Scholar 

  • Krycka KL, Borchers JA, Salazar-Alvarez G, LĂłpez-Ortega A, Estrader M, Estrade S, Winkler E, Zysler RD, Sort J, PeirĂł F (2013) Resolving material-specific structures within Fe3O4| Îł-Mn2O3 core|shell nanoparticles using anomalous small-angle X-ray scattering. ACS Nano 7(2):921–931

    Google Scholar 

  • Lee SS, Li W, Kim C, Cho M, Catalano JG, Lafferty BJ, Decuzzi P, Fortner JD (2015a) Engineered manganese oxide nanocrystals for enhanced uranyl sorption and separation. Environ Sci Nano 2(5):500–508.

    Article  CAS  Google Scholar 

  • Lee SS, Li W, Kim C, Cho M, Lafferty BJ, Fortner JD (2015b) Surface functionalized manganese ferrite nanocrystals for enhanced uranium sorption and separation in water. J Mater Chem A 3(43):21930–21939.

    Article  CAS  Google Scholar 

  • Li M, Shi J, Chen C, Li N, Xu Z, Li J, Lv H, Qian X, Jiao X (2017a) Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide. J Nanoparticle Res 19(3).

    Google Scholar 

  • Li W, Troyer LD, Lee SS, Wu J, Kim C, Lafferty BJ, Catalano JG, Fortner JD (2017b) Engineering nanoscale iron oxides for uranyl sorption and separation: optimization of particle core size and bilayer surface coatings. ACS Appl Mater Interfaces 9(15):13163–13172.

    Article  CAS  Google Scholar 

  • Li W, Mayo JT, Benoit DN, Troyer LD, Lewicka ZA, Lafferty BJ, Catalano JG, Lee SS, Colvin VL, Fortner JD (2016) Engineered superparamagnetic iron oxide nanoparticles for ultra-enhanced uranium separation and sensing. J Mater Chem A 4(39):15022–15029.

    Article  CAS  Google Scholar 

  • Li Y, Yuan H, von dem Bussche A, Creighton M, Hurt RH, Kane AB, Gao H (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA 110(30):12295–12300.

    Article  CAS  Google Scholar 

  • Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980.

    Article  CAS  Google Scholar 

  • LĂłpez-Ortega A, Estrader M, Salazar-Alvarez G, EstradĂ© S, Golosovsky IV, Dumas RK, Keavney DJ, Vasilakaki M, Trohidou KN, Sort J (2012) Strongly exchange coupled inverse ferrimagnetic soft/hard, Mnx Fe3–x O4/Fex Mn3–x O4, core/shell heterostructured nanoparticles. Nanoscale 4(16):5138–5147

    Google Scholar 

  • Lu X, Feng X, Werber JR, Chu C, Zucker I, Kim JH, Osuji CO, Elimelech M (2017) Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc Natl Acad Sci USA 114(46):E9793–E9801.

    Article  CAS  Google Scholar 

  • Lu X, Feng X, Zhang X, Chukwu MN, Osuji CO, Elimelech M (2018) Fabrication of a desalination membrane with enhanced microbial resistance through vertical alignment of graphene oxide. Environ Sci Technol Lett 5(10):614–620.

    Article  CAS  Google Scholar 

  • Ma J, Guo X, Ying Y, Liu D, Zhong C (2017) Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem Eng J 313:890–898.

    Article  CAS  Google Scholar 

  • Madden AS, Hochella MF Jr, Luxton TP (2006) Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim Cosmochim Acta 70(16):4095–4104

    Article  CAS  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859

    Article  CAS  Google Scholar 

  • Mauter MS, Zucker I, Fo Perreault, Werber JR, Kim J-H, Elimelech M (2018) The role of nanotechnology in tackling global water challenges. Nat Sustain 1(4):166–175.

    Article  Google Scholar 

  • Mehta A, Zydney AL (2005) Permeability and selectivity analysis for ultrafiltration membranes. J Membr Sci 249(1–2):245–249

    Article  CAS  Google Scholar 

  • Moore PB, Shen J (1983) An X-ray structural study of cacoxenite, a mineral phosphate. Nature 306(5941):356–358.

    Article  CAS  Google Scholar 

  • Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD (2017) Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356(6343).

    Article  Google Scholar 

  • Perreault F, De Faria AF, Nejati S, Elimelech M (2015) Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9(7):7226–7236

    Article  CAS  Google Scholar 

  • Perreault F, Tousley ME, Elimelech M (2013) Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ Sci Technol Lett 1(1):71–76.

    Article  Google Scholar 

  • Prakash A, Zhu H, Jones CJ, Benoit DN, Ellsworth AZ, Bryant EL, Colvin VL (2009) Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents. ACS Nano 3(8):2139–2146.

    Article  CAS  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJJ (2013) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843.

    Article  CAS  Google Scholar 

  • Razmjou A, Mansouri J, Chen V (2011) The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Membr Sci 378(1):73–84

    Article  CAS  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592

    Article  CAS  Google Scholar 

  • Sadeghi I, Kaner P, Asatekin A (2018) Controlling and expanding the selectivity of filtration membranes. Chem Mater 30(21):7328–7354

    Article  CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452(7185):301–310.

    Article  CAS  Google Scholar 

  • Sianipar M, Kim SH, Khoiruddin K, Iskandar F, Wenten IG (2017) Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv 7(81):51175–51198.

    Article  CAS  Google Scholar 

  • Sun H, Tang B, Wu P (2017) Development of hybrid ultrafiltration membranes with improved water separation properties using modified superhydrophilic metal-organic framework nanoparticles. ACS Appl Mater Interfaces 9(25):21473–21484.

