Skip to main content

Neural Underpinnings of Creative Thinking and Tool Use: A Meta-Analysis of Neuroimaging Data

  • Chapter
  • First Online:
Learning Among Neanderthals and Palaeolithic Modern Humans

Abstract

The aim of our research project was to investigate whether the replacement of Neanderthals by modern humans can be explained by differences in anatomical and functional differences of the brain. In the present study, we created functional maps of creative thinking and understanding of tool use action.

Research articles on neuroimaging studies of creative thinking and observation or imitation of tool use action were collected, and then meta-analysis using activation likelihood estimation for neuroimaging articles was performed to evaluate the regions associated with specific cognitive functions.

The results demonstrated that the lateral fronto-parieto-temporal network of the left hemisphere was mainly contributed to the cognitive processing of both creative thinking and tool use. The right cerebellum also participated in those cognitive processings. Our reconstruction of the virtual Neanderthal brain using computational neuroanatomy indicates morphological differences in parietal cortex and cerebellum between Neanderthals and modern humans. Integrating with those results, the difference in cognitive ability of learning behavior could be discussed from the standpoint of neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe-Ouchi A, Saito F, Kawamura K, Raymo M, Okuno J, Takahashi K, Blatter H (2013) Insolation driven 100,000-year glacial cycles and hysteresis of ice sheet volume. Nature 500:190–193

    Article  Google Scholar 

  • Abraham A, Pieritz K, Thybusch K, Rutter B, Kröger S, Schweckendiek J, Stark R, Windmann S, Hermann C (2012) Creativity and the brain: uncovering the neural signature of conceptual expansion. Neuropsychologia 50(8):1906–1917

    Article  Google Scholar 

  • Almeida J, Fintzi AR, Mahon BZ (2013) Tool manipulation knowledge is retrieved by way of the ventral visual object processing pathway. Cortex 49(9):2334–2344

    Article  Google Scholar 

  • Arden R, Chavez RS, Grazioplene R, Jung RE (2010) Neuroimaging creativity: a psychometric view. Behav Brain Res 214(2):143–156

    Article  Google Scholar 

  • Asari T, Konishi S, Jimura K, Chikazoe J, Nakamura N, Miyashita Y (2008) Right temporopolar activation associated with unique perception. NeuroImage 41(1):145–152

    Article  Google Scholar 

  • Aziz-Zadeh L, Kaplan JT, Iacoboni M (2009) “Aha!”: the neural correlates of verbal insight solutions. Hum Brain Mapp 30(3):908–916

    Article  Google Scholar 

  • Aziz-Zadeh L, Liew SL, Dandekar F (2013) Exploring the neural correlates of visual creativity. Soc Cogn Affect Neurosci 8(4):475–480

    Article  Google Scholar 

  • Barbey AK, Koenigs M, Grafman J (2013) Dorsolateral prefrontal contributions to human working memory. Cortex 49(5):1195–1205

    Article  Google Scholar 

  • Bengtsson SL, Csíkszentmihályi M, Ullén F (2007) Cortical regions involved in the generation of musical structures during improvisation in pianists. J Cogn Neurosci 19(5):830–842

    Article  Google Scholar 

  • Berkowitz AL, Ansari D (2008) Generation of novel motor sequences: the neural correlates of musical improvisation. NeuroImage 41(2):535–543

    Article  Google Scholar 

  • Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Ann Rev Neurosci 25:151–188

    Article  Google Scholar 

  • Cardillo ER, Watson CE, Schmidt GL, Kranjec A, Chatterjee A (2012) From novel to familiar: tuning the brain for metaphors. NeuroImage 59(4):3212–3221

    Article  Google Scholar 

  • Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and imitation in the human brain. NeuroImage 50(3):1148–1167

    Article  Google Scholar 

  • Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. NeuroImage 12(4):478–484

    Article  Google Scholar 

  • Chouinard PA, Goodale MA (2010) Category-specific neural processing for naming pictures of animals and naming pictures of tools: an ALE meta-analysis. Neuropsychologia 48(2):409–418

    Article  Google Scholar 

  • Chrysikou EG, Thompson-Schill SL (2011) Dissociable brain states linked to common and creative object use. Hum Brain Mapp 32(4):665–675

