Skip to main content

Inter- and Intramolecular Cross-Dehydrogenative Coupling of Alcohols Through the Hydrogen-Borrowing Approach

  • Chapter
  • First Online:
Heterocycles via Cross Dehydrogenative Coupling

Abstract

Cross-dehydrogenative coupling (CDC) reaction is a versatile method to couple two different alcohols under mild reaction conditions. The chapter summarizes the scientific literature concerning both intra- and intermolecular CDC reactions employing a wide range of catalysts. The various different classes of products that have been obtained are further described in depth. Attention is also given to recent development in the field that employs cooperative ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Corma A, Navas J, Sabater MJ (2018) Chem Rev 118:1410–1459 and references cited therein. (b) Chelucci G (2017) Coord Chem Rev 331:1–36. (c) Huang F, Liu ZQ, Yu ZK (2016) Angew Chem Int Ed 55:862–875. (d) Gunanathan C, Milstein D (2013) Science 341:1229712. (e) Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M (2011) ChemCatChem 3:1853–1864

    Google Scholar 

  2. (a) Matsu-ura T, Sakaguchi S, Obora Y, Ishi Y (2006) J Org Chem 71:8306–8308. (b) Gregorio G, Pregaglia GF, Ugo R (1972) J Organometal Chem 37:385–387. (c) Veibel S, Nielsen JI (1967) Tetrahedron 23:1723–1733. (d) Guerbet, M (1909) C R Hebd Seances Acad Sci 149:129–132. (e) Guerbet M (1899) C R Hebd Seances Acad Sci 128:1002–1004

    Google Scholar 

  3. Cho CS, Kim BT, Kim H-S, Kim T-J, Shim SC (2003) Organometallics 22:3608–3610

    Article  CAS  Google Scholar 

  4. Cho CS, Ren WX, Shim SC (2005) Bull Korean Chem Soc 26:1611–1613

    Google Scholar 

  5. Fujita K-I, Asai C, Yamaguchi T, Hanasaka F, Yamaguchi R (2005) Org Lett 7:4017–4019

    Google Scholar 

  6. Adair GRA, Williams JMJ (2005) Tetrahedron Lett 46:8233–8235

    Google Scholar 

  7. (a) Martinez R, Ramon DJ, Yus M (2006) Tetrahedron 62:8988–9001. (b) Martinez R, Ramon DJ, Yus M (2006) Tetrahedron 62:8982–8987

    Google Scholar 

  8. Viciano M, Sanaú M, Peris E (2007) Organometallics 26:6050–6054

    Article  CAS  Google Scholar 

  9. Prades A Viciano M Sanau M, Peris E (2008) Organometallics 27:4254–4259

    Article  CAS  Google Scholar 

  10. Viciano M, Sanaú M, Merino MS, Tejeda J, Peris E, Royo B (2008) Organometallics 27:1305–1309

    Article  CAS  Google Scholar 

  11. Costa AP, Sanaú M, Peris E, Roy B (2009) Dalton Trans 6960–6966

    Google Scholar 

  12. (a) Ruiz-Botella S, Peris E (2015) Chem Eur J 21:15263–15271. (b) Ibañez S, Poyatos M, Peris E (2016) Dalton Trans 45:14154–14159

    Google Scholar 

  13. Gnanamgari D, Leung CH, Schley ND, Hilton ST, Crabtree RH (2008) Org Biomol Chem 6:4442–4445

    Google Scholar 

  14. Cheung HW, Lee TY, Lui HY, Yeung CH, Lau CP (2008) Adv Synth Catal 350:2975–2983

    Google Scholar 

  15. Gnanamgari D, Sauer ELO, Schley ND, Butler C, Incarvito CD, Crabtree RH (2009) Organometallics 28:321–325

    Article  CAS  Google Scholar 

  16. Allen LJ, Crabtree RH (2010) Green Chem 12:1362–1364

    Google Scholar 

  17. Shimizu K-I, Sato R, Satsuma A (2009) Angew Chem Int Ed 48:3982–3986

    Google Scholar 

  18. (a) Liu X, Ding R-S, He L, Liu Y-M, Cao Y, He H-Y, Fan K-N (2013) ChemSusChem, 6:604–608. (b) Wang D, Guo X-Q, Wang C-X, Wang Y-N, Zhong R, Zhu X-H, Cai L-H, Gao Z-W, Hou X-F (2013) Adv Synth Catal 355:1117–1125. (c) Xu J, Yue H, Liu S, Wang H, Du Y, Xu C, Dong W, Liu C (2016) RSC Adv 6:24164–24174