    Article  CAS  Google Scholar 

  • Sutton M, Burastero SR (2004) Uranium(VI) solubility and speciation in simulated elemental human biological fluids. Chem Res Toxicol 17(11):1468–1480.

    Article  CAS  Google Scholar 

  • Tang SC, Lo IM (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47(8):2613–2632

    Article  CAS  Google Scholar 

  • Taurozzi JS, Crock CA, Tarabara VV (2011) C60-polysulfone nanocomposite membranes: entropic and enthalpic determinants of C60 aggregation and its effects on membrane properties. Desalination 269(1–3):111–119.

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48.

    Article  Google Scholar 

  • Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H, Zhou R (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8(8):594–601.

    Article  CAS  Google Scholar 

  • Wang C-M, Lee L-W, Chang T-Y, Chen Y-C, Lin H-M, Lu K-L, Lii K-H (2015) Organic–inorganic hybrid zinc phosphate with 28-ring channels. Chem A Eur J 21(5):1878–1881.

    Article  Google Scholar 

  • Wang D, Gilliland SE, Yi X, Logan K, Heitger DR, Lucas HR, Wang W-N (2018) Iron mesh-based metal organic framework filter for efficient arsenic removal. Environ Sci Technol 52(7):4275–4284.

    Article  CAS  Google Scholar 

  • Wang L, Yang Z, Gao J, Xu K, Gu H, Zhang B, Zhang X, Xu B (2006) A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J Am Chem Soc 128(41):13358–13359

    Article  CAS  Google Scholar 

  • Wang Y, Cheng R, Wen Z, Zhao L (2011) Synthesis and characterization of single-crystalline MnFe2O4 ferrite nanocrystals and their possible application in water treatment. Eur J Inorg Chem 19:2942–2947.

    Google Scholar 

  • Wang Z, Teychene B, Chalew TE, Ajmani GS, Zhou T, Huang H, Wu X (2014) Aluminum-humic colloid formation during pre-coagulation for membrane water treatment: mechanisms and impacts. Water Res 61:171–180.

    Article  CAS  Google Scholar 

  • Warner CL, Addleman RS, Cinson AD, Droubay TC, Engelhard MH, Nash MA, Yantasee W, Warner MG (2010) High-Performance, superparamagnetic, nanoparticle-based heavy metal sorbents for removal of contaminants from natural waters. ChemSusChem 3(6):749–757

    Article  CAS  Google Scholar 

  • Westerhoff P, Atkinson A, Fortner J, Wong MS, Zimmerman J, Gardea-Torresdey J, Ranville J, Herckes P (2018) Low risk posed by engineered and incidental nanoparticles in drinking water. Nat Nanotechnol 13(8):661–669.

    Article  CAS  Google Scholar 

  • Xu Z, Zhang J, Shan M, Li Y, Li B, Niu J, Zhou B, Qian X (2014) Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 458:1–13.

    Article  CAS  Google Scholar 

  • Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453(7195):638

    Article  CAS  Google Scholar 

  • Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application. Chem Rev 110(10):5989–6008.

    Article  CAS  Google Scholar 

  • Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41(14):5114–5119

    Article  CAS  Google Scholar 

  • Yavuz CT, Mayo J, William WY, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(5801):964–967

    Article  Google Scholar 

  • Yeap SP, Leong SS, Ahmad AL, Ooi BS, Lim J (2014) On size fractionation of iron oxide nanoclusters by low magnetic field gradient. J Phys Chem C 118(41):24042–24054

    Article  CAS  Google Scholar 

  • Yu L, Zhang Y, Zhang B, Liu J, Zhang H, Song C (2013) Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J Membr Sci 447:452–462.

    Article  CAS  Google Scholar 

  • Zeman LJ, Zydney AL (2017) Microfiltration and ultrafiltration: principles and applications. CRC Press

    Google Scholar 

  • Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Li Y, Yang C, Wang Z, Qian X (2013) Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J Mater Chem A 1(9).

    Article  CAS  Google Scholar 

  • Zhang W, Cheng W, Ziemann E, Be’er A, Lu X, Elimelech M, Bernstein R (2018) Functionalization of ultrafiltration membrane with polyampholyte hydrogel and graphene oxide to achieve dual antifouling and antibacterial properties. J Membr Sci 565:293–302.

    Article  CAS  Google Scholar 

  • Zhang X, Cheng C, Qian J, Lu Z, Pan S, Pan B (2017) Highly efficient water decontamination by using sub-10 nm FeOOH confined within millimeter-sized mesoporous polystyrene beads. Environ Sci Technol 51(16):9210–9218.

    Article  CAS  Google Scholar 

  • Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@ SiO2 core–shell magnetic microspheres for highly efficient sorption of U (VI). Chem Eng J 235:275–283

    Article  CAS  Google Scholar 

  • Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membr Sci 453:292–301.

    Article  CAS  Google Scholar 

  • Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43(3):715–723.

    Article  CAS  Google Scholar 

  • Zou F, Zhou H, Jeong DY, Kwon J, Eom SU, Park TJ, Hong SW, Lee J (2017) Wrinkled surface-mediated antibacterial activity of graphene oxide nanosheets. ACS Appl Mater Interfaces 9(2):1343–1351.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Jiang or John Fortner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, Y., Peng, B., Wan, Z., Kim, C., Li, W., Fortner, J. (2020). Nanotechnology as a Key Enabler for Effective Environmental Remediation Technologies. In: Jiang, G., Li, X. (eds) A New Paradigm for Environmental Chemistry and Toxicology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9447-8_12

Download citation

Publish with us

Policies and ethics