    Article  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201

    Article  Google Scholar 

  • Creem-Regehr SH, Lee JN (2005) Neural representations of graspable objects: are tools special? Brain Res Cogn Brain Res 22(3):457–469

    Article  Google Scholar 

  • Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16(2):205–212

    Article  Google Scholar 

  • Dandan T, Haixue Z, Wenfu L, Wenjing Y, Jiang Q, Qinglin Z (2013) Brain activity in using heuristic prototype to solve insightful problems. Behav Brain Res 253:139–144

    Article  Google Scholar 

  • de Manzano Ö, Ullén F (2012) Goal-independent mechanisms for free response generation: creative and pseudo-random performance share neural substrates. NeuroImage 59(1):772–780

    Article  Google Scholar 

  • Decety J, Grèzes J, Costes N, Perani D, Jeannerod M, Procyk E, Grassi F, Fazio F (1997) Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain 120(10):1763–1777

    Article  Google Scholar 

  • Dietrich A, Kanso R (2010) A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol Bull 136(5):822–848

    Article  Google Scholar 

  • Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926

    Article  Google Scholar 

  • Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. NeuroImage 59(3):2349–2361

    Article  Google Scholar 

  • Ellamil M, Dobson C, Beeman M, Christoff K (2012) Evaluative and generative modes of thought during the creative process. NeuroImage 59(2):1783–1794

    Article  Google Scholar 

  • Emmorey K, Grabowski T, McCullough S, Damasio H, Ponto L, Hichwa R, Bellugi U (2004) Motor-iconicity of sign language does not alter the neural systems underlying tool and action naming. Brain Lang 89(1):27–37

    Article  Google Scholar 

  • Fabbri-Destro M, Rizzolatti G (2008) Mirror neurons and mirror systems in monkeys and humans. Physiology 23(3):171–179

    Article  Google Scholar 

  • Fadiga L, Craighero L, D’Ausilio A (2009) Broca’s area in language, action, and music. Ann N Y Acad Sci 1169:448–458

    Article  Google Scholar 

  • Fink A, Grabner RH, Benedek M, Reishofer G, Hauswirth V, Fally M, Neuper C, Ebner F, Neubauer AC (2009) The creative brain: investigation of brain activity during creative problem solving by means of EEG and FMRI. Hum Brain Mapp 30(3):734–748

    Article  Google Scholar 

  • Fink A, Grabner RH, Gebauer D, Reishofer G, Koschutnig K, Ebner F (2010) Enhancing creativity by means of cognitive stimulation: evidence from an fMRI study. NeuroImage 52(4):1687–1695

    Article  Google Scholar 

  • Fridman EA, Immisch I, Hanakawa T, Bohlhalter S, Waldvogel D, Kansaku K, Wheaton L, Wu T, Hallett M (2006) The role of the dorsal stream for gesture production. NeuroImage 29(2):417–428

    Article  Google Scholar 

  • Geake JG, Hansen PC (2005) Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage 26(2):555–564

    Article  Google Scholar 

  • Goel V, Vartanian O (2005) Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cereb Cortex 15(8):1170–1177

    Article  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25

    Article  Google Scholar 

  • Green AE, Kraemer DJ, Fugelsang JA, Gray JR, Dunbar KN (2012) Neural correlates of creativity in analogical reasoning. J Exp Psychol Learn Mem Cogn 38(2):264–272

    Article  Google Scholar 

  • Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207(1):3–17

    Article  Google Scholar 

  • Grèzes J, Decety J (2001) Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp 12(1):1–19

    Article  Google Scholar 

  • Grèzes J, Decety J (2002) Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia 40(2):212–222

    Article  Google Scholar 

  • Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123(11):2306–2313

    Article  Google Scholar 

  • Hao X, Cui S, Li W, Yang W, Qiu J, Zhang Q (2013) Enhancing insight in scientific problem solving by highlighting the functional features of prototypes: an fMRI study. Brain Res 1534:46–54

    Article  Google Scholar 

  • Hauk O, Johnsrude I, Pulvermüller F (2004) Somatotopic representation of action words in human motor and premotor cortex. Neuron 41(2):301–307

    Article  Google Scholar 

  • Hermsdörfer J, Terlinden G, Mühlau M, Goldenberg G, Wohlschläger AM (2007) Neural representations of pantomimed and actual tool use: evidence from an event-related fMRI study. NeuroImage 36(S2):T109–T118