    Google Scholar 

  19. Kose O, Saito S (2010) Org Biomol Chem 8:896–900

    Google Scholar 

  20. Segarra C, Mas-Marzá E, Mata JA, Peris E (2011) Adv Synth Catal 353:2078–2084

    Google Scholar 

  21. Xu C, Goh LY, Pullarkat SA (2011) Organometallics 30:6499–6502

    Article  CAS  Google Scholar 

  22. Xu C, Chuan LW, Yongxin L, Pullarkat SA (2012) Tetrahedron Lett 53:1450–1455

    Google Scholar 

  23. Gong X, Zhang H, Li X (2011) Tetrahedron Lett 52:5596–5600

    Google Scholar 

  24. Yang J, Liu X, Meng D-L, Chen H-Y, Zong Z-H, Feng T-T, Sun K (2012) Adv Synth Catal 354:328–334

    Google Scholar 

  25. Tanga G, Cheng C-H (2011) Adv Synth Catal 353:1918–1922

    Google Scholar 

  26. Miura T, Kose O, Li F, Kai S, Saito S (2011) Chem Eur J 17:11146–11151

    Google Scholar 

  27. Liao S, Yu K, Li Q, Tian H, Zhang Z, Yu X, Xu Q (2012) Org Biomol Chem 10:2973–2978

    Google Scholar 

  28. Xu Q, Chen J, Liu Q (2013) Adv Synth Catal 355:697–704

    Google Scholar 

  29. Jumde VR, Gonsalvi L, Guerriero A, Peruzzini M, Taddei M (2015) Eur J Org Chem 1829–1833

    Google Scholar 

  30. Satyanarayana P, Reddy GM, Maheswaran H, Kantam ML (2013) Adv Synth Catal 355:1859–1867

    Google Scholar 

  31. Jiménez MV, Fernández-Tornos J, Modrego FJ, Pérez-Torrente JJ, Oro LA (2015) Chem Eur J 21:17877–17889

    Google Scholar 

  32. Chang W, Gong X, Wang S, Xiao L-P, Song G (2017) Org Biomol Chem 15:3466–3471

    Google Scholar 

  33. Musa S, Ackermann L, Gelman D (2013) Adv Synth Catal 355:3077–3080

    Google Scholar 

  34. Wang R, Ma J, Li F (2015) J Org Chem 80:10769–10776

    Google Scholar 

  35. (a) Chakrabarti K, Paul B, Maji M, Roy BC, Shee S, Kundu S (2016) Org Biomol Chem 14:10988–10997. (b) Roy BC, Chakrabarti K, Shee S, Paul B, Kundu S (2016) Chem Eur J 22:18147–18155. (c) Roy BC, Debnath S, Chakrabarti K, Paul B, Maji M, Kundu S (2018) Org Chem Front 5:1008–1018

    Google Scholar 

  36. Shee S, Paul B, Panja D, Roy BC, Chakrabarti K, Ganguli K, Das A, Das GK, Kundu S (2017) Adv Synth Catal 359:3888–3893

    Google Scholar 

  37. Sahoo AR, Lalitha G, Murugesh V, Bruneau C, Sharma GVM, Suresh S, Achard M (2017) J Org Chem 82:10727–10731

    Google Scholar 

  38. Freitag F, Irrgang T, Kempe R (2017) Chem Eur J 23:12110–12113

    Google Scholar 

  39. Shi J, Hu B, Ren P, Shang S, Yang X, Chen D (2018) Organometallics 37:2795–2806

    Article  CAS  Google Scholar 

  40. Tan D-W, Li H-X, Zhu D-L, Li H-Y, Young DJ, Yao J-L, Lang J-P (2018) Org Lett 20:608–611

    Google Scholar 

  41. Genç S, Günnaz S, Çetinkaya B, Gülcemal S, Gülcemal D (2018) J Org Chem 83:2875–2881

    Google Scholar 

  42. Makarov IS, Madsen R (2013) J Org Chem 78:6593–6598

    Google Scholar 

  43. Matsu-ura T, Sakaguchi S, Obora Y, Ishii Y (2006) J Org Chem 71:8306–8308

    Google Scholar 

  44. Riittonen T, Toukoniitty EK, Madnani D, Leino A-R, Kordas K, Szabo M, Sapi A, Arve K, Warna J, Mikkola J-P (2012) Catalyst 2:68–84