    Article  Google Scholar 

  • Higuchi S, Imamizu H, Kawato M (2007) Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex 43(3):350–358

    Article  Google Scholar 

  • Howard-Jones PA, Blakemore SJ, Samuel EA, Summers IR, Claxton G (2005) Semantic divergence and creative story generation: an fMRI investigation. Cogn Brain Res 25(1):240–250

    Article  Google Scholar 

  • Huang P, Qiu L, Shen L, Zhang Y, Song Z, Qi Z, Gong Q, Xie P (2012) Evidence for a left-over-right inhibitory mechanism during figural creative thinking in healthy nonartists. Hum Brain Mapp 34(10):2724–2732

    Article  Google Scholar 

  • Imazu S, Sugio T, Tanaka S, Inui T (2007) Differences between actual and imagined usage of chopsticks: an fMRI study. Cortex 43(3):301–307

    Article  Google Scholar 

  • Iriki A, Tanaka M, Obayashi S, Iwamura Y (2001) Self-images in the video monitor coded by monkey intraparietal neurons. Neurosci Res 40(2):163–173

    Article  Google Scholar 

  • Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV (1999) Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci U S A 96(16):9379–9384

    Article  Google Scholar 

  • Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9(4):304

    Article  Google Scholar 

  • Jeon H (2014) Hierarchical processing in the prefrontal cortex in a variety of cognitive domains. Front Syst Neurosci 8:223

    Article  Google Scholar 

  • Johnson-Frey SH, Newman-Norlund R, Grafton ST (2005) A distributed left hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15(6):681–695

    Article  Google Scholar 

  • Jung-Beeman M, Bowden EM, Haberman J, Frymiare JL, Arambel-Liu S, Greenblatt R, Reber PJ, Kounios J (2004) Neural activity when people solve verbal problems with insight. PLoS Biol 2(4):E97

    Article  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311

    Article  Google Scholar 

  • Kleibeuker SW, Koolschijn PC, Jolles DD, Schel MA, De Dreu CK, Crone EA (2013) Prefrontal cortex involvement in creative problem solving in middle adolescence and adulthood. Dev Cogn Neurosci 5:197–206

    Article  Google Scholar 

  • Kochiyama T, Ogihara N, Tanabe HC, Kondo O, Amano H, Hasegawa K, Suzuki H, Ponce de Leon MS, Zollikofer CPE, Bastir M, Stringer C, Sadato N, Akazawa T (2018) Reconstructing the Neanderthal brain using computational anatomy. Sci Rep 8:6269

    Google Scholar 

  • Kounios J, Frymiare JL, Bowden EM, Fleck JI, Subramaniam K, Parrish TB, Jung-Beeman M (2006) The prepared mind: neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychol Sci 17(10):882–890

    Article  Google Scholar 

  • Kowatari Y, Lee SH, Yamamura H, Nagamori Y, Levy P, Yamane S, Yamamoto M (2009) Neural networks involved in artistic creativity. Hum Brain Mapp 30(5):1678–1690

    Article  Google Scholar 

  • Kröger S, Rutter B, Stark R, Windmann S, Hermann C, Abraham A (2012) Using a shoe as a plant pot: neural correlates of passive conceptual expansion. Brain Res 1430:52–61

    Article  Google Scholar 

  • Króliczak G, Frey SH (2009) A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cereb Cortex 19(10):2396–2410

    Article  Google Scholar 

  • Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT (2005) ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25(1):155–164

    Article  Google Scholar 

  • Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 28(11):1194–1205

    Article  Google Scholar 

  • Limb CJ, Braun AR (2008) Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation. PLoS One 3(2):e1679

    Article  Google Scholar 

  • Liu S, Chow MH, Xu Y, Erkkinen MG, Swett KE, Eagle MW, Rizik-Baer DA, Braun AR (2012) Neural correlates of lyrical improvisation: an fMRI study of freestyle rap. Sci Rep 2:834

    Article  Google Scholar 

  • Ludmer R, Dudai Y, Rubin N (2011) Uncovering camouflage: amygdala activation predicts long-term memory of induced perceptual insight. Neuron 69(5):1002–1014

    Article  Google Scholar 

  • Luo J, Niki K (2003) Function of hippocampus in “insight” of problem solving. Hippocampus 13(3):316–323

    Article  Google Scholar 

  • Luo J, Niki K, Phillips S (2004) Neural correlates of the ‘Aha! reaction’. Neuroreport 15(13):2013–2017

    Article  Google Scholar 

  • Luo J, Niki K, Knoblich G (2006) Perceptual contributions to problem solving: chunk decomposition of Chinese characters. Brain Res Bull 70(4–6):430–443

    Article  Google Scholar 

  • Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M, Palomero-Gallagher N, Armstrong E, Zilles K (2007) Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/ MT1: a probabilistic, stereotaxic map of area hOc5. Cereb Cortex 17:562–574

    Article  Google Scholar 

  • Martin A, Wiggs CL, Ungerleider LG, Haxby JV (1996) Neural correlates of category-specific knowledge. Nature 379(6566):649–652

    Article  Google Scholar 

  • Mashal N, Faust M, Hendler T, Jung-Beeman M (2007) An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain Lang 100(2):115–126

    Article  Google Scholar 

  • Menz MM, Blangero A, Kunze D, Binkofski F (2010) Got it! Understanding the concept of a tool. NeuroImage 51(4):1438–1444

    Article  Google Scholar 

  • Miura N, Nagai K, Yamazaki M, Yoshida Y, Tanabe HC, Akazawa T, Sadato N (2014) Brain activation related to the imitative learning of bodily actions observed during the construction of a Mousterian stone tool: a functional magnetic resonance imaging study, Dynamics of learning in Neanderthals and modern humans volume 2: cognitive and physical perspectives. Springer, Tokyo, pp 221–232

    Google Scholar 

  • Mizelle JC, Wheaton LA (2010) Why is that hammer in my coffee? A multimodal imaging investigation of contextually based tool understanding. Front Hum Neurosci 4:233

    Article  Google Scholar 

  • Mruczek RE, von Loga IS, Kastner S (2013) The representation of tool and non-tool object information in the human intraparietal sulcus. J Neurophysiol 109(12):2883–2896

    Article  Google Scholar 

  • Patel AD (2003) Language, music, syntax and the brain. Nat Neurosci 6(7):674

    Article  Google Scholar 

  • Peelen MV, Downing PE (2005) Selectivity for the human body in the fusiform gyrus. J Neurophysiol 93(1):603–608

    Article  Google Scholar 

  • Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191(1):62–88

    Article  Google Scholar 

  • Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage 62(2):816–847

    Article  Google Scholar 

  • Qiu J, Li H, Jou J, Liu J, Luo Y, Feng T, Wu Z, Zhang Q (2010) Neural correlates of the “Aha” experiences: evidence from an fMRI study of insight problem solving. Cortex 46(3):397–403

    Article  Google Scholar 

  • Rutter B, Kröger S, Stark R, Schweckendiek J, Windmann S, Hermann C, Abraham A (2012) Can clouds dance? Neural correlates of passive conceptual expansion using a metaphor processing task: implications for creative cognition. Brain Cogn 78(2):114–122

    Article  Google Scholar 

  • Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Pütz B (1998) Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci 18(5):1827–1840

    Article  Google Scholar 

  • Shah C, Erhard K, Ortheil HJ, Kaza E, Kessler C, Lotze M (2011) Neural correlates of creative writing: an fMRI study. Hum Brain Mapp 34(5):1088–1101

    Article  Google Scholar 

  • Shea JJ, Sisk ML (2010) Complex projectile technology and Homo sapiens dispersal from Africa to Western Eurasia. PaleoAnthropology 2010:100–122

    Google Scholar 

  • Siebörger FT, Ferstl EC, von Cramon DY (2007) Making sense of nonsense: an fMRI study of task induced inference processes during discourse comprehension. Brain Res 1166:77–91

    Article  Google Scholar 

  • Starrfelt R, Gerlach C (2007) The visual what for area: words and pictures in the left fusiform gyrus. NeuroImage 35(1):334–342

    Article  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44(2):489–501

    Article  Google Scholar 

  • Stout D, Chaminade T (2007) The evolutionary neuroscience of tool making. Neuropsychologia 45:1091–1100