    Google Scholar 

  45. Koda K, Matsu-ura T, Obora Y, Ishii Y (2009) Chem Lett 38:838–839

    Google Scholar 

  46. (a) Dowson GRM, Haddow MF, Lee J, Wingad RL, Wass DF (2013) Angew Chem Int Ed 52:9005–9008. (b) Wingad RL, Gates PJ, Street STG, Wass DF (2015) ACS Catal 5:5822–5826

    Google Scholar 

  47. Chakraborty S, Piszel PE, Hayes CE, Baker RT, Jones WD (2015) J Am Chem Soc 137:14264–14267

    Google Scholar 

  48. Xie Y, Ben-David Y, Shimon LJW, Milstein D (2016) J Am Chem Soc 138:9077–9080

    Google Scholar 

  49. Fu S, Shao Z, Wang Y, Liu Q (2017) J Am Chem Soc 139:11941–11948

    Google Scholar 

  50. Kulkarni NV, Brennessel WW, Jones WD (2018) ACS Catal 8:997–1002

    Google Scholar 

  51. Li Y, Li HQ, Junge H, Beller M (2014) Chem Commun 50:14991–14994

    Google Scholar 

  52. Oikawa K, Itoh S, Yano H, Kawasaki H, Obora Y (2017) Chem Commun 53:1080–1083

    Google Scholar 

  53. Liu Q, Xu G, Wang Z, Liu X, Wang X, Dong L, Mu X, Liu H (2017) Chemsuschem 10:4748–4755

    Article  CAS  Google Scholar 

  54. Cano R, Yus M, Ramon DJ (2012) Chem Commun 48:7628–7630

    Google Scholar 

  55. Mura MG, Luca LD, Taddei M, Williams JMJ, Porcheddu A (2014) Org Lett 16:2586–2589

    Google Scholar 

  56. Manojveer S, Salahi S, Wendt OF, Johnson MT (2018) J Org Chem 83:10864–10870

    Google Scholar 

  57. Obora Y, Anno Y, Okamoto R, Matsu-ura T, Ishii Y (2011) Angew Chem Int Ed 50:8618–8622

    Google Scholar 

  58. Manojveer S, Forrest SJK, Johnson MT (2018) Chem Eur J 24:803–807

    Google Scholar 

  59. Wang Y, Shao Z, Zhang K, Liu Q (2018) Angew Chem Int Ed 57:15143–15147

    Google Scholar 

  60. (a) Blum Y, Reshef D, Shvo Y (1981) Tetrahedron Lett 22:1541–1544. (b) Shvo Y, Blum Y, Reshef D, Menzin M (1982) J Organomet Chem 226:C21–C24. (c) Cottier L, Descotes G, Sabadie J (1980) J Mol Catal 7:337–348

    Google Scholar 

  61. Tamaru Y, Yamada Y, Inoue K, Yamamoto Y, Yoshida Z (1983) J Org Chem 48:1286–1292

    Google Scholar 

  62. Blum Y, Shvo Y (1985) J Organomet Chem 282:C7–C10

    Google Scholar 

  63. Murahashi S-I, Naota T, Ito K, Maeda Y, Taki H (1987) J Org Chem 52:4319–4327

    Google Scholar 

  64. Suzuki T, Morita K, Tsuchida M, Hiroi K (2002) Org Lett 4:2361–2363

    Google Scholar 

  65. Zhao J, Hartwig JF (2005) Organometallics 24:2441–2446

    Article  CAS  Google Scholar 

  66. Zhang J, Leitus G, Ben-David Y, Milstein D (2005) J Am Chem Soc 127:10840–10841

    Google Scholar 

  67. Zhang J, Gandelman M, Shimon LJW, Milstein D (2007) J Chem Soc Dalton Trans 107–113

    Google Scholar 

  68. Gunanathan C, Shimon LJW, Milstein D (2009) J Am Chem Soc 131:3146–3147

    Google Scholar 

  69. Kossoy E, Diskin-Posner Y, Leitus G, Milstein D (2012) Adv Synth Catal 354:497–504

    Google Scholar 

  70. Owston NA, Parker AJ, Williams JMJ (2008) Chem Commun 624–625

    Google Scholar 

  71. Zweifel T, Naubron J-V, Grützmacher H (2009) Angew Chem Int Ed 48:559–563

    Google Scholar 

  72. (a) Arita S, Koike T, Kayaki Y, Ikariya T (2008) Chem Asian J 3:1479–1485. (b) Izumi A, Obora Y, Sakaguchi S, Ishii Y (2006) Tetrahedron Lett 47:9199–9201

    Google Scholar 

  73. (a) Kaizuka K, Miyamura H, Kobayashi S (2010) J Am Chem Soc 132:15096–15098. (b) Xu B, Haubrich J, Freyschlag CG, Madix RJ, Friend CM (2010) Chem Sci 1:310–314. (c) Su F-Z, Ni J, Sun H, Cao Y, He H-Y, Fan K-N (2008) Chem Eur J 14:7131–7135. (d) Nielsen IS, Taarning E, Egeblad K, Madsen R, Christensen CH (2007) Catal Lett 116:35–40

    Google Scholar 

  74. Gowrisankar S, Neumann H, Beller M (2011) Angew Chem Int Ed 50:5139–5143

    Google Scholar 

  75. Liu C, Wang J, Meng L, Deng Y, Li Y, Lei A (2011) Angew Chem Int Ed 50:5144–5148

    Google Scholar 

  76. Luo F, Pan C, Cheng J, Chen F (2011) Tetrahedron 67:5878–5882

    Article  CAS  Google Scholar 

  77. Sølvhøj A, Madsen R (2011) Organometallics 30:6044–6048

    Article  Google Scholar 

  78. Srimani D, Balaraman E, Gnanaprakasam B, Ben-David Y, Milstein D (2012) Adv Synth Catal 354:2403–2406

    Google Scholar 

  79. Zhang J, Balaraman E, Leitus G, Milstein D (2011) Organometallics 30:5716–5724

    Article  CAS  Google Scholar 

  80. (a) Wang L, Zhu W, Zheng D, Yu X, Cui J, Jia M, Zhang W, Wang Z (2010) React Kinet Mech Catal 101:365. (b) Inui K, Kurabayashi T, Sato S, Ichikawa N (2014) J Mol Catal A 216:147. (c) Zonetti PC, Celnik J, Letichevsky S, Gaspar AB, Appel LG (2011) J Mol Catal A 334:29. (d) Medeiros PRS, Eon JG, Appel LG (2000) Catal Lett 69:79

    Google Scholar 

  81. Nielsen M, Junge H, Kammer A, Beller M (2012) Angew Chem Int Ed 51:5711–5713

    Google Scholar 

  82. Chakraborty S, Lagaditis PO, Förster M, Bielinski EA, Hazari N, Holthausen MC, Jones WD, Schneider S (2014) ACS Catal 4:3994–4003

    Google Scholar 

  83. Sahoo AR, Jiang F, Bruneau C, Sharma GVM, Suresh S, Roisnel T, Dorcet V, Achard M (2017) Catal Sci Technol 7:3492–3498

    Google Scholar 

  84. Nguyen DH, Trivelli X, Capet F, Paul J-F, Dumeignil F, Gauvin R (2017) M ACS Catal 7:2022–2032

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus T. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manojveer, S., Johnson, M.T. (2019). Inter- and Intramolecular Cross-Dehydrogenative Coupling of Alcohols Through the Hydrogen-Borrowing Approach. In: Srivastava, A., Jana, C. (eds) Heterocycles via Cross Dehydrogenative Coupling. Springer, Singapore. https://doi.org/10.1007/978-981-13-9144-6_7

Download citation

Publish with us

Policies and ethics