    Article  Google Scholar 

  • Stout D, Toth N, Schick K, Chaminade T (2008) Neural correlates of early stone age toolmaking: technology, language and cognition in human evolution. Philos Trans R Soc Lond Ser B Biol Sci 363(1499):1939–1949

    Article  Google Scholar 

  • Tanabe HC, Kochiyama T, Sadato N, Ogihara N (2014) Exploring the difference of brain anatomy and function between Neanderthals and modern humans: neuroanatomical and functional neuroimaging approach. In: Akazawa T, Amari S, Aoki K, Bar-Yosef O, Holloway RL, Ishii S, Kimura T, Nishiaki Y, Ogihara N, Tanabe HC, Terashima H, Yoneda M (eds) The second international conference of replacement of Neanderthals by modern humans: testing evolutionary models of learning. RNMH Project Group, Tokyo, pp 121–123

    Google Scholar 

  • Tian F, Tu S, Qiu J, Lv JY, Wei DT, Su YH, Zhang QL (2011) Neural correlates of mental preparation for successful insight problem solving. Behav Brain Res 216(2):626–630

    Article  Google Scholar 

  • Tomasino B, Weiss PH, Fink GR (2012) Imagined tool-use in near and far space modulates the extra-striate body area. Neuropsychologia 50(10):2467–2476

    Article  Google Scholar 

  • Tootell RBH, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3125–3230

    Article  Google Scholar 

  • Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp 33(1):1–13

    Article  Google Scholar 

  • Valyear KF, Cavina-Pratesi C, Stiglick AJ, Culham JC (2007) Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp? NeuroImage 36(S 2):T94–T108

    Article  Google Scholar 

  • van Elk M (2014) The left inferior parietal lobe represents stored hand-postures for object use and action prediction. Front Psychol 5:333

    Google Scholar 

  • Vartanian O, Goel V (2005) Task constraints modulate activation in right ventral lateral prefrontal cortex. NeuroImage 27(4):927–933

    Article  Google Scholar 

  • Villarreal MF, Cerquetti D, Caruso S, Schwarcz López Aranguren V, Gerschcovich ER, Frega AL, Leiguarda RC (2013) Neural correlates of musical creativity: differences between high and low creative subjects. PLoS One 8(9):e75427

    Article  Google Scholar 

  • Vingerhoets G, Honoré P, Vandekerckhove E, Nys J, Vandemaele P, Achten E (2010) Multifocal intraparietal activation during discrimination of action intention in observed tool grasping. Neuroscience 169(3):1158–1167

    Article  Google Scholar 

  • Vingerhoets G, Vandekerckhove E, Honoré P, Vandemaele P, Achten E (2011) Neural correlates of pantomiming familiar and unfamiliar tools: action semantics versus mechanical problem solving? Hum Brain Mapp 32(6):905–918

    Article  Google Scholar 

  • Wadsworth HM, Kana RK (2011) Brain mechanisms of perceiving tools and imagining tool use acts: a functional MRI study. Neuropsychologia 49(7):1863–1869

    Article  Google Scholar 

  • Wu L, Knoblich G, Luo J (2013) The role of chunk tightness and chunk familiarity in problem solving: evidence from ERPs and fMRI. Hum Brain Mapp 34(5):1173–1186

    Article  Google Scholar 

  • Yang J, Shu H (2014) Passive reading and motor imagery about hand actions and tool-use actions: an fMRI study. Exp Brain Res 232(2):453–467

    Article  Google Scholar 

  • Zhao Q, Zhou Z, Xu H, Chen S, Xu F, Fan W, Han L (2013) Dynamic neural network of insight: a functional magnetic resonance imaging study on solving Chinese ‘chengyu’ riddles. PLoS One 8(3):e59351

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by Grant-in-Aid for Scientific Research on Innovative Areas (Grant No. 22101007), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miura, N., Sasaki, Y., Hasegawa, K., Tanabe, H.C. (2019). Neural Underpinnings of Creative Thinking and Tool Use: A Meta-Analysis of Neuroimaging Data. In: Nishiaki, Y., Jöris, O. (eds) Learning Among Neanderthals and Palaeolithic Modern Humans. Replacement of Neanderthals by Modern Humans Series. Springer, Singapore. https://doi.org/10.1007/978-981-13-8980-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8980-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8979-5

  • Online ISBN: 978-981-13-8980-